Add gnc_numeric documentation to design docs.

git-svn-id: svn+ssh://svn.gnucash.org/repo/gnucash/trunk@3222 57a11ea4-9604-0410-9ed3-97b8803252fd
This commit is contained in:
Dave Peticolas 2000-12-01 10:44:55 +00:00
parent fa9db78e9d
commit 93a49d1cc1
3 changed files with 450 additions and 295 deletions

View File

@ -22,6 +22,7 @@ be created as a shared library for use by other programs.
* Engine Introduction::
* Using and Extending the Engine API::
* Globally Unique Identifiers::
* Numeric Library::
* Key-Value Pair Frames::
* Splits::
* Transactions::
@ -120,7 +121,7 @@ gracefully handle @code{NULL} pointer arguments. User code should be
able to handle @code{NULL} return values from Engine calls as well.
@node Globally Unique Identifiers, Key-Value Pair Frames, Using and Extending the Engine API, Engine
@node Globally Unique Identifiers, Numeric Library, Using and Extending the Engine API, Engine
@section Globally Unique Identifiers
@cindex Globally Unique Identifier
@tindex GUID
@ -355,7 +356,425 @@ GnuCash code should use @code{xaccGUIDNew}.
@end deftypefun
@node Key-Value Pair Frames, Splits, Globally Unique Identifiers, Engine
@node Numeric Library, Key-Value Pair Frames, Globally Unique Identifiers, Engine
@section Numeric Library
@cindex Numeric Library
@tindex gnc_numeric
Financial quantities in GnuCash (Split quantities and values) are stored
as exact quantities measured in the smallest denominational unit of the
appropriate currency. For example, 100.50 US Dollars would be stored as
(10050 / 100) US Dollars. GnuCash uses the @code{gnc_numeric} datatype
to store financial quantities.
The @code{gnc_numeric} API provides data types and functions for
manipulating exact numeric quantities. While the @code{gnc_numeric}
library was developed to represent and operate on exact financial
quantities in GnuCash, the library is also (hopefully) suitable for use
in any application where exact numeric representation for rational
numbers is needed.
A @code{gnc_numeric} value represents a number in rational form, with a
64-bit @code{long long} integer as numerator and denominator. If more
precision, a higher-precision representation of irrational numbers, or a
wider dynamic range is needed, a floating point format may be
appropriate. There are reasonable rational approximations to common
irrational constants (@pxref{Numeric Example}), but the transcendental
functions have not been implemented for @code{gnc_numeric} objects.
@menu
* Standard Numeric Arguments::
* Creating Numeric Objects::
* Basic Arithmetic Operations::
* Numeric Comparisons and Predicates::
* Numeric Denominator Conversion::
* Numeric Floating Point Conversion::
* Numeric String Conversion::
* Numeric Error Handling ::
* Numeric Example::
@end menu
@node Standard Numeric Arguments, Creating Numeric Objects, Numeric Library, Numeric Library
@subsection Standard Numeric Arguments
@cindex Standard Numeric Arguments
It is useful to specify a denominator in cases where it is known that
the output value is of constrained precision. For example, monetary
transactions must be executed in an integer number of the "smallest
currency unit" of the transaction. In US Dollars, the smallest currency
unit is the cent, and all monetary transactions must be done in units of
cents. Therefore, any fractional cents in a computed price must be
rounded away.
Most of the @code{gnc_numeric} arithmetic functions take two arguments
in addition to their numeric args: @var{denom}, which is the denominator
to use in the output @code{gnc_numeric object}, and @var{how}, which
describes how the arithmetic result is to be converted to that
denominator. This combination of output denominator and rounding policy
allows the results of financial and other exact computations to be
properly rounded to the appropriate units.
Valid values for @var{denom} are:
@table @code
@item n (positive int)
Use the number @code{n} as the denominator of the output value.
@item GNC_DENOM_RECIPROCAL (n)
Use the value @code{1/n} as the denominator of the output value.
@item GNC_DENOM_AUTO
Compute an appropriate denominator automatically. Flags in the @var{how}
argument will specify how to compute the denominator.
@end table
Valid values for @var{how} are bitwise combinations of zero or one
"rounding instructions" with zero or one "denominator types".
