mirror of
https://github.com/Gnucash/gnucash.git
synced 2024-11-25 10:20:18 -06:00
83d14e1c1c
It is split into - /libgnucash (for the non-gui bits) - /gnucash (for the gui) - /common (misc source files used by both) - /bindings (currently only holds python bindings) This is the first step in restructuring the code. It will need much more fine tuning later on.
286 lines
11 KiB
C++
286 lines
11 KiB
C++
/********************************************************************
|
|
* gnc-rational.hpp - A rational number library *
|
|
* Copyright 2014 John Ralls <jralls@ceridwen.us> *
|
|
* This program is free software; you can redistribute it and/or *
|
|
* modify it under the terms of the GNU General Public License as *
|
|
* published by the Free Software Foundation; either version 2 of *
|
|
* the License, or (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License*
|
|
* along with this program; if not, contact: *
|
|
* *
|
|
* Free Software Foundation Voice: +1-617-542-5942 *
|
|
* 51 Franklin Street, Fifth Floor Fax: +1-617-542-2652 *
|
|
* Boston, MA 02110-1301, USA gnu@gnu.org *
|
|
* *
|
|
*******************************************************************/
|
|
|
|
#ifndef __GNC_RATIONAL_HPP__
|
|
#define __GNC_RATIONAL_HPP__
|
|
|
|
#include "gnc-numeric.h"
|
|
#include "gnc-int128.hpp"
|
|
#include "gnc-rational-rounding.hpp"
|
|
|
|
class GncNumeric;
|
|
enum class RoundType;
|
|
enum class DenomType;
|
|
|
|
/** @ingroup QOF
|
|
* @brief Rational number class using GncInt128 for the numerator
|
|
* and denominator.
|
|
*
|
|
* This class provides far greater overflow protection compared to GncNumeric at
|
|
* the expense of doubling the size, so GncNumeric is preferred for storage into
|
|
* objects. Furthermore the backends are not able to store GncRational numbers;
|
|
* storage in SQL would require using BLOBs which would preclude calculations in
|
|
* queries. GncRational exists *primarily* as a more overflow-resistant
|
|
* calculation facility for GncNumeric. It's available for cases where one needs
|
|
* an error instead of an automatically rounded value for a calculation that
|
|
* produces a result that won't fit into an int64 without rounding.
|
|
|
|
* Errors: Errors are signalled by exceptions as follows:
|
|
* * A zero denominator will raise a std::invalid_argument.
|
|
* * Division by zero will raise a std::underflow_error.
|
|
* * Overflowing 128 bits will raise a std::overflow_error.
|
|
* * Failure to convert a number as specified by the arguments to convert() will
|
|
* raise a std::domain_error.
|
|
*
|
|
*/
|
|
|
|
|
|
class GncRational
|
|
{
|
|
public:
|
|
/**
|
|
* Default constructor provides the zero value.
|
|
*/
|
|
GncRational() : m_num(0), m_den(1) {}
|
|
/**
|
|
* GncInt128 constructor. This will take any flavor of built-in integer
|
|
* thanks to implicit construction of the GncInt128s.
|
|
*/
|
|
GncRational (GncInt128 num, GncInt128 den) noexcept
|
|
: m_num(num), m_den(den) {}
|
|
/** Convenience constructor from the C API's gnc_numeric. */
|
|
GncRational (gnc_numeric n) noexcept;
|
|
/** GncNumeric constructor. */
|
|
GncRational(GncNumeric n) noexcept;
|
|
GncRational(const GncRational& rhs) = default;
|
|
GncRational(GncRational&& rhs) = default;
|
|
GncRational& operator=(const GncRational& rhs) = default;
|
|
GncRational& operator=(GncRational&& rhs) = default;
|
|
~GncRational() = default;
|
|
/** Report if both members are valid numbers.
|
|
* \return true if neither numerator nor denominator are Nan or Overflowed.
|
|
*/
|
|
bool valid() const noexcept;
|
|
/** Report if either numerator or denominator are too big to fit in an
|
|
* int64_t.
|
|
* \return true if either is too big.
|
|
*/
|
|
bool is_big() const noexcept;
|
|
/** Conversion operator; use static_cast<gnc_numeric>(foo). */
|
|
operator gnc_numeric() const noexcept;
|
|
/** Make a new GncRational with the opposite sign. */
|
|
GncRational operator-() const noexcept;
|
|
/**
|
|
* Return an equivalent fraction with all common factors between the
|
|
* numerator and the denominator removed.
