mirror of
https://github.com/Gnucash/gnucash.git
synced 2024-11-25 10:20:18 -06:00
58b4ee35f0
docygen_mainpage.c None of them had useful information describing actual implementation concepts or details.
496 lines
17 KiB
C++
496 lines
17 KiB
C++
/********************************************************************
|
|
* gnc-numeric.h - A rational number library *
|
|
* This program is free software; you can redistribute it and/or *
|
|
* modify it under the terms of the GNU General Public License as *
|
|
* published by the Free Software Foundation; either version 2 of *
|
|
* the License, or (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License*
|
|
* along with this program; if not, contact: *
|
|
* *
|
|
* Free Software Foundation Voice: +1-617-542-5942 *
|
|
* 51 Franklin Street, Fifth Floor Fax: +1-617-542-2652 *
|
|
* Boston, MA 02110-1301, USA gnu@gnu.org *
|
|
* *
|
|
*******************************************************************/
|
|
|
|
/** @addtogroup Numeric
|
|
|
|
The 'Numeric' functions provide a way of working with rational
|
|
numbers while maintaining strict control over rounding errors
|
|
when adding rationals with different denominators. The Numeric
|
|
class is primarily used for working with monetary amounts,
|
|
where the denominator typically represents the smallest fraction
|
|
of the currency (e.g. pennies, centimes). The numeric class
|
|
can handle any fraction (e.g. twelfth's) and is not limited
|
|
to fractions that are powers of ten.
|
|
|
|
A 'Numeric' value represents a number in rational form, with a
|
|
64-bit integer as numerator and denominator. Rationals are
|
|
ideal for many uses, such as performing exact, roundoff-error-free
|
|
addition and multiplication, but 64-bit rationals do not have
|
|
the dynamic range of floating point numbers.
|
|
|
|
@{ */
|
|
/** @file gnc-numeric.h
|
|
@brief An exact-rational-number library for gnucash.
|
|
(to be renamed qofnumeric.h in libqof2)
|
|
@author Copyright (C) 2000 Bill Gribble
|
|
@author Copyright (C) 2004 Linas Vepstas <linas@linas.org>
|
|
*/
|
|
|
|
|
|
#ifndef GNC_NUMERIC_H
|
|
#define GNC_NUMERIC_H
|
|
|
|
#include <glib-object.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C"
|
|
{
|
|
#endif
|
|
|
|
struct _gnc_numeric
|
|
{
|
|
gint64 num;
|
|
gint64 denom;
|
|
};
|
|
|
|
/** @brief An rational-number type
|
|
*
|
|
* This is a rational number, defined by numerator and denominator. */
|
|
typedef struct _gnc_numeric gnc_numeric;
|
|
|
|
/** @name Arguments Standard Arguments to most functions
|
|
|
|
Most of the gnc_numeric arithmetic functions take two arguments
|
|
in addition to their numeric args: 'denom', which is the denominator
|
|
to use in the output gnc_numeric object, and 'how'. which
|
|
describes how the arithmetic result is to be converted to that
|
|
denominator. This combination of output denominator and rounding policy
|
|
allows the results of financial and other rational computations to be
|
|
properly rounded to the appropriate units.
|
|
|
|
Watch out: You \e must specify a rounding policy such as
|
|
GNC_HOW_RND_NEVER, otherwise the fractional part of the input
|
|
value might silently get discarded!
|
|
|
|
Valid values for denom are:
|
|
GNC_DENOM_AUTO -- compute denominator exactly
|
|
integer n -- Force the denominator of the result to be this integer
|
|
GNC_DENOM_RECIPROCAL -- Use 1/n as the denominator (???huh???)
|
|
|
|
Valid values for 'how' are bitwise combinations of zero or one
|
|
"rounding instructions" with zero or one "denominator types".
|
|
Valid rounding instructions are:
|
|
GNC_HOW_RND_FLOOR
|
|
GNC_HOW_RND_CEIL
|
|
GNC_HOW_RND_TRUNC
|
|
GNC_HOW_RND_PROMOTE
|
|
GNC_HOW_RND_ROUND_HALF_DOWN
|
|
GNC_HOW_RND_ROUND_HALF_UP
|
|
GNC_HOW_RND_ROUND
|
|
GNC_HOW_RND_NEVER
|
|
|
|
The denominator type specifies how to compute a denominator if
|
|
GNC_DENOM_AUTO is specified as the 'denom'. Valid
|
|
denominator types are:
|
|
GNC_HOW_DENOM_EXACT
|
|
GNC_HOW_DENOM_REDUCE
|
|
GNC_HOW_DENOM_LCD
|
|
GNC_HOW_DENOM_FIXED
|
|
GNC_HOW_DENOM_SIGFIGS(N)
|
|
|
|
To use traditional rational-number operational semantics (all results
|
|
are exact and are reduced to relatively-prime fractions) pass the
|
|
argument GNC_DENOM_AUTO as 'denom' and
|
|
GNC_HOW_DENOM_REDUCE| GNC_HOW_RND_NEVER as 'how'.