Rounding instructions control how fractional parts in the specified
denominator affect the result. For example, if a computed result is
"3/4" but the specified denominator for the return value is 2, should
the return value be "1/2" or "2/2"?
Possible rounding instructions are:
@table @code
@item GNC_RND_FLOOR
Round toward -infinity
@item GNC_RND_CEIL
Round toward +infinity
@item GNC_RND_TRUNC
Truncate fractions (round toward zero)
@item GNC_RND_PROMOTE
Promote fractions (round away from zero)
@item GNC_RND_ROUND
Use unbiased ("banker's") rounding. This rounds to the nearest integer,
and to the nearest even integer when there are two equidistant nearest
integers. This is generally the one you should use for financial
quantities.
@item GNC_RND_ROUND_HALF_UP
Round to the nearest integer, rounding away from zero when there are two
equidistant nearest integers.
@item GNC_RND_ROUND_HALF_DOWN
Round to the nearest integer, rounding toward zero when there are two
equidistant nearest integers.
@item GNC_RND_NEVER
Never round at all, and signal an error if there is a fractional result
in a computation.
@end table
The denominator type specifies how to compute a denominator if
@code{GNC_DENOM_AUTO} is specified as the @var{denom}. Valid denominator
types are:
@table @code
@item GNC_DENOM_EXACT
Use any denominator which gives an exactly correct ratio of numerator to
denominator. Use EXACT when you do not wish to lose any information in
the result but also do not want to spend any time finding the "best"
denominator.
@item GNC_DENOM_REDUCE
Reduce the result value by common factor elimination, using the smallest
possible value for the denominator that keeps the correct ratio. The
numerator and denominator of the result are relatively prime. This can
be computationally expensive for large fractions.
@item GNC_DENOM_LCD
Find the least common multiple of the arguments' denominators and use
that as the denominator of the result.
@item GNC_DENOM_FIXED
All arguments are required to have the same denominator, that
denominator is to be used in the output, and an error is to be signaled
if any argument has a different denominator.
@end table
To use traditional rational-number operational semantics (all results
are exact and are reduced to relatively-prime fractions) pass the
argument @code{GNC_DENOM_AUTO} as @var{denom} and @code{GNC_DENOM_REDUCE
| GNC_RND_NEVER} as @var{how}.
To enforce strict financial semantics (such that all operands must have
the same denominator as each other and as the result), use
@var{GNC_DENOM_AUTO} as @var{denom} and @code{GNC_DENOM_FIXED |
GNC_RND_NEVER} as @var{how}.
@node Creating Numeric Objects, Basic Arithmetic Operations, Standard Numeric Arguments, Numeric Library
@subsection Creating Numeric Objects
@cindex Creating Numeric Objects
@deftypefun gnc_numeric gnc_numeric_create (int @var{num}, int @var{denom})
Create a @code{gnc_numeric} object with a value of "@var{num} / @var{denom}".
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_zero ()
Create a @code{gnc_numeric} object with a value of 0.
@end deftypefun
@node Basic Arithmetic Operations, Numeric Comparisons and Predicates, Creating Numeric Objects, Numeric Library
@subsection Basic Arithmetic Operations
@cindex Basic Arithmetic Operations
See @ref{Standard Numeric Arguments} for a description of the @var{denom}
and @var{how} arguments to each arithmetic function.
@deftypefun gnc_numeric gnc_numeric_add (gnc_numeric @var{a}, gnc_numeric @var{b}, gint64 @var{denom}, gint @var{how})
Return the sum of @var{a} and @var{b}.
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_sub (gnc_numeric @var{a}, gnc_numeric @var{b}, gint64 @var{denom}, gint @var{how})
Return "@var{a} - @var{b}".
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_mul (gnc_numeric @var{a}, gnc_numeric @var{b}, gint64 @var{denom}, gint @var{how})
Return the product of @var{a} and @var{b}.
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_div (gnc_numeric @var{a}, gnc_numeric @var{b}, gint64 @var{denom}, gint @var{how})
Return "@var{a} / @var{b}".
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_neg (gnc_numeric @var{a})
Return "-@var{a}".
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_abs (gnc_numeric @var{a})
Return the absolute value of @var{a}.
