gnucash/libgnucash/engine/gnc-numeric.hpp
luz paz 16b4976381 Fix typos in libgnucash/
Found via `codespell -q 3 -L ans,ba,parm,parms,numer`
2021-03-02 01:15:32 +01:00

435 lines
16 KiB
C++

/********************************************************************
* gnc-numeric.hpp - A rational number library for int64 *
* Copyright 2017 John Ralls <jralls@ceridwen.us> *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of *
* the License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License*
* along with this program; if not, contact: *
* *
* Free Software Foundation Voice: +1-617-542-5942 *
* 51 Franklin Street, Fifth Floor Fax: +1-617-542-2652 *
* Boston, MA 02110-1301, USA gnu@gnu.org *
* *
*******************************************************************/
#ifndef __GNC_NUMERIC_HPP__
#define __GNC_NUMERIC_HPP__
#include <string>
#include <iostream>
#include <locale>
#include <typeinfo> // For std::bad_cast exception
#include "gnc-rational-rounding.hpp"
class GncRational;
/**@ingroup QOF
* @brief The primary numeric class for representing amounts and values.
*
* Calculations are generally performed in 128-bit (by converting to
* GncRational) and reducing the result. If the result would overflow a 64-bit
* representation then the GncNumeric(GncRational&) constructor will call
* GncRational::round_to_numeric() to get the value to fit. It will not raise an
* exception, so in the unlikely event that you need an error instead of
* rounding, use GncRational directly.
*
* Errors: Errors are signalled by exceptions as follows:
* * A zero denominator will raise a std::invalid_argument.
* * Division by zero will raise a std::underflow_error.
* * Overflowing 128 bits will raise a std::overflow_error.
* * Failure to convert a number as specified by the arguments to convert() will
* raise a std::domain_error.
*
* Rounding Policy: GncNumeric provides a convert() member function that object
* amount and value setters (and *only* those functions!) should call to set a
* number which is represented in the commodity's SCU. Since SCUs are seldom 18
* digits the convert may result in rounding, which will be performed in the
* method specified by the arguments passed to convert(). Overflows may result
* in internal rounding as described earlier.
*/
class GncNumeric
{
public:
/**
* Default constructor provides the zero value.
*/
GncNumeric() : m_num (0), m_den(1) {}
/**
* Integer constructor.
*
* Unfortunately specifying a default for denom causes ambiguity errors with
* the other single-argument constructors on older versions of gcc, so one
* must always specify both arguments.
*
* \param num The Numerator
* \param denom The Denominator
*/
GncNumeric(int64_t num, int64_t denom) :
m_num(num), m_den(denom) {
if (denom == 0)
throw std::invalid_argument("Attempt to construct a GncNumeric with a 0 denominator.");
}
/**
* GncRational constructor.
*
* This constructor will round rr's GncInt128s to fit into the int64_t
* members using RoundType::half-down.
*
* \param rr A GncRational.
*/
GncNumeric(GncRational rr);
/**
* gnc_numeric constructor, used for interfacing old code. This function
* should not be used outside of gnc-numeric.cpp.
*
* \param in A gnc_numeric.
*/
GncNumeric(gnc_numeric in) : m_num(in.num), m_den(in.denom)
{
if (in.denom == 0)
throw std::invalid_argument("Attempt to construct a GncNumeric with a 0 denominator.");
/* gnc_numeric has a dumb convention that a negative denominator means
* to multiply the numerator by the denominator instead of dividing.
*/
if (in.denom < 0)
{
m_num *= -in.denom;
m_den = 1;
}
}
/**
* Double constructor.
*
* @param d The double to be converted. In order to fit in an int64_t, its
* absolute value must be < 1e18; if its absolute value is < 1e-18 it will
* be represented as 0, though for practical purposes nearly all commodities
* will round to zero at 1e-9 or larger.
*/
GncNumeric(double d);
/**
* String constructor.