|
|
|
|
To enforce strict financial semantics (such that all operands must have
|
|
the same denominator as each other and as the result), use
|
|
GNC_DENOM_AUTO as 'denom' and
|
|
GNC_HOW_DENOM_FIXED | GNC_HOW_RND_NEVER as 'how'.
|
|
@{
|
|
*/
|
|
|
|
/** \brief bitmasks for HOW flags.
|
|
|
|
* bits 8-15 of 'how' are reserved for the number of significant
|
|
* digits to use in the output with GNC_HOW_DENOM_SIGFIG
|
|
*/
|
|
#define GNC_NUMERIC_RND_MASK 0x0000000f
|
|
#define GNC_NUMERIC_DENOM_MASK 0x000000f0
|
|
#define GNC_NUMERIC_SIGFIGS_MASK 0x0000ff00
|
|
|
|
/** \brief Rounding/Truncation modes for operations.
|
|
|
|
* Rounding instructions control how fractional parts in the specified
|
|
* denominator affect the result. For example, if a computed result is
|
|
* "3/4" but the specified denominator for the return value is 2, should
|
|
* the return value be "1/2" or "2/2"?
|
|
*
|
|
* Watch out: You \e must specify a rounding policy such as
|
|
* GNC_HOW_RND_NEVER, otherwise the fractional part of the input value
|
|
* might silently get discarded!
|
|
*
|
|
* Possible rounding instructions are:
|
|
*/
|
|
enum
|
|
{
|
|
/** Round toward -infinity */
|
|
GNC_HOW_RND_FLOOR = 0x01,
|
|
|
|
/** Round toward +infinity */
|
|
GNC_HOW_RND_CEIL = 0x02,
|
|
|
|
/** Truncate fractions (round toward zero) */
|
|
GNC_HOW_RND_TRUNC = 0x03,
|
|
|
|
/** Promote fractions (round away from zero) */
|
|
GNC_HOW_RND_PROMOTE = 0x04,
|
|
|
|
/** Round to the nearest integer, rounding toward zero
|
|
* when there are two equidistant nearest integers.
|
|
*/
|
|
GNC_HOW_RND_ROUND_HALF_DOWN = 0x05,
|
|
|
|
/** Round to the nearest integer, rounding away from zero
|
|
* when there are two equidistant nearest integers.
|
|
*/
|
|
GNC_HOW_RND_ROUND_HALF_UP = 0x06,
|
|
|
|
/** Use unbiased ("banker's") rounding. This rounds to the
|
|
* nearest integer, and to the nearest even integer when there
|
|
* are two equidistant nearest integers. This is generally the
|
|
* one you should use for financial quantities.
|
|
*/
|
|
GNC_HOW_RND_ROUND = 0x07,
|
|
|
|
/** Never round at all, and signal an error if there is a
|
|
* fractional result in a computation.
|
|
*/
|
|
GNC_HOW_RND_NEVER = 0x08
|
|
};
|
|
|
|
/** How to compute a denominator, or'ed into the "how" field. */
|
|
enum
|
|
{
|
|
/** Use any denominator which gives an exactly correct ratio of
|
|
* numerator to denominator. Use EXACT when you do not wish to
|
|
* lose any information in the result but also do not want to
|
|
* spend any time finding the "best" denominator.
|
|
*/
|
|
GNC_HOW_DENOM_EXACT = 0x10,
|
|
|
|
/** Reduce the result value by common factor elimination,
|
|
* using the smallest possible value for the denominator that
|
|
* keeps the correct ratio. The numerator and denominator of
|
|
* the result are relatively prime.
|
|
*/
|
|
GNC_HOW_DENOM_REDUCE = 0x20,
|
|
|
|
/** Find the least common multiple of the arguments' denominators
|
|
* and use that as the denominator of the result.
|
|
*/
|
|
GNC_HOW_DENOM_LCD = 0x30,
|
|
|
|
/** All arguments are required to have the same denominator,
|
|
* that denominator is to be used in the output, and an error
|
|
* is to be signaled if any argument has a different denominator.