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_add_fixed (gnc_numeric @var{a}, gnc_numeric @var{b})
Equivalent to @code{gnc_numeric_add} on @var{a} and @var{b} with
@code{GNC_DENOM_AUTO} for @var{denom} and @code{GNC_DENOM_FIXED |
GNC_RND_NEVER} for @var{how}.
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_sub_fixed (gnc_numeric @var{a}, gnc_numeric @var{b})
Equivalent to @code{gnc_numeric_sub} on @var{a} and @var{b} with
@code{GNC_DENOM_AUTO} for @var{denom} and @code{GNC_DENOM_FIXED |
GNC_RND_NEVER} for @var{how}.
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_add_with_error (gnc_numeric @var{a}, gnc_numeric @var{b}, gint64 @var{denom}, gint @var{how}, {gnc_numeric *} @var{error})
The same as @code{gnc_numeric_add}, but uses @var{error} for accumulating
conversion roundoff error.
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_sub_with_error (gnc_numeric @var{a}, gnc_numeric @var{b}, gint64 @var{denom}, gint @var{how}, {gnc_numeric *} @var{error})
The same as @code{gnc_numeric_sub}, but uses @var{error} for accumulating
conversion roundoff error.
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_mul_with_error (gnc_numeric @var{a}, gnc_numeric @var{b}, gint64 @var{denom}, gint @var{how}, {gnc_numeric *} @var{error})
The same as @code{gnc_numeric_mul}, but uses @var{error} for accumulating
conversion roundoff error.
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_div_with_error (gnc_numeric @var{a}, gnc_numeric @var{b}, gint64 @var{denom}, gint @var{how}, {gnc_numeric *} @var{error})
The same as @code{gnc_numeric_div}, but uses @var{error} for accumulating
conversion roundoff error.
@end deftypefun
@node Numeric Comparisons and Predicates, Numeric Denominator Conversion, Basic Arithmetic Operations, Numeric Library
@subsection Numeric Comparisons and Predicates
@cindex Numeric Comparisons and Predicates
@deftypefun int gnc_numeric_zero_p (gnc_numeric @var{a})
Returns 1 if @code{@var{a} == 0}, otherwise returns 0.
@end deftypefun
@deftypefun int gnc_numeric_positive_p (gnc_numeric @var{a})
Returns 1 if @code{@var{a} > 0}, otherwise returns 0.
@end deftypefun
@deftypefun int gnc_numeric_negative_p (gnc_numeric @var{a})
Returns 1 if @code{@var{a} > 0}, otherwise returns 0.
@end deftypefun
@deftypefun int gnc_numeric_compare (gnc_numeric @var{a}, gnc_numeric @var{b})
Returns +1 if @code{@var{a} > @var{b}}, -1 if @code{@var{b} > @var{a}}, 0 if @code{@var{a} == @var{b}}.
@end deftypefun
@deftypefun int gnc_numeric_eq (gnc_numeric @var{a}, gnc_numeric @var{b})
Returns 1 if @code{numerator(@var{a}) == numerator(@var{b})} and
@code{denominator(@var{a}) == denominator(@var{b})}, otherwise returns 0.
@end deftypefun
@deftypefun int gnc_numeric_equal (gnc_numeric @var{a}, gnc_numeric @var{b})
Returns 1 if the fraction represented by @var{a} is equal to the fraction
represented by @var{b}, otherwise returns 0.
@end deftypefun
@deftypefun int gnc_numeric_same (gnc_numeric @var{a}, gnc_numeric @var{b}, gint64 @var{denom}, gint @var{how})
Convert both @var{a} and @var{b} to @var{denom} (@pxref{Standard Numeric
Arguments} and compare numerators of the result.
@example
For example, if @code{@var{a} == 7/16} and @code{@var{b} == 3/4},
@code{gnc_numeric_same(@var{a}, @var{b}, 2, GNC_RND_TRUNC) == 1}
because both 7/16 and 3/4 round to 1/2 under truncation. However,
@code{gnc_numeric_same(@var{a}, @var{b}, 2, GNC_RND_ROUND) == 0}
because 7/16 rounds to 1/2 under unbiased rounding but 3/4 rounds
to 2/2.
