gnucash/libgnucash/engine/gnc-rational.cpp
2018-04-03 22:02:44 -04:00

322 lines
8.6 KiB
C++

/********************************************************************
* gnc-rational.hpp - A rational number library *
* Copyright 2014 John Ralls <jralls@ceridwen.us> *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of *
* the License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License*
* along with this program; if not, contact: *
* *
* Free Software Foundation Voice: +1-617-542-5942 *
* 51 Franklin Street, Fifth Floor Fax: +1-617-542-2652 *
* Boston, MA 02110-1301, USA gnu@gnu.org *
* *
*******************************************************************/
#include <sstream>
#include "gnc-rational.hpp"
#include "gnc-numeric.hpp"
GncRational::GncRational(GncNumeric n) noexcept :
m_num(n.num()), m_den(n.denom())
{
if (m_den.isNeg())
{
m_num *= -m_den;
m_den = 1;
}
}
GncRational::GncRational (gnc_numeric n) noexcept :
m_num (n.num), m_den (n.denom)
{
if (m_den.isNeg())
{
m_num *= -m_den;
m_den = 1;
}
}
bool
GncRational::valid() const noexcept
{
if (m_num.valid() && m_den.valid())
return true;
return false;
}
bool
GncRational::is_big() const noexcept
{
if (m_num.isBig() || m_den.isBig())
return true;
return false;
}
GncRational::operator gnc_numeric () const noexcept
{
if (!valid())
return gnc_numeric_error(GNC_ERROR_OVERFLOW);
try
{
return {static_cast<int64_t>(m_num), static_cast<int64_t>(m_den)};
}
catch (std::overflow_error&)
{
return gnc_numeric_error (GNC_ERROR_OVERFLOW);
}
}
GncRational
GncRational::operator-() const noexcept
{
return GncRational(-m_num, m_den);
}
GncRational
GncRational::inv () const noexcept
{
if (m_num == 0)
return *this;
if (m_num < 0)
return GncRational(-m_den, -m_num);
return GncRational(m_den, m_num);
}
GncRational
GncRational::abs() const noexcept
{
if (m_num < 0)
return -*this;
return *this;
}
void
GncRational::operator+=(GncRational b)
{
GncRational new_val = *this + b;
*this = std::move(new_val);
}
void
GncRational::operator-=(GncRational b)
{
GncRational new_val = *this - b;
*this = std::move(new_val);
}
void
GncRational::operator*=(GncRational b)
{
GncRational new_val = *this * b;
*this = std::move(new_val);
}
void
GncRational::operator/=(GncRational b)
{
GncRational new_val = *this / b;
*this = std::move(new_val);
}
int
GncRational::cmp(GncRational b)
{
if (m_den == b.denom())
{
auto b_num = b.num();
return m_num < b_num ? -1 : b_num < m_num ? 1 : 0;
}
auto gcd = m_den.gcd(b.denom());
GncInt128 a_num(m_num * b.denom() / gcd), b_num(b.num() * m_den / gcd);
return a_num < b_num ? -1 : b_num < a_num ? 1 : 0;
}
GncRational::round_param
GncRational::prepare_conversion (GncInt128 new_denom) const
{
if (new_denom == m_den || new_denom == GNC_DENOM_AUTO)
return {m_num, m_den, 0};
GncRational conversion(new_denom, m_den);
auto red_conv = conversion.reduce();
GncInt128 old_num(m_num);
auto new_num = old_num * red_conv.num();
if (new_num.isOverflow())
throw std::overflow_error("Conversion overflow");
auto rem = new_num % red_conv.denom();
new_num /= red_conv.denom();
return {new_num, red_conv.denom(), rem};
}
GncInt128
GncRational::sigfigs_denom(unsigned figs) const noexcept
{
if (m_num == 0)
return 1;
auto num_abs = m_num.abs();
bool not_frac = num_abs > m_den;
int64_t val{ not_frac ? num_abs / m_den : m_den / num_abs };
unsigned digits{};
while (val >= 10)
{
++digits;
val /= 10;
}
return not_frac ?
