mirror of
https://github.com/Cantera/cantera.git
synced 2025-02-25 18:55:29 -06:00
Replace \log by \ln
This commit is contained in:
parent
d951bd5ee6
commit
38b76a0476
@ -820,7 +820,7 @@ private:
|
||||
* We are checking the equation:
|
||||
*
|
||||
* sum_u = sum_j_comp [ sigma_i_j * u_j ]
|
||||
* = u_i_O + \log((AC_i * W_i)/m_tPhaseMoles_old)
|
||||
* = u_i_O + \ln((AC_i * W_i)/m_tPhaseMoles_old)
|
||||
*
|
||||
* by first evaluating:
|
||||
*
|
||||
|
@ -443,7 +443,7 @@ public:
|
||||
* pure species phases which exhibit zero volume expansivity:
|
||||
* @f[
|
||||
* \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T)
|
||||
* - \hat R \sum_k X_k \log(X_k)
|
||||
* - \hat R \sum_k X_k \ln(X_k)
|
||||
* @f]
|
||||
* The reference-state pure-species entropies
|
||||
* @f$ \hat s^0_k(T,p_{ref}) @f$ are computed by the
|
||||
@ -575,7 +575,7 @@ public:
|
||||
* For this phase, the partial molar entropies are equal to the SS species
|
||||
* entropies plus the ideal solution contribution:
|
||||
* @f[
|
||||
* \bar s_k(T,P) = \hat s^0_k(T) - R \log(M0 * molality[k])
|
||||
* \bar s_k(T,P) = \hat s^0_k(T) - R \ln(M0 * molality[k])
|
||||
* @f]
|
||||
* @f[
|
||||
* \bar s_{solvent}(T,P) = \hat s^0_{solvent}(T)
|
||||
|
@ -835,7 +835,7 @@ public:
|
||||
* exhibit zero volume expansivity:
|
||||
* @f[
|
||||
* \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T)
|
||||
* - \hat R \sum_k X_k \log(X_k)
|
||||
* - \hat R \sum_k X_k \ln(X_k)
|
||||
* @f]
|
||||
* The reference-state pure-species entropies @f$ \hat s^0_k(T,p_{ref}) @f$
|
||||
* are computed by the species thermodynamic property manager. The pure
|
||||
|
@ -89,7 +89,7 @@ public:
|
||||
* partial molar volume solution mixture with pure species phases which
|
||||
* exhibit zero volume expansivity:
|
||||
* @f[
|
||||
* \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k \log(X_k)
|
||||
* \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k \ln(X_k)
|
||||
* @f]
|
||||
* The reference-state pure-species entropies
|
||||
* @f$ \hat s^0_k(T,p_{ref}) @f$ are computed by the species thermodynamic
|
||||
@ -104,7 +104,7 @@ public:
|
||||
* constant partial molar volume solution mixture with pure species phases
|
||||
* which exhibit zero volume expansivity:
|
||||
* @f[
|
||||
* \hat g(T, P) = \sum_k X_k \hat g^0_k(T,P) + \hat R T \sum_k X_k \log(X_k)
|
||||
* \hat g(T, P) = \sum_k X_k \hat g^0_k(T,P) + \hat R T \sum_k X_k \ln(X_k)
|
||||
* @f]
|
||||
* The reference-state pure-species Gibbs free energies
|
||||
* @f$ \hat g^0_k(T) @f$ are computed by the species thermodynamic
|
||||
@ -338,7 +338,7 @@ public:
|
||||
* are equal to the pure species entropies plus the ideal solution
|
||||
* contribution.
|
||||
* @f[
|
||||
* \bar s_k(T,P) = \hat s^0_k(T) - R \log(X_k)
|
||||
* \bar s_k(T,P) = \hat s^0_k(T) - R \ln(X_k)
|
||||
* @f]
|
||||
* The reference-state pure-species entropies,@f$ \hat s^{ref}_k(T) @f$, at
|
||||
* the reference pressure, @f$ P_{ref} @f$, are computed by the species
|
||||
|
@ -227,7 +227,7 @@ public:
|
||||
* For an ideal, constant partial molar volume solution mixture with
|
||||
* pure species phases which exhibit zero volume expansivity:
|
||||
* @f[
|
||||
* \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k \log(X_k)
|
||||
* \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k \ln(X_k)
|
||||
* @f]
|
||||
* The reference-state pure-species entropies @f$ \hat s^0_k(T,p_{ref}) @f$
|
||||
* are computed by the species thermodynamic property manager. The pure
|
||||
@ -395,7 +395,7 @@ public:
|
||||
* are equal to the pure species entropies plus the ideal solution
|
||||
* contribution.
|
||||
* @f[
|
||||
* \bar s_k(T,P) = \hat s^0_k(T) - R \log(X_k)
|
||||
* \bar s_k(T,P) = \hat s^0_k(T) - R \ln(X_k)
|
||||
* @f]
|
||||
* The reference-state pure-species entropies,@f$ \hat s^{ref}_k(T) @f$, at
|
||||
* the reference pressure, @f$ P_{ref} @f$, are computed by the species
|
||||
|
@ -364,7 +364,7 @@ public:
|
||||
* are equal to the pure species entropies plus the ideal solution
|
||||
* contribution.
|
||||
* @f[
|
||||
* \bar s_k(T,P) = \hat s^0_k(T) - R \log(X_k)
|
||||
* \bar s_k(T,P) = \hat s^0_k(T) - R \ln(X_k)
|
||||
* @f]
|
||||
* The reference-state pure-species entropies,@f$ \hat s^{ref}_k(T) @f$, at
|
||||
* the reference pressure, @f$ P_{ref} @f$, are computed by the species
|
||||
|
Loading…
Reference in New Issue
Block a user