@end example
@end deftypefun
@node Numeric Denominator Conversion, Numeric Floating Point Conversion, Numeric Comparisons and Predicates, Numeric Library
@subsection Numeric Denominator Conversion
@cindex Numeric Denominator Conversion
@deftypefun gnc_numeric gnc_numeric_convert (gnc_numeric @var{in}, gint64 @var{denom}, gint @var{how})
Convert @var{in} to the specified denominator under standard arguments
@var{denom} and @var{how}. @xref{Standard Numeric Arguments}.
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_convert_with_error (gnc_numeric @var{in}, gint64 @var{denom}, gint @var{how}, {gnc_numeric *} @var{error})
Same as @code{gnc_numeric_convert}, but return a remainder value for
accumulating conversion error.
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_reduce (gnc_numeric @var{in})
Return @var{in} reduced by GCF reduction.
@end deftypefun
@node Numeric Floating Point Conversion, Numeric String Conversion, Numeric Denominator Conversion, Numeric Library
@subsection Numeric Floating Point Conversion
@cindex Numeric Floating Point Conversion
@deftypefun gnc_numeric double_to_gnc_numeric (double @var{arg}, gint64 @var{denom}, gint @var{how})
Convert a floating-point number to a @code{gnc_numeric}. Both @var{denom}
and @var{how} are used as in arithmetic, but @code{GNC_DENOM_AUTO} is
not recognized.
@end deftypefun
@deftypefun double gnc_numeric_to_double (gnc_numeric @var{arg})
Convert @var{arg} to a @code{double} value.
@end deftypefun
@node Numeric String Conversion, Numeric Error Handling , Numeric Floating Point Conversion, Numeric Library
@subsection Numeric String Conversion
@cindex Numeric String Conversion
@deftypefun {gchar *} gnc_numeric_to_string (gnc_numeric @var{n})
Return a string representation of @var{n}. The string must be
freed with @code{g_free}.
@end deftypefun
@deftypefun {const gchar *} string_to_gnc_numeric (const {gchar *} @var{str}, {gnc_numeric *} @var{n})
Read a @code{gnc_numeric} from @var{str}, skipping any leading
whitespace, and returning a pointer to just past the last byte
read. Return NULL on error.
@end deftypefun
@node Numeric Error Handling , Numeric Example, Numeric String Conversion, Numeric Library
@subsection Numeric Error Handling
@cindex Numeric Error Handling
@deftypefun int gnc_numeric_check (gnc_numeric @var{num})
Check @var{num} for the possibility that it is an error signal rather
than a proper value. Possible return codes are:
@table @code
@item GNC_ERROR_OK
No error condition
@item GNC_ERROR_ARG
An improper argument was passed to a function
@item GNC_ERROR_OVERFLOW
An overflow occurred while calculating a result
@item GNC_ERROR_DENOM_DIFF
@code{GNC_DENOM_FIXED} was specified, but argument denominators differed.
@item GNC_ERROR_REMAINDER
@code{GNC_RND_NEVER} was specified, but the result could not be
converted to the desired denominator without a remainder.
@end table
@end deftypefun
@deftypefun gnc_numeric gnc_numeric_error (int error_code)
Create a @code{gnc_numeric} object that signals the error condition
noted by @var{error_code} rather than a number.
@end deftypefun
@node Numeric Example, , Numeric Error Handling , Numeric Library
@subsection Numeric Example
@cindex Numeric Example
The following program finds the best @code{gnc_numeric} approximation to
the @file{math.h} constant @code{M_PI} given a maximum denominator. For
large denominators, the @code{gnc_numeric} approximation is accurate to
more decimal places than will generally be needed, but in some cases
this may not be good enough. For example,
@example
M_PI = 3.14159265358979323846
245850922 / 78256779 = 3.14159265358979311599 (16 sig figs)
3126535 / 995207 = 3.14159265358865047446 (12 sig figs)
355 / 113 = 3.14159292035398252096 (7 sig figs)
@end example
@example
#include <glib.h>
#include "gnc-numeric.h"
#include <math.h>
int
main(int argc, char ** argv)
@{
gnc_numeric approx, best;
double err, best_err=1.0;
double m_pi = M_PI;
gint64 denom;
gint64 max;
sscanf(argv[1], "%Ld", &max);
for (denom = 1; denom < max; denom++)
@{
approx = double_to_gnc_numeric (m_pi, denom, GNC_RND_ROUND);
err = m_pi - gnc_numeric_to_double (approx);
if (fabs (err) < fabs (best_err))
@{
best = approx;
best_err = err;
printf ("%Ld / %Ld = %.30f\n", gnc_numeric_num (best),
gnc_numeric_denom (best), gnc_numeric_to_double (best));
@}
@}
@}
@end example
@node Key-Value Pair Frames, Splits, Numeric Library, Engine
@section Key-Value Pair Frames
@cindex Key-Value Pairs
@ -715,20 +1134,20 @@ Return the parent Account of @var{split}.