|
|
*/
|
|
GNC_HOW_DENOM_FIXED = 0x40,
|
|
|
|
/** Round to the number of significant figures given in the rounding
|
|
* instructions by the GNC_HOW_DENOM_SIGFIGS () macro.
|
|
*/
|
|
GNC_HOW_DENOM_SIGFIG = 0x50
|
|
};
|
|
|
|
/** Build a 'how' value that will generate a denominator that will
|
|
* keep at least n significant figures in the result.
|
|
*/
|
|
#define GNC_HOW_DENOM_SIGFIGS( n ) ( ((( n ) & 0xff) << 8) | GNC_HOW_DENOM_SIGFIG)
|
|
#define GNC_HOW_GET_SIGFIGS( a ) ( (( a ) & 0xff00 ) >> 8)
|
|
|
|
/** Error codes */
|
|
typedef enum
|
|
{
|
|
GNC_ERROR_OK = 0, /**< No error */
|
|
GNC_ERROR_ARG = -1, /**< Argument is not a valid number */
|
|
GNC_ERROR_OVERFLOW = -2, /**< Intermediate result overflow */
|
|
|
|
/** GNC_HOW_DENOM_FIXED was specified, but argument denominators differed. */
|
|
GNC_ERROR_DENOM_DIFF = -3,
|
|
|
|
/** GNC_HOW_RND_NEVER was specified, but the result could not be
|
|
* converted to the desired denominator without a remainder. */
|
|
GNC_ERROR_REMAINDER = -4
|
|
} GNCNumericErrorCode;
|
|
|
|
|
|
/** Values that can be passed as the 'denom' argument.
|
|
* The include a positive number n to be used as the
|
|
* denominator of the output value. Other possibilities
|
|
* include the list below:
|
|
*/
|
|
|
|
/** Compute an appropriate denominator automatically. Flags in
|
|
* the 'how' argument will specify how to compute the denominator.
|
|
*/
|
|
#define GNC_DENOM_AUTO 0
|
|
|
|
/** @} */
|
|
|
|
/** @name Constructors
|
|
@{
|
|
*/
|
|
/** Returns a newly created gnc_numeric with the given numerator and
|
|
* denominator, that is "num/denom". */
|
|
static inline
|
|
gnc_numeric gnc_numeric_create(gint64 num, gint64 denom)
|
|
{
|
|
gnc_numeric out;
|
|
out.num = num;
|
|
out.denom = denom;
|
|
return out;
|
|
}
|
|
|
|
/** Returns a newly created gnc_numeric of value zero, that is "0/1". */
|
|
static inline
|
|
gnc_numeric gnc_numeric_zero(void)
|
|
{
|
|
return gnc_numeric_create(0, 1);
|
|
}
|
|
|
|
/** Convert a floating-point number to a gnc_numeric.
|
|
*
|
|
* Both 'denom' and 'how' are used as in arithmetic.
|
|
*
|
|
* \sa \ref Arguments
|
|
*
|
|
* \param n The double value that is converted into a gnc_numeric
|
|
*
|
|
* \param denom The denominator of the gnc_numeric return value. If
|
|
* the 'how' argument contains the GNC_HOW_DENOM_SIGFIG flag, this
|
|
* value will be ignored. If GNC_DENOM_AUTO is given an appropriate
|
|
* power of ten will be used for the denominator (it may be reduced
|
|
* by rounding if appropriate).
|
|
*
|
|
* \param how Describes the rounding policy and output
|
|
* denominator. Watch out: You must specify a rounding policy such
|
|
* as GNC_HOW_RND_NEVER, otherwise the fractional part of the input
|
|
* value is silently discarded! Common values for 'how' are
|
|
* (GNC_HOW_DENOM_REDUCE|GNC_HOW_RND_NEVER) or
|
|
* (GNC_HOW_DENOM_FIXED|GNC_HOW_RND_NEVER).
|
|
*
|
|
* \return The newly created gnc_numeric rational value.
|
|
*/
|
|
gnc_numeric double_to_gnc_numeric(double n, gint64 denom,
|
|
gint how);
|
|
|
|
/** Read a gnc_numeric from str, skipping any leading whitespace.
|
|
* Returns the resulting gnc_numeric.
|
|
* Return GNC_ERROR_ARG on error. */
|
|
gnc_numeric gnc_numeric_from_string (const gchar* str);
|
|
/** Create a gnc_numeric object that signals the error condition
|
|
* noted by error_code, rather than a number.