*
* Accepts integer values in decimal and hexadecimal. Does not accept
* thousands separators. If the string contains a '/' it is taken to
* separate the numerator and denominator; if it contains either a '.' or a
* ',' it is taken as a decimal point and the integers on either side will
* be combined and a denominator will be the appropriate power of 10. If
* neither is present the number will be treated as an integer and m_den
* will be set to 1.
*
* Whitespace around a '/' is ignored. A correctly-formatted number will be
* extracted from a larger string.
*
* Numbers that cannot be represented with int64_ts will throw
* std::out_of_range unless a decimal point is found (see above). A 0
* denominator will cause the constructor to throw std::underflow_error. An
* empty string or one which contains no recognizable number will result in
* std::invalid_argument.
*/
GncNumeric(const std::string& str, bool autoround=false);
GncNumeric(const GncNumeric& rhs) = default;
GncNumeric(GncNumeric&& rhs) = default;
GncNumeric& operator=(const GncNumeric& rhs) = default;
GncNumeric& operator=(GncNumeric&& rhs) = default;
~GncNumeric() = default;
/**
* gnc_numeric conversion. Use static_cast<gnc_numeric>(foo)
*/
operator gnc_numeric() const noexcept;
/**
* double conversion. Use static_cast<double>(foo)
*/
operator double() const noexcept;
/**
* Accessor for numerator value.
*/
int64_t num() const noexcept { return m_num; }
/**
* Accessor for denominator value.
*/
int64_t denom() const noexcept { return m_den; }
/**
* @return A GncNumeric with the opposite sign.
*/
GncNumeric operator-() const noexcept;
/**
* @return 0 if this == 0 else 1/this.
*/
GncNumeric inv() const noexcept;
/**
* @return -this if this < 0 else this.
*/
GncNumeric abs() const noexcept;
/**
* Return an equivalent fraction with all common factors between the
* numerator and the denominator removed.
*
* @return reduced GncNumeric
*/
GncNumeric reduce() const noexcept;
/**
* Convert a GncNumeric to use a new denominator. If rounding is necessary
* use the indicated template specification. For example, to use half-up
* rounding you'd call bar = foo.convert<RoundType::half_up>(1000). If you
* specify RoundType::never this will throw std::domain_error if rounding is
* required.
*
* \param new_denom The new denominator to convert the fraction to.
* \return A new GncNumeric having the requested denominator.
*/
template <RoundType RT>
GncNumeric convert(int64_t new_denom) const
{
auto params = prepare_conversion(new_denom);
if (new_denom == GNC_DENOM_AUTO)
new_denom = m_den;
if (params.rem == 0)
return GncNumeric(params.num, new_denom);
return GncNumeric(round(params.num, params.den,
params.rem, RT2T<RT>()), new_denom);
}
/**
* Convert with the specified sigfigs. The resulting denominator depends on
* the value of the GncNumeric, such that the specified significant digits
* are retained in the numerator and the denominator is always a power of
* 10. This is of rather dubious benefit in an accounting program, but it's
* used in several places so it needs to be implemented.
*
* @param figs The number of digits to use for the numerator.
* @return A GncNumeric with the specified number of digits in the numerator
* and the appropriate power-of-ten denominator.
*/
template <RoundType RT>
GncNumeric convert_sigfigs(unsigned int figs) const
{
auto new_denom(sigfigs_denom(figs));
auto params = prepare_conversion(new_denom);
if (new_denom == 0) //It had better not, but just in case...
new_denom = 1;
if (params.rem == 0)
return GncNumeric(params.num, new_denom);
return GncNumeric(round(params.num, params.den,
params.rem, RT2T<RT>()), new_denom);
}
/**
* Return a string representation of the GncNumeric. See operator<< for
* details.
*/
std::string to_string() const noexcept;
/**
* @return true if the denominator is a power of ten, false otherwise.
*/
bool is_decimal() const noexcept;
/**
* Convert the numeric to have a power-of-10 denominator if possible without
* rounding. Throws a std::range_error on failure; the message will explain
* the details.