|
|
*
|
|
* @return reduced GncRational
|
|
*/
|
|
GncRational reduce() const;
|
|
/**
|
|
* Round to fit an int64_t, finding the closest possible approximation.
|
|
*
|
|
* Throws std::overflow_error if m_den is 1 and m_num is big.
|
|
* @return rounded GncRational
|
|
*/
|
|
GncRational round_to_numeric() const;
|
|
/**
|
|
* Convert a GncRational to use a new denominator. If rounding is necessary
|
|
* use the indicated template specification. For example, to use half-up
|
|
* rounding you'd call bar = foo.convert<RoundType::half_up>(1000). If you
|
|
* specify RoundType::never this will throw std::domain_error if rounding is
|
|
* required.
|
|
*
|
|
* \param new_denom The new denominator to convert the fraction to.
|
|
* \return A new GncRational having the requested denominator.
|
|
*/
|
|
template <RoundType RT>
|
|
GncRational convert (GncInt128 new_denom) const
|
|
{
|
|
auto params = prepare_conversion(new_denom);
|
|
if (new_denom == GNC_DENOM_AUTO)
|
|
new_denom = m_den;
|
|
if (params.rem == 0)
|
|
return GncRational(params.num, new_denom);
|
|
return GncRational(round(params.num, params.den,
|
|
params.rem, RT2T<RT>()), new_denom);
|
|
}
|
|
|
|
/**
|
|
* Convert with the specified sigfigs. The resulting denominator depends on
|
|
* the value of the GncRational, such that the specified significant digits
|
|
* are retained in the numerator and the denominator is always a power of
|
|
* 10. This is of rather dubious benefit in an accounting program, but it's
|
|
* used in several places so it needs to be implemented.
|
|
*
|
|
* @param figs The number of digits to use for the numerator.
|
|
* @return A GncRational with the specified number of digits in the
|
|
* numerator and the appropriate power-of-ten denominator.
|
|
*/
|
|
template <RoundType RT>
|
|
GncRational convert_sigfigs(unsigned int figs) const
|
|
{
|
|
auto new_denom(sigfigs_denom(figs));
|
|
auto params = prepare_conversion(new_denom);
|
|
if (new_denom == 0) //It had better not, but just in case...
|
|
new_denom = 1;
|
|
if (params.rem == 0)
|
|
return GncRational(params.num, new_denom);
|
|
return GncRational(round(params.num, params.den,
|
|
params.rem, RT2T<RT>()), new_denom);
|
|
}
|
|
|
|
/** Numerator accessor */
|
|
GncInt128 num() const noexcept { return m_num; }
|
|
/** Denominator accessor */
|
|
GncInt128 denom() const noexcept { return m_den; }
|
|
/** @defgroup gnc_rational_mutators
|
|
* @{
|
|
* Standard mutating arithmetic operators.
|
|
*/
|
|
void operator+=(GncRational b);
|
|
void operator-=(GncRational b);
|
|
void operator*=(GncRational b);
|
|
void operator/=(GncRational b);
|
|
/** @} */
|
|
/** Inverts the number, equivalent of /= {1, 1} */
|
|
GncRational inv() const noexcept;
|
|
/** Absolute value; return value is always >= 0 and of same magnitude. */
|
|
GncRational abs() const noexcept;
|
|
/** Compare function
|
|
*
|
|
* @param b GncNumeric or integer value to compare to.
|
|
* @return -1 if < b, 0 if equal, 1 if > b.
|
|
*/
|
|
int cmp(GncRational b);
|
|
int cmp(GncInt128 b) { return cmp(GncRational(b, 1)); }
|
|
|
|
private:
|
|
struct round_param
|
|
{
|
|
GncInt128 num;
|
|
GncInt128 den;
|
|
GncInt128 rem;
|
|
};
|
|
/* Calculates the denominator required to convert to figs sigfigs. Note that
|
|
* it uses the same powten function that the GncNumeric version does because
|
|
* 17 significant figures should be plenty.
|
|
*/
|
|
GncInt128 sigfigs_denom(unsigned figs) const noexcept;
|
|
/* Calculates a round_param struct to pass to a rounding function that will
|
|
* finish computing a GncNumeric with the new denominator.
|
|
*/
|
|
round_param prepare_conversion(GncInt128 new_denom) const;
|
|
GncInt128 m_num;
|
|
GncInt128 m_den;
|
|
};
|
|
|
|
/**
|
|
* @return -1 if a < b, 0 if a == b, 1 if a > b.