|
|
*/
|
|
gnc_numeric gnc_numeric_error(GNCNumericErrorCode error_code);
|
|
|
|
/** Returns a string representation of the given GNCNumericErrorCode.
|
|
*/
|
|
const char* gnc_numeric_errorCode_to_string(GNCNumericErrorCode error_code);
|
|
/** @} */
|
|
|
|
/** @name Value Accessors
|
|
@{
|
|
*/
|
|
/** Returns the numerator of the given gnc_numeric value. */
|
|
static inline
|
|
gint64 gnc_numeric_num(gnc_numeric a)
|
|
{
|
|
return a.num;
|
|
}
|
|
/** Returns the denominator of the given gnc_numeric value. */
|
|
static inline
|
|
gint64 gnc_numeric_denom(gnc_numeric a)
|
|
{
|
|
return a.denom;
|
|
}
|
|
|
|
/** Convert numeric to floating-point value. */
|
|
gdouble gnc_numeric_to_double(gnc_numeric n);
|
|
|
|
/** Convert to string. The returned buffer is to be g_free'd by the
|
|
* caller (it was allocated through g_strdup) */
|
|
gchar *gnc_numeric_to_string(gnc_numeric n);
|
|
|
|
/** Convert to string. Uses a static, non-thread-safe buffer.
|
|
* For internal use only. */
|
|
gchar * gnc_num_dbg_to_string(gnc_numeric n);
|
|
/** @}*/
|
|
|
|
/** @name Comparisons and Predicates
|
|
@{
|
|
*/
|
|
/** Check for error signal in value. Returns GNC_ERROR_OK (==0) if
|
|
* the number appears to be valid, otherwise it returns the
|
|
* type of error. Error values always have a denominator of zero.
|
|
*/
|
|
GNCNumericErrorCode gnc_numeric_check(gnc_numeric a);
|
|
|
|
/** Returns 1 if a>b, -1 if b>a, 0 if a == b */
|
|
gint gnc_numeric_compare(gnc_numeric a, gnc_numeric b);
|
|
|
|
/** Returns 1 if the given gnc_numeric is 0 (zero), else returns 0. */
|
|
gboolean gnc_numeric_zero_p(gnc_numeric a);
|
|
|
|
/** Returns 1 if a < 0, otherwise returns 0. */
|
|
gboolean gnc_numeric_negative_p(gnc_numeric a);
|
|
|
|
/** Returns 1 if a > 0, otherwise returns 0. */
|
|
gboolean gnc_numeric_positive_p(gnc_numeric a);
|
|
|
|
/** Equivalence predicate: Returns TRUE (1) if a and b are
|
|
* exactly the same (have the same numerator and denominator)
|
|
*/
|
|
gboolean gnc_numeric_eq(gnc_numeric a, gnc_numeric b);
|
|
|
|
/** Equivalence predicate: Returns TRUE (1) if a and b represent
|
|
* the same number. That is, return TRUE if the ratios, when
|
|
* reduced by eliminating common factors, are identical.
|
|
*/
|
|
gboolean gnc_numeric_equal(gnc_numeric a, gnc_numeric b);
|
|
|
|
/** Equivalence predicate:
|
|
* Convert both a and b to denom using the
|
|
* specified DENOM and method HOW, and compare numerators
|
|
* the results using gnc_numeric_equal.
|
|
*
|
|
For example, if a == 7/16 and b == 3/4,
|
|
gnc_numeric_same(a, b, 2, GNC_HOW_RND_TRUNC) == 1
|
|
because both 7/16 and 3/4 round to 1/2 under truncation. However,
|
|
gnc_numeric_same(a, b, 2, GNC_HOW_RND_ROUND) == 0
|
|
because 7/16 rounds to 1/2 under unbiased rounding but 3/4 rounds
|
|
to 2/2.
|
|
*/
|
|
gint gnc_numeric_same(gnc_numeric a, gnc_numeric b,
|
|
gint64 denom, gint how);
|
|
/** @} */
|
|
|
|
/** @name Arithmetic Operations
|
|
@{
|
|
*/
|
|
/** Return a+b. */
|
|
gnc_numeric gnc_numeric_add(gnc_numeric a, gnc_numeric b,
|
|
gint64 denom, gint how);
|
|
|
|
/** Return a-b. */
|
|
gnc_numeric gnc_numeric_sub(gnc_numeric a, gnc_numeric b,
|
|
gint64 denom, gint how);
|
|
|
|
/** Multiply a times b, returning the product. An overflow
|
|
* may occur if the result of the multiplication can't
|
|
* be represented as a ratio of 64-bit int's after removing
|
|
* common factors.