Return the parent Transaction of @var{split}.
@end deftypefun
@deftypefun double xaccSplitGetShareAmount (Split * @var{split})
@deftypefun gnc_numeric xaccSplitGetShareAmount (Split * @var{split})
Return the 'share quantity' of @var{split}.
@end deftypefun
@deftypefun double xaccSplitGetSharePrice (Split * @var{split})
@deftypefun gnc_numeric xaccSplitGetSharePrice (Split * @var{split})
Return the 'share price' of @var{split}.
@end deftypefun
@deftypefun double xaccSplitGetValue (Split * @var{split})
@deftypefun gnc_numeric xaccSplitGetValue (Split * @var{split})
Return the value of @var{split}, which is equal to the share quantity
multiplied by the share price.
@end deftypefun
@deftypefun double xaccSplitGetBaseValue (Split * @var{split}, const char * @var{base_currency})
@deftypefun gnc_numeric xaccSplitGetBaseValue (Split * @var{split}, const char * @var{base_currency})
Return either the share quantity or the value of @var{split}, depending
upon whether @var{base_currency} matches the security or currency of the
parent Account, respectively. No other value for @var{base_currency} is
@ -769,32 +1188,32 @@ Return the Memo field of @var{split}.
Return the Action field of @var{split}.
@end deftypefun
@deftypefun double xaccSplitGetBalance (Split * @var{split})
@deftypefun gnc_numeric xaccSplitGetBalance (Split * @var{split})
Return the balance of @var{split}'s parent Account up to and including
@var{split}. See @ref{Accounts} for details.
@end deftypefun
@deftypefun double xaccSplitGetClearedBalance (Split * @code{split})
@deftypefun gnc_numeric xaccSplitGetClearedBalance (Split * @code{split})
Return the cleared balance of @var{split}'s parent Account up to and
including @var{split}. See @ref{Accounts} for details.
@end deftypefun
@deftypefun double xaccSplitGetReconciledBalance (Split * @code{split})
@deftypefun gnc_numeric xaccSplitGetReconciledBalance (Split * @code{split})
Return the reconciled balance of @var{split}'s parent Account up to and
including @var{split}. See @ref{Accounts} for details.
@end deftypefun
@deftypefun double xaccSplitGetShareBalance (Split * @var{split})
@deftypefun gnc_numeric xaccSplitGetShareBalance (Split * @var{split})
Return the share balance of @var{split}'s parent Account up to and
including @var{split}. See @ref{Accounts} for details.
@end deftypefun
@deftypefun double xaccSplitGetShareClearedBalance (Split * @code{split})
@deftypefun gnc_numeric xaccSplitGetShareClearedBalance (Split * @code{split})
Return the share cleared balance of @var{split}'s parent Account up to
and including @var{split}. See @ref{Accounts} for details.
@end deftypefun
@deftypefun double xaccSplitGetShareReconciledBalance (Split * @code{split})
@deftypefun gnc_numeric xaccSplitGetShareReconciledBalance (Split * @code{split})
Return the share reconciled balance of @var{split}'s parent Account up
to and including @var{split}. See @ref{Accounts} for details.
@end deftypefun
@ -826,27 +1245,27 @@ Set the reconciliation date of @var{split} to @var{time}.
Set the reconciliation date of @var{split} to @var{ts}.
@end deftypefun
@deftypefun void xaccSplitSetShareAmount (Split * @var{split}, double amount)
@deftypefun void xaccSplitSetShareAmount (Split * @var{split}, gnc_numeric amount)
Set the share quantity of @var{split} to @var{amount}.