*
* @param max_places exponent of the largest permissible denominator.
* @return A GncNumeric value with the new denominator.
*/
GncNumeric to_decimal(unsigned int max_places=17) const;
/**
* \defgroup gnc_numeric_mutators
*
* These are the standard mutating operators. They use GncRational's
* operators and then call the GncRational constructor, which will silently
* round half-down.
*
* @{
*/
void operator+=(GncNumeric b);
void operator-=(GncNumeric b);
void operator*=(GncNumeric b);
void operator/=(GncNumeric b);
/* @} */
/** Compare function
* \defgroup gnc_numeric_comparison
* @param b GncNumeric or int to compare to.
* @return -1 if this < b, 0 if ==, 1 if this > b.
* @{
*/
int cmp(GncNumeric b);
int cmp(int64_t b) { return cmp(GncNumeric(b, 1)); }
/** @} */
private:
struct round_param
{
int64_t num;
int64_t den;
int64_t rem;
};
/* Calculates the denominator required to convert to figs sigfigs. */
int64_t sigfigs_denom(unsigned figs) const noexcept;
/* Calculates a round_param struct to pass to a rounding function that will
* finish computing a GncNumeric with the new denominator.
*/
round_param prepare_conversion(int64_t new_denom) const;
int64_t m_num;
int64_t m_den;
};
/**
* \defgroup gnc_numeric_arithmetic_operators
* @{
* Normal arithmetic operators. The class arithmetic operators are implemented
* in terms of these operators. They use GncRational operators internally then
* call the GncNumeric(GncRational&) constructor which will silently round
* half-down to obtain int64_t members.
*
* These operators can throw std::overflow_error, std::underflow_error, or
* std::invalid argument as indicated in the class GncNumeric documentation.
*
* \param a The right-side operand
* \param b The left-side operand
* \return A GncNumeric computed from the operation.
*/
GncNumeric operator+(GncNumeric a, GncNumeric b);
inline GncNumeric operator+(GncNumeric a, int64_t b)
{
return a + GncNumeric(b, 1);
}
inline GncNumeric operator+(int64_t a, GncNumeric b)
{
return b + GncNumeric(a, 1);
}
GncNumeric operator-(GncNumeric a, GncNumeric b);
inline GncNumeric operator-(GncNumeric a, int64_t b)
{
return a - GncNumeric(b, 1);
}
inline GncNumeric operator-(int64_t a, GncNumeric b)
{
return b - GncNumeric(a, 1);
}
GncNumeric operator*(GncNumeric a, GncNumeric b);
inline GncNumeric operator*(GncNumeric a, int64_t b)
{
return a * GncNumeric(b, 1);
}
inline GncNumeric operator*(int64_t a, GncNumeric b)
{
return b * GncNumeric(a, 1);
}
GncNumeric operator/(GncNumeric a, GncNumeric b);
inline GncNumeric operator/(GncNumeric a, int64_t b)
{
return a / GncNumeric(b, 1);
}
inline GncNumeric operator/(int64_t a, GncNumeric b)
{
return b / GncNumeric(a, 1);
}
/** @} */
/**
* std::stream output operator. Uses standard integer operator<< so should obey
* locale rules. Numbers are presented as integers if the denominator is 1, as a
* decimal if the denominator is a multiple of 10, otherwise as
* "numerator/denominator".
*/
std::ostream& operator<<(std::ostream&, GncNumeric);
/* Implementation adapted from "The C++ Standard Library, Second Edition" by
* Nicolai M. Josuttis, Addison-Wesley, 2012, ISBN 978-0-321-62321-8.
