Update falloff citations

Ensure that docstrings are consistent with science section
This commit is contained in:
Ingmar Schoegl 2023-08-07 23:18:19 -05:00 committed by Ray Speth
parent fd40e884b6
commit 56cea1748d
2 changed files with 110 additions and 43 deletions

View File

@ -30,6 +30,17 @@
year = {1968},
doi = {10.1098/rspa.1968.0178},
URL = {https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1968.0178}}
@article{gilbert1983,
author = {R.~G.~Gilbert and K.~Luther and J.~Troe},
journal = {Berichte der Bunsengesellschaft für physikalische Chemie},
number = {2},
pages = {169--175},
title = {Theory of Thermal Unimolecular Reactions in the Fall-off Range. {II.}
Weak Collision Rate Constants},
doi = {10.1002/bbpc.19830870218},
url = {https://doi.org/10.1002/bbpc.19830870218},
volume = {87},
year = {1983}}
@techreport{RADCAL,
author = {W.~L.~Grosshandler},
institution = {National Institute of Standards and Technology},
@ -71,6 +82,14 @@
url = {https://dx.doi.org/10.1080/13647830.2015.1090018},
volume = {19},
year = {2015}}
@techreport{kee1989,
author = {R.~J.~Kee and F.~M.~Rupley and J.~A.~Miller},
institution = {Sandia National Laboratories},
number = {SAND89-8009},
title = {{Chemkin-II}: A Fortran chemical kinetics package for the analysis of
gas-phase chemical kinetics},
url = {https://www.osti.gov/biblio/5681118},
year = {1989}}
@book{kee2003,
author = {R.~J.~Kee and M.~E.~Coltrin and P.~Glarborg},
publisher = {John Wiley & Sons},
@ -118,6 +137,15 @@
url = {https://dx.doi.org/10.1088/0963-0252/1/3/011},
volume = {1},
year = {1992}}
@article{lindemann1922,
author = {F.~Lindemann},
journal = {Trans. Faraday Soc.},
pages = {598},
title = {Discussion on “the radiation theory of chemical action”},
doi = {10.1039/TF9221700598},
url = {https://dx.doi.org/10.1039/TF9221700598},
volume = {17},
year = {1922}}
@conference{liu1991,
author = {Y.~Liu and B.~Rogg},
journal = {EUROTHERM Seminars},
@ -251,6 +279,17 @@
isbn = {978-0471093473},
title = {Chemical Reaction Equilibrium Analysis: Theory and Algorithms},
year = {1982}}
@article{stewart1989,
author = {P.~H.~Stewart and C.~W.~Larson and D.~Golden},
journal = {Combustion and Flame},
number = {1},
pages = {25--40},
title = {Pressure and temperature dependence of reactions proceeding via a bound
complex. 2. Application to {2 CH3 -> C2H5 + H}},
doi = {10.1016/0010-2180(89)90084-9},
url = {https://doi.org/10.1016/0010-2180(89)90084-9},
volume = {75},
year = {1989}}
@article{takahashi1975,
author = {S.~Takahashi},
title = {Preparation of a Generalized Chart for the Diffusion Coefficients of Gases at High Pressures},