@end deftypefun
@deftypefun void xaccSplitSetSharePrice (Split * @var{split}, double @var{price})
@deftypefun void xaccSplitSetSharePrice (Split * @var{split}, gnc_numeric @var{price})
Set the share price of @var{split} to @var{price}.
@end deftypefun
@deftypefun void xaccSplitSetSharePriceAndAmount (Split * @var{split}, double @var{price}, double @var{amount})
@deftypefun void xaccSplitSetSharePriceAndAmount (Split * @var{split}, gnc_numeric @var{price}, gnc_numeric @var{amount})
Set both the share price and share quantity of @var{split}. This routine
is more efficent than calling @code{xaccSplitSetShareAmount} and
@code{xaccSplitSetSharePrice} in succesion, because the parent Transaction
is only rebalanced once. @xref{Transactions}.
@end deftypefun
@deftypefun void xaccSplitSetValue (Split * @var{split}, double @var{value})
@deftypefun void xaccSplitSetValue (Split * @var{split}, gnc_numeric @var{value})
Adjust the share quantity of @var{split} so that @var{split}'s value is
equal to @var{value}.
@end deftypefun
@deftypefun void xaccSplitSetBaseValue (Split * @var{split}, double @var{value}, const char * @var{base_currency})
@deftypefun void xaccSplitSetBaseValue (Split * @var{split}, gnc_numeric @var{value}, const char * @var{base_currency})
Set either the share quantity or value of @var{split} depending upon
whether @var{base_currency} is the security or current of @var{split}'s
parent Account. @xref{Accounts}.
@ -1196,7 +1615,7 @@ unsupported URI type
file path too long
@item ENOLCK
book not open when SessionSave() was called.
book not open when @code{gnc_book_save()} was called.
@end table
@end deftypefun

View File

@ -81,6 +81,7 @@ Engine
* Engine Introduction::
* Using and Extending the Engine API::
* Globally Unique Identifiers::
* Numeric Library::
* Key-Value Pair Frames::
* Splits::
* Transactions::
@ -96,6 +97,18 @@ Globally Unique Identifiers
* GUIDs and GnuCash Entities::
* The GUID Generator::
Numeric Library
* Standard Numeric Arguments::
* Creating Numeric Objects::
* Basic Arithmetic Operations::
* Numeric Comparisons and Predicates::
* Numeric Denominator Conversion::
* Numeric Floating Point Conversion::
* Numeric String Conversion::
* Numeric Error Handling ::
* Numeric Example::
Key-Value Pair Frames
* Key-Value Policy::

View File

@ -1,277 +0,0 @@
API documentation for gnc-numeric
---------------------------------
The gnc_numeric API provides data types and functions for manipulating
exact numeric quantities. gnc_numeric was developed to represent and
operate on exact financial quantities in gnucash, but it is
(hopefully) suitable for use in most places an exact numeric
representation for non-integer numbers is needed.
gnc_numeric represents numbers in a rational form, with a 64-bit 'long
long' integer as numerator and denominator. If more precision is
needed, or a higher-precision representation of irrational numbers, or
a wider dynamic range, a floating point format may be appropriate.
There are reasonable rational approximations to common irrational
constants [1], but the transcendental functions have not been
implemented for gnc_numeric objects.
1. Standard arguments
It is useful to specify a denominator in cases where it is known that
the output value is of constrained precision. For example, monetary
transactions must be executed in an integer number of the "smallest
currency unit" of the transaction. In US Dollars, the smallest
currency unit is the cent, and all monetary transactions must be done
in units of cents. Therefore, any fractional cents in a computed
price must be rounded away.
Most of the gnc_numeric arithmetic functions take two arguments in
addition to their numeric args: 'denom', which is the denominator to
use in the output gnc_numeric object, and 'how', which describes how
the arithmetic result is to be converted to that denominator. This
combination of output denominator and rounding policy allows the
results of financial and other exact computations to be properly
rounded to the appropriate units.
Valid values for 'denom' are:
n (positive int) Use the number 'n' as the denominator of the
output value.
GNC_DENOM_RECIPROCAL( n ) Use the value '1/n' as the denominator of
the output value.
GNC_DENOM_AUTO Compute an appropriate denominator
automatically. Flags in the 'how'
argument will specify how to compute the
denominator.
Valid values for 'how' are bitwise combinations of zero or one
"rounding instructions" with zero or one "denominator types".