*/
template <typename charT, typename traits>
std::basic_ostream<charT, traits>& operator<<(std::basic_ostream<charT, traits>& s, GncNumeric n)
{
std::basic_ostringstream<charT, traits> ss;
std::locale loc = s.getloc();
ss.imbue(loc);
auto dec_pt = static_cast<charT>('.');
try
{
dec_pt = std::use_facet<std::numpunct<charT>>(loc).decimal_point();
}
catch(const std::bad_cast& err) {} //Don't do anything, num_sep is already set.
ss.copyfmt(s);
ss.width(0);
if (n.denom() == 1)
ss << n.num();
else if (n.is_decimal())
ss << n.num() / n.denom() << dec_pt
<< (n.num() > 0 ? n.num() : -n.num()) % n.denom();
else
ss << n.num() << "/" << n.denom();
s << ss.str();
return s;
}
/**
* std::stream input operator.
*
* Doesn't do any special space handling, spaces in the input stream will
* delimit elements. The result will be that if a number is presented as "123 /
* 456", the resulting GncNumeric will be 123/1 and the rest will go to the next
* parameter in the stream call. The GncNumeric will be constructed with the
* string constructor with autorounding. It will throw in the event of any
* errors noted in the string constructor documentation.
*/
/* Implementation adapted from "The C++ Standard Library, Second Edition" by
* Nicolai M. Josuttis, Addison-Wesley, 2012, ISBN 978-0-321-62321-8.
*/
template <typename charT, typename traits>
std::basic_istream<charT, traits>& operator>>(std::basic_istream<charT, traits>& s, GncNumeric& n)
{
std::basic_string<charT, traits> instr;
s >> instr;
if (s)
n = GncNumeric(instr, true);
return s;
}
/**
* @return -1 if a < b, 0 if a == b, 1 if a > b.
*/
inline int cmp(GncNumeric a, GncNumeric b) { return a.cmp(b); }
inline int cmp(GncNumeric a, int64_t b) { return a.cmp(b); }
inline int cmp(int64_t a, GncNumeric b) { return GncNumeric(a, 1).cmp(b); }
/**
* \defgroup gnc_numeric_comparison_operators
* @{
* Standard comparison operators, which do what one would expect.
*/
inline bool operator<(GncNumeric a, GncNumeric b) { return cmp(a, b) < 0; }
inline bool operator<(GncNumeric a, int64_t b) { return cmp(a, b) < 0; }
inline bool operator<(int64_t a, GncNumeric b) { return cmp(a, b) < 0; }
inline bool operator>(GncNumeric a, GncNumeric b) { return cmp(a, b) > 0; }
inline bool operator>(GncNumeric a, int64_t b) { return cmp(a, b) > 0; }
inline bool operator>(int64_t a, GncNumeric b) { return cmp(a, b) > 0; }
inline bool operator==(GncNumeric a, GncNumeric b) { return cmp(a, b) == 0; }
inline bool operator==(GncNumeric a, int64_t b) { return cmp(a, b) == 0; }
inline bool operator==(int64_t a, GncNumeric b) { return cmp(a, b) == 0; }
inline bool operator<=(GncNumeric a, GncNumeric b) { return cmp(a, b) <= 0; }
inline bool operator<=(GncNumeric a, int64_t b) { return cmp(a, b) <= 0; }
inline bool operator<=(int64_t a, GncNumeric b) { return cmp(a, b) <= 0; }
inline bool operator>=(GncNumeric a, GncNumeric b) { return cmp(a, b) >= 0; }
inline bool operator>=(GncNumeric a, int64_t b) { return cmp(a, b) >= 0; }
inline bool operator>=(int64_t a, GncNumeric b) { return cmp(a, b) >= 0; }
inline bool operator!=(GncNumeric a, GncNumeric b) { return cmp(a, b) != 0; }
inline bool operator!=(GncNumeric a, int64_t b) { return cmp(a, b) != 0; }
inline bool operator!=(int64_t a, GncNumeric b) { return cmp(a, b) != 0; }
/** @} */
/**
* Convenience function to quickly return 10**digits.
* \param digits The desired exponent. Maximum value is 17.
* \return 10**digits
*/
int64_t powten(unsigned int digits);
#endif // __GNC_NUMERIC_HPP__