View File

@ -63,9 +63,20 @@ protected:
/**
* Base class for falloff rate calculators. Each instance of a subclass of FalloffRate
* calculates the falloff reaction rate based on specific implementations of the
* falloff function.
* Base class for falloff rate calculators.
* Each instance of a subclass of FalloffRate calculates the falloff reaction rate
* based on specific implementations of the falloff function.
*
* The falloff function @f$ F(P_r, T) @f$ is implemented by FalloffRate specializations,
* and is defined so that the rate coefficient is
* @f[
* k = k_\infty \frac{P_r}{1 + P_r} F(P_r,T)
* @f]
*
* Here @f$ P_r @f$ is the reduced pressure, defined by
* @f[
* P_r = \frac{k_0 [M]}{k_\infty}.
* @f]
* @ingroup falloffGroup
*/
class FalloffRate : public ReactionRate
@ -111,15 +122,7 @@ public:
virtual void updateTemp(double T, double* work) const {}
/**
* The falloff function. This is defined so that the rate coefficient is
*
* @f[ k = F(Pr)\frac{Pr}{1 + Pr}. @f]
*
* Here @f$ Pr @f$ is the reduced pressure, defined by
*
* @f[
* Pr = \frac{k_0 [M]}{k_\infty}.
* @f]
* The falloff function.
*
* @param pr reduced pressure (dimensionless).
* @param work array of size workSize() containing cached
@ -262,7 +265,7 @@ protected:
//! The Lindemann falloff parameterization.
/**
* This class implements the trivial falloff function F = 1.0.
* This class implements the trivial falloff function F = 1.0 @cite lindemann1922.
*
* @ingroup falloffGroup
*/
@ -289,24 +292,38 @@ public:
//! The 3- or 4-parameter Troe falloff parameterization.
/*!
* The falloff function defines the value of @f$ F @f$ in the following
* rate expression
* rate expression @cite gilbert1983
*
* @f[ k = k_{\infty} \left( \frac{P_r}{1 + P_r} \right) F @f]
* @f[
* k = k_{\infty} \left( \frac{P_r}{1 + P_r} \right) F(T, P_r)
* @f]
* where
* @f[ P_r = \frac{k_0 [M]}{k_{\infty}} @f]
* @f[
* P_r = \frac{k_0 [M]}{k_{\infty}}
* @f]
*
* This parameterization is defined by
*
* @f[ F = F_{cent}^{1/(1 + f_1^2)} @f]
* @f[
* \log_{10} F(T, P_r) = \frac{\log_{10} F_{cent}(T)}{1 + f_1^2}
* @f]
* where
* @f[ F_{cent} = (1 - A)\exp(-T/T_3) + A \exp(-T/T_1) + \exp(-T_2/T) @f]
* @f[
* F_{cent}(T) = (1 - A)\exp\left(\frac{-T}{T_3}\right)
* + A \exp\left(\frac{-T}{T_1}\right) + \exp\left(\frac{-T_2}{T}\right)
* @f]
*
* @f[ f_1 = (\log_{10} P_r + C) /
* \left(N - 0.14 (\log_{10} P_r + C)\right) @f]
* @f[
* f_1 = \frac{\log_{10} P_r + C}{N - 0.14 (\log_{10} P_r + C)}
* @f]
*
* @f[ C = -0.4 - 0.67 \log_{10} F_{cent} @f]
* @f[
* C = -0.4 - 0.67 \log_{10} F_{cent}
* @f]
*
* @f[ N = 0.75 - 1.27 \log_{10} F_{cent} @f]
* @f[
* N = 0.75 - 1.27 \log_{10} F_{cent}
* @f]
*
* - If @f$ T_3 @f$ is zero, then the corresponding term is set to zero.
* - If @f$ T_1 @f$ is zero, then the corresponding term is set to zero.
@ -388,22 +405,34 @@ protected:
//! The SRI falloff function
/*!
* This falloff function is based on the one originally due to Stewart et al.
* @cite stewart1989, which required three parameters @f$ a @f$, @f$ b @f$, and
* @f$ c @f$. Kee et al. @cite kee1989 generalized this slightly by adding two more
* parameters @f$ d @f$ and @f$ e @f$. (The original form corresponds to @f$ d = 1 @f$
* and @f$ e = 0 @f$.) In keeping with the nomenclature of Kee et al. @cite kee1989,
* the rate is referred to as the *SRI falloff function*.
*
* The falloff function defines the value of @f$ F @f$ in the following
* rate expression
*
* @f[ k = k_{\infty} \left( \frac{P_r}{1 + P_r} \right) F @f]
* @f[
* k = k_{\infty} \left( \frac{P_r}{1 + P_r} \right) F
* @f]
* where
* @f[ P_r = \frac{k_0 [M]}{k_{\infty}} @f]
* @f[
* P_r = \frac{k_0 [M]}{k_{\infty}}
* @f]
*
* @f[ F = {\left( a \; \exp(\frac{-b}{T}) + \exp(\frac{-T}{c})\right)}^n
* \; d \; T^e @f]
* @f[
* F(T, P_r) = {\left[ a \; \exp\left(\frac{-b}{T}\right)
* + \exp\left(\frac{-T}{c}\right)\right]}^n \; d \; T^e
* @f]
* where
* @f[ n = \frac{1.0}{1.0 + (\log_{10} P_r)^2} @f]
* @f[
* n = \frac{1.0}{1.0 + (\log_{10} P_r)^2}
* @f]
*
* @f$ c @f$ s required to greater than or equal to zero. If it is zero, then
* the corresponding term is set to zero.
*
* @f$ d @f$ is required to be greater than zero.
* @f$ c @f$ is required to be greater than or equal to zero. If it is zero, then the
* corresponding term is set to zero. @f$ d @f$ is required to be greater than zero.
*
* @ingroup falloffGroup
*/
@ -496,11 +525,10 @@ protected:
* @f[ F_{cent} = A + B*T @f]
*
* The value of @f$ F_{cent} @f$ is then applied to Troe's model for the
* determination of the value of @f$ F @f$:
* @f[ F = F_{cent}^{1/(1 + f_1^2)} @f]
* determination of the value of @f$ F(T, P_r) @f$:
* @f[ \log_{10} F(T, P_r) = \frac{\log_{10} F_{cent}(T)}{1 + f_1^2} @f]
* where
* @f[ f_1 = (\log_{10} P_r + C) /
* \left(N - 0.14 (\log_{10} P_r + C)\right) @f]
* @f[ f_1 = \frac{\log_{10} P_r + C}{N - 0.14 (\log_{10} P_r + C)} @f]
*
* @f[ C = -0.4 - 0.67 \log_{10} F_{cent} @f]
*