Rounding instructions control how fractional parts in the specified
denominator affect the result. For example, if a computed result is
"3/4" but the specified denominator for the return value is 2, should
the return value be "1/2" or "2/2"?
Possible rounding instructions are:
GNC_RND_FLOOR : round toward -infinity
GNC_RND_CEIL : round toward +infinity
GNC_RND_TRUNC : truncate fractions (round toward zero)
GNC_RND_PROMOTE : promote fractions (round away from zero)
GNC_RND_ROUND : use unbiased ("banker's") rounding. This rounds
to the nearest integer, and to the nearest even
integer when there are two equidistant nearest
integers.
GNC_RND_ROUND_HALF_UP : round to the nearest integer, rounding away
from zero when there are two equidistant nearest
integers.
GNC_RND_ROUND_HALF_DOWN : round to the nearest integer, rounding toward
zero when there are two equidistant nearest
integers.
GNC_RND_NEVER : never round at all, and signal an error if there is a
fractional result in a computation.
The denominator type specifies how to compute a denominator if
GNC_DENOM_AUTO is specified as the 'denom'. Valid denominator types
are:
GNC_DENOM_EXACT : Use any denominator which gives an exactly correct
ratio of numerator to denominator. Use EXACT when
you do not wish to lose any information in the result
but also do not want to spend any time finding the
"best" denominator.
GNC_DENOM_REDUCE : Reduce the result value by common factor elimination,
using the smallest possible value for the denominator
that keeps the correct ratio. The numerator and
denominator of the result are relatively prime.
This can be computationally expensive for large
fractions.
GNC_DENOM_LCD : Find the least common multiple of the arguments'
denominators and use that as the denominator of the
result.
GNC_DENOM_FIXED : All arguments are required to have the same denominator,
that denominator is to be used in the output, and
an error is to be signaled if any argument has a
different denominator.
To use traditional rational-number operational semantics (all results
are exact and are reduced to relatively-prime fractions) pass the
argument GNC_DENOM_AUTO as 'denom' and GNC_DENOM_REDUCE | GNC_RND_NEVER
as 'how'.
To enforce strict financial semantics (such that all operands must
have the same denominator as each other and as the result), use
GNC_DENOM_AUTO as 'denom' and GNC_DENOM_FIXED | GNC_RND_NEVER as
'how'.
2. Creating gnc-numeric objects
gnc_numeric_create(int num, int denom);
Create a gnc_numeric object with a value of "num / denom".
gnc_numeric_zero();
Create a gnc_numeric object with a value of 0.
3. Basic arithmetic operations
See 'Standard arguments' for a description of the 'denom' and 'how'
arguments to each arithmetic function.
gnc_numeric gnc_numeric_add(gnc_numeric a, gnc_numeric b,
gint64 denom, gint how);
Add.
gnc_numeric gnc_numeric_sub(gnc_numeric a, gnc_numeric b,
gint64 denom, gint how);
Subtract.
gnc_numeric gnc_numeric_mul(gnc_numeric a, gnc_numeric b,
gint64 denom, gint how);
Multiply.
gnc_numeric gnc_numeric_div(gnc_numeric a, gnc_numeric b,
gint64 denom, gint how);
Divide.
gnc_numeric gnc_numeric_neg(gnc_numeric a);
Negate.
4. Arithmetic operations with error returns
These functions perform the same operation as the corresponding
non-"with_error" function, but additionally fill in the
"error" argument with a "remainder" value indicating the
exact difference between the function's return value and a
GNC_DENOM_FIXED version of the same call. This is a way of
accumulating the "fractional pennies" that can be rounded or
truncated in normal arithmetic operations.
gnc_numeric gnc_numeric_add_with_error(gnc_numeric a, gnc_numeric b,
gint64 denom, gint how,
gnc_numeric * error);
gnc_numeric gnc_numeric_sub_with_error(gnc_numeric a, gnc_numeric b,
gint64 denom, gint how,
gnc_numeric * error);
gnc_numeric gnc_numeric_mul_with_error(gnc_numeric a, gnc_numeric b,
gint64 denom, gint how,
gnc_numeric * error);
gnc_numeric gnc_numeric_div_with_error(gnc_numeric a, gnc_numeric b,
gint64 denom, gint how,
gnc_numeric * error);
5. Comparisons and predicates
int gnc_numeric_zero_p(gnc_numeric a);
Returns 1 if a == 0, 0 else.
int gnc_numeric_positive_p(gnc_numeric a);
Returns 1 if a>0, 0 else.
int gnc_numeric_negative_p(gnc_numeric a);
Returns 1 if a>0, 0 else.
int gnc_numeric_compare(gnc_numeric a, gnc_numeric b);
Returns +1 if a>b, -1 if b>a, 0 if a == b.