|
|
*/
|
|
gnc_numeric gnc_numeric_mul(gnc_numeric a, gnc_numeric b,
|
|
gint64 denom, gint how);
|
|
|
|
/** Division. Note that division can overflow, in the following
|
|
* sense: if we write x=a/b and y=c/d then x/y = (a*d)/(b*c)
|
|
* If, after eliminating all common factors between the numerator
|
|
* (a*d) and the denominator (b*c), then if either the numerator
|
|
* and/or the denominator are *still* greater than 2^63, then
|
|
* the division has overflowed.
|
|
*/
|
|
gnc_numeric gnc_numeric_div(gnc_numeric x, gnc_numeric y,
|
|
gint64 denom, gint how);
|
|
/** Returns a newly created gnc_numeric that is the negative of the
|
|
* given gnc_numeric value. For a given gnc_numeric "a/b" the returned
|
|
* value is "-a/b". */
|
|
gnc_numeric gnc_numeric_neg(gnc_numeric a);
|
|
|
|
/** Returns a newly created gnc_numeric that is the absolute value of
|
|
* the given gnc_numeric value. For a given gnc_numeric "a/b" the
|
|
* returned value is "|a/b|". */
|
|
gnc_numeric gnc_numeric_abs(gnc_numeric a);
|
|
|
|
/**
|
|
* Shortcut for common case: gnc_numeric_add(a, b, GNC_DENOM_AUTO,
|
|
* GNC_HOW_DENOM_FIXED | GNC_HOW_RND_NEVER);
|
|
*/
|
|
static inline
|
|
gnc_numeric gnc_numeric_add_fixed(gnc_numeric a, gnc_numeric b)
|
|
{
|
|
return gnc_numeric_add(a, b, GNC_DENOM_AUTO,
|
|
GNC_HOW_DENOM_FIXED | GNC_HOW_RND_NEVER);
|
|
}
|
|
|
|
/**
|
|
* Shortcut for most common case: gnc_numeric_sub(a, b, GNC_DENOM_AUTO,
|
|
* GNC_HOW_DENOM_FIXED | GNC_HOW_RND_NEVER);
|
|
*/
|
|
static inline
|
|
gnc_numeric gnc_numeric_sub_fixed(gnc_numeric a, gnc_numeric b)
|
|
{
|
|
return gnc_numeric_sub(a, b, GNC_DENOM_AUTO,
|
|
GNC_HOW_DENOM_FIXED | GNC_HOW_RND_NEVER);
|
|
}
|
|
/** @} */
|
|
|
|
|
|
/** @name Change Denominator
|
|
@{
|
|
*/
|
|
/** Change the denominator of a gnc_numeric value to the
|
|
* specified denominator under standard arguments
|
|
* 'denom' and 'how'.
|
|
*/
|
|
gnc_numeric gnc_numeric_convert(gnc_numeric n, gint64 denom,
|
|
gint how);
|
|
|
|
/** Return input after reducing it by Greater Common Factor (GCF)
|
|
* elimination */
|
|
gnc_numeric gnc_numeric_reduce(gnc_numeric n);
|
|
|
|
/** Attempt to convert the denominator to an exact power of ten without
|
|
* rounding.
|
|
*
|
|
* @param a the ::gnc_numeric value to convert
|
|
*
|
|
* @param max_decimal_places the number of decimal places of the
|
|
* converted value. This parameter may be @c NULL.
|
|
*
|
|
* @return @c TRUE if @a a has been converted or was already decimal.
|
|
* Otherwise, @c FALSE is returned and @a a and @a max_decimal_places
|
|
* remain unchanged.
|
|
********************************************************************/
|
|
gboolean gnc_numeric_to_decimal(gnc_numeric * a,
|
|
guint8 * max_decimal_places);
|
|
|
|
/** Invert a gnc_numeric.
|
|
* Much faster than dividing 1 by it.
|
|
* @param num The number to be inverted
|
|
* @return a gnc_numeric that is the inverse of num
|
|
*/
|
|
gnc_numeric gnc_numeric_invert (gnc_numeric num);
|
|
/** @} */
|
|
|
|
/** @name GValue
|
|
@{
|
|
*/
|
|
GType gnc_numeric_get_type( void );
|
|
#define GNC_TYPE_NUMERIC (gnc_numeric_get_type ())
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif
|