|
|
*/
|
|
inline int cmp(GncRational a, GncRational b) { return a.cmp(b); }
|
|
inline int cmp(GncRational a, GncInt128 b) { return a.cmp(b); }
|
|
inline int cmp(GncInt128 a, GncRational b) { return GncRational(a, 1).cmp(b); }
|
|
|
|
/**
|
|
* \defgroup gnc_rational_comparison_operators
|
|
* @{
|
|
* Standard comparison operators, which do what one would expect.
|
|
*/
|
|
inline bool operator<(GncRational a, GncRational b) { return cmp(a, b) < 0; }
|
|
inline bool operator<(GncRational a, GncInt128 b) { return cmp(a, b) < 0; }
|
|
inline bool operator<(GncInt128 a, GncRational b) { return cmp(a, b) < 0; }
|
|
inline bool operator>(GncRational a, GncRational b) { return cmp(a, b) > 0; }
|
|
inline bool operator>(GncRational a, GncInt128 b) { return cmp(a, b) > 0; }
|
|
inline bool operator>(GncInt128 a, GncRational b) { return cmp(a, b) > 0; }
|
|
inline bool operator==(GncRational a, GncRational b) { return cmp(a, b) == 0; }
|
|
inline bool operator==(GncRational a, GncInt128 b) { return cmp(a, b) == 0; }
|
|
inline bool operator==(GncInt128 a, GncRational b) { return cmp(a, b) == 0; }
|
|
inline bool operator<=(GncRational a, GncRational b) { return cmp(a, b) <= 0; }
|
|
inline bool operator<=(GncRational a, GncInt128 b) { return cmp(a, b) <= 0; }
|
|
inline bool operator<=(GncInt128 a, GncRational b) { return cmp(a, b) <= 0; }
|
|
inline bool operator>=(GncRational a, GncRational b) { return cmp(a, b) >= 0; }
|
|
inline bool operator>=(GncRational a, GncInt128 b) { return cmp(a, b) >= 0; }
|
|
inline bool operator>=(GncInt128 a, GncRational b) { return cmp(a, b) >= 0; }
|
|
inline bool operator!=(GncRational a, GncRational b) { return cmp(a, b) != 0; }
|
|
inline bool operator!=(GncRational a, GncInt128 b) { return cmp(a, b) != 0; }
|
|
inline bool operator!=(GncInt128 a, GncRational b) { return cmp(a, b) != 0; }
|
|
/** @} */
|
|
|
|
/**
|
|
* \defgroup gnc_rational_arithmetic_operators
|
|
*
|
|
* Normal arithmetic operators. The class arithmetic operators are implemented
|
|
* in terms of these operators.
|
|
*
|
|
* These operators can throw std::overflow_error, std::underflow_error, or
|
|
* std::invalid argument as indicated in the class documentation.
|
|
*
|
|
* \param a The right-side operand
|
|
* \param b The left-side operand
|
|
* \return A GncRational computed from the operation.
|
|
*/
|
|
GncRational operator+(GncRational a, GncRational b);
|
|
inline GncRational operator+(GncRational a, GncInt128 b)
|
|
{
|
|
return a + GncRational(b, 1);
|
|
}
|
|
inline GncRational operator+(GncInt128 a, GncRational b)
|
|
{
|
|
return GncRational(a, 1) + b;
|
|
}
|
|
GncRational operator-(GncRational a, GncRational b);
|
|
inline GncRational operator-(GncRational a, GncInt128 b)
|
|
{
|
|
return a - GncRational(b, 1);
|
|
}
|
|
inline GncRational operator-(GncInt128 a, GncRational b)
|
|
{
|
|
return GncRational(a, 1) - b;
|
|
}
|
|
GncRational operator*(GncRational a, GncRational b);
|
|
inline GncRational operator*(GncRational a, GncInt128 b)
|
|
{
|
|
return a * GncRational(b, 1);
|
|
}
|
|
inline GncRational operator*(GncInt128 a, GncRational b)
|
|
{
|
|
return GncRational(a, 1) * b;
|
|
}
|
|
GncRational operator/(GncRational a, GncRational b);
|
|
inline GncRational operator/(GncRational a, GncInt128 b)
|
|
{
|
|
return a / GncRational(b, 1);
|
|
}
|
|
inline GncRational operator/(GncInt128 a, GncRational b)
|
|
{
|
|
return GncRational(a, 1) / b;
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& stream, const GncRational& val) noexcept
|
|
{
|
|
stream << val.num() << "/" << val.denom();
|
|
return stream;
|
|
}
|
|
/** @} */
|
|
#endif //__GNC_RATIONAL_HPP__
|