Equality predicates:
int gnc_numeric_eq(gnc_numeric a, gnc_numeric b);
Returns 1 if numerator(a) == numerator(b) &&
denominator(a) == denominator(b), 0 else.
int gnc_numeric_equal(gnc_numeric a, gnc_numeric b);
Returns 1 if the fraction represented by a is equal to
the fraction represented by b, 0 else.
int gnc_numeric_same(gnc_numeric a, gnc_numeric b, gint64 denom,
gint how);
Convert both 'a' and 'b' to 'denom' (standard args) and
compare numerators of the result.
For example, if a == "7/16" and b == "3/4",
gnc_numeric_same(a, b, 2, GNC_RND_TRUNC) == 1 because both
7/16 and 3/4 round to 1/2 under truncation. However,
gnc_numeric_same(a, b, 2, GNC_RND_ROUND) == 0 because
7/16 rounds to 1/2 under unbiased rounding but 3/4 rounds to
2/2.
6. Denominator conversion
gnc_numeric_convert(gnc_numeric in, gint64 denom, gint how);
Convert the input value to the specified denominator under
standard arguments 'denom' and 'how'.
gnc_numeric_convert_with_error(gnc_numeric in, gint64 denom,
gint how, gnc_numeric * error);
Same as gnc_numeric_convert, but return a remainder value for
accumulating conversion error.
7. Floating point conversion
gnc_numeric double_to_gnc_numeric(double arg, gint64 denom, gint how);
Convert a floating-point number to a gnc_numeric. 'denom'
and 'how' are used as in arithmetic, but GNC_DENOM_AUTO is
not recognized.
double gnc_numeric_to_double(gnc_numeric arg);
8. Error handling
int gnc_numeric_check(num)
Check 'num' for the possibility that it is an error signal
rather than a proper value. Possible return codes are
0 (GNC_ERROR_OK, or no error condition), or
GNC_ERROR_ARG An improper argument was passed to a function
GNC_ERROR_OVERFLOW An overflow occurred while calculating a result
GNC_ERROR_DENOM_DIFF GNC_DENOM_FIXED was specified, but argument
denominators differed.
GNC_ERROR_REMAINDER GNC_RND_NEVER was specified, but the result
could not be converted to the desired
denominator without a remainder.
gnc_numeric gnc_numeric_error(err);
Create a gnc_numeric object that signals the error condition
noted by 'err' rather than a number.
[1] The following program finds the best gnc_numeric approximation to
the math.h constant M_PI given a maximum denominator. For large
denominators, the gnc_numeric approximation is accurate to more
decimal places than will generally be needed, but in some cases this
may not be good enough. For example,
M_PI = 3.14159265358979323846
245850922 / 78256779 = 3.14159265358979311599 (16 sig figs)
3126535 / 995207 = 3.14159265358865047446 (12 sig figs)
355 / 113 = 3.14159292035398252096 (7 sig figs)
------------------------------------
#include <glib.h>
#include "gnc-numeric.h"
#include <math.h>
int
main(int argc, char ** argv) {
gnc_numeric approx, best;
double err, best_err=1.0;
double m_pi = M_PI;
gint64 denom;
gint64 max;
sscanf(argv[1], "%Ld", &max);
for(denom = 1; denom < max; denom++) {
approx = double_to_gnc_numeric(m_pi, denom, GNC_RND_ROUND);
err = m_pi - gnc_numeric_to_double(approx);
if(fabs(err) < fabs(best_err)) {
best = approx;
best_err = err;
printf("%Ld / %Ld = %.30f\n", gnc_numeric_num(best),
gnc_numeric_denom(best), gnc_numeric_to_double(best));
}
}
exit(0);
}