powten(digits < figs ? figs - digits - 1 : 0) :
powten(figs + digits);
}
GncRational
GncRational::reduce() const
{
auto gcd = m_den.gcd(m_num);
if (gcd.isNan() || gcd.isOverflow())
throw std::overflow_error("Reduce failed, calculation of gcd overflowed.");
return GncRational(m_num / gcd, m_den / gcd);
}
GncRational
GncRational::round_to_numeric() const
{
unsigned int ll_bits = GncInt128::legbits;
if (m_num.isZero())
return GncRational(); //Default constructor makes 0/1
if (!(m_num.isBig() || m_den.isBig()))
return *this;
if (m_num.abs() > m_den)
{
auto quot(m_num / m_den);
if (quot.isBig())
{
std::ostringstream msg;
msg << " Cannot be represented as a "
<< "GncNumeric. Its integer value is too large.\n";
throw std::overflow_error(msg.str());
}
GncRational new_v;
while (new_v.num().isZero())
{
try
{
new_v = convert<RoundType::half_down>(m_den / (m_num.abs() >> ll_bits));
if (new_v.is_big())
{
--ll_bits;
new_v = GncRational();
}
}
catch(const std::overflow_error& err)
{
--ll_bits;
}
}
return new_v;
}
auto quot(m_den / m_num);
if (quot.isBig())
return GncRational(); //Smaller than can be represented as a GncNumeric
GncRational new_v;
while (new_v.num().isZero())
{
auto divisor = m_den >> ll_bits;
if (m_num.isBig())
{
GncInt128 oldnum(m_num), num, rem;
oldnum.div(divisor, num, rem);
auto den = m_den / divisor;
num += rem * 2 >= den ? 1 : 0;
if (num.isBig() || den.isBig())
{
--ll_bits;
continue;
}
GncRational new_rational(num, den);
return new_rational;
}
new_v = convert<RoundType::half_down>(m_den / divisor);
if (new_v.is_big())
{
--ll_bits;
new_v = GncRational();
}
}
return new_v;
}
GncRational
operator+(GncRational a, GncRational b)
{
if (!(a.valid() && b.valid()))
throw std::range_error("Operator+ called with out-of-range operand.");
GncInt128 lcm = a.denom().lcm(b.denom());
GncInt128 num(a.num() * lcm / a.denom() + b.num() * lcm / b.denom());
if (!(lcm.valid() && num.valid()))
throw std::overflow_error("Operator+ overflowed.");
GncRational retval(num, lcm);
return retval;
}
GncRational
operator-(GncRational a, GncRational b)
{
GncRational retval = a + (-b);
return retval;
}
GncRational
operator*(GncRational a, GncRational b)
{
if (!(a.valid() && b.valid()))
throw std::range_error("Operator* called with out-of-range operand.");
GncInt128 num (a.num() * b.num()), den(a.denom() * b.denom());
if (!(num.valid() && den.valid()))
throw std::overflow_error("Operator* overflowed.");
GncRational retval(num, den);
return retval;
}
GncRational
operator/(GncRational a, GncRational b)
{
if (!(a.valid() && b.valid()))
throw std::range_error("Operator/ called with out-of-range operand.");
auto a_num = a.num(), b_num = b.num(), a_den = a.denom(), b_den = b.denom();
if (b_num == 0)
throw std::underflow_error("Divide by 0.");
if (b_num.isNeg())
{
a_num = -a_num;
b_num = -b_num;
}
/* q = (a_num * b_den)/(b_num * a_den). If a_den == b_den they cancel out
* and it's just a_num/b_num.
*/
if (a_den == b_den)
return GncRational(a_num, b_num);
/* Protect against possibly preventable overflow: */
if (a_num.isBig() || a_den.isBig() ||
b_num.isBig() || b_den.isBig())
{
GncInt128 gcd = b_den.gcd(a_den);
b_den /= gcd;
a_den /= gcd;
}
GncInt128 num(a_num * b_den), den(a_den * b_num);
if (!(num.valid() && den.valid()))
throw std::overflow_error("Operator/ overflowed.");
return GncRational(num, den);
}