gnucash/libgnucash/engine/gnc-rational.hpp
Geert Janssens 83d14e1c1c Restructure the src directory
It is split into
- /libgnucash (for the non-gui bits)
- /gnucash (for the gui)
- /common (misc source files used by both)
- /bindings (currently only holds python bindings)

This is the first step in restructuring the code. It will need much
more fine tuning later on.
2017-08-10 18:45:00 +02:00

286 lines
11 KiB
C++

/********************************************************************
* gnc-rational.hpp - A rational number library *
* Copyright 2014 John Ralls <jralls@ceridwen.us> *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of *
* the License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License*
* along with this program; if not, contact: *
* *
* Free Software Foundation Voice: +1-617-542-5942 *
* 51 Franklin Street, Fifth Floor Fax: +1-617-542-2652 *
* Boston, MA 02110-1301, USA gnu@gnu.org *
* *
*******************************************************************/
#ifndef __GNC_RATIONAL_HPP__
#define __GNC_RATIONAL_HPP__
#include "gnc-numeric.h"
#include "gnc-int128.hpp"
#include "gnc-rational-rounding.hpp"
class GncNumeric;
enum class RoundType;
enum class DenomType;
/** @ingroup QOF
* @brief Rational number class using GncInt128 for the numerator
* and denominator.
*
* This class provides far greater overflow protection compared to GncNumeric at
* the expense of doubling the size, so GncNumeric is preferred for storage into
* objects. Furthermore the backends are not able to store GncRational numbers;
* storage in SQL would require using BLOBs which would preclude calculations in
* queries. GncRational exists *primarily* as a more overflow-resistant
* calculation facility for GncNumeric. It's available for cases where one needs
* an error instead of an automatically rounded value for a calculation that
* produces a result that won't fit into an int64 without rounding.
* Errors: Errors are signalled by exceptions as follows:
* * A zero denominator will raise a std::invalid_argument.
* * Division by zero will raise a std::underflow_error.
* * Overflowing 128 bits will raise a std::overflow_error.
* * Failure to convert a number as specified by the arguments to convert() will
* raise a std::domain_error.
*
*/
class GncRational
{
public:
/**
* Default constructor provides the zero value.
*/
GncRational() : m_num(0), m_den(1) {}
/**
* GncInt128 constructor. This will take any flavor of built-in integer
* thanks to implicit construction of the GncInt128s.
*/
GncRational (GncInt128 num, GncInt128 den) noexcept
: m_num(num), m_den(den) {}
/** Convenience constructor from the C API's gnc_numeric. */
GncRational (gnc_numeric n) noexcept;
/** GncNumeric constructor. */
GncRational(GncNumeric n) noexcept;
GncRational(const GncRational& rhs) = default;
GncRational(GncRational&& rhs) = default;
GncRational& operator=(const GncRational& rhs) = default;
GncRational& operator=(GncRational&& rhs) = default;
~GncRational() = default;
/** Report if both members are valid numbers.
* \return true if neither numerator nor denominator are Nan or Overflowed.
*/
bool valid() const noexcept;
/** Report if either numerator or denominator are too big to fit in an
* int64_t.
* \return true if either is too big.
*/
bool is_big() const noexcept;
/** Conversion operator; use static_cast<gnc_numeric>(foo). */
operator gnc_numeric() const noexcept;
/** Make a new GncRational with the opposite sign. */
GncRational operator-() const noexcept;
/**
* Return an equivalent fraction with all common factors between the
* numerator and the denominator removed.
*
* @return reduced GncRational
*/
GncRational reduce() const;
/**
* Round to fit an int64_t, finding the closest possible approximation.
*
* Throws std::overflow_error if m_den is 1 and m_num is big.
* @return rounded GncRational
*/
GncRational round_to_numeric() const;
/**
* Convert a GncRational to use a new denominator. If rounding is necessary
* use the indicated template specification. For example, to use half-up
* rounding you'd call bar = foo.convert<RoundType::half_up>(1000). If you
* specify RoundType::never this will throw std::domain_error if rounding is
* required.
*
* \param new_denom The new denominator to convert the fraction to.
* \return A new GncRational having the requested denominator.
*/
template <RoundType RT>
GncRational convert (GncInt128 new_denom) const
{
auto params = prepare_conversion(new_denom);
if (new_denom == GNC_DENOM_AUTO)
new_denom = m_den;
if (params.rem == 0)
return GncRational(params.num, new_denom);
return GncRational(round(params.num, params.den,
params.rem, RT2T<RT>()), new_denom);
}
/**
* Convert with the specified sigfigs. The resulting denominator depends on
* the value of the GncRational, such that the specified significant digits
* are retained in the numerator and the denominator is always a power of
* 10. This is of rather dubious benefit in an accounting program, but it's
* used in several places so it needs to be implemented.
*
* @param figs The number of digits to use for the numerator.
* @return A GncRational with the specified number of digits in the
* numerator and the appropriate power-of-ten denominator.
*/
template <RoundType RT>
GncRational convert_sigfigs(unsigned int figs) const
{
auto new_denom(sigfigs_denom(figs));
auto params = prepare_conversion(new_denom);
if (new_denom == 0) //It had better not, but just in case...
new_denom = 1;
if (params.rem == 0)
return GncRational(params.num, new_denom);
return GncRational(round(params.num, params.den,
params.rem, RT2T<RT>()), new_denom);
}
/** Numerator accessor */
GncInt128 num() const noexcept { return m_num; }
/** Denominator accessor */
GncInt128 denom() const noexcept { return m_den; }
/** @defgroup gnc_rational_mutators
* @{
* Standard mutating arithmetic operators.
*/
void operator+=(GncRational b);
void operator-=(GncRational b);
void operator*=(GncRational b);
void operator/=(GncRational b);
/** @} */
/** Inverts the number, equivalent of /= {1, 1} */
GncRational inv() const noexcept;
/** Absolute value; return value is always >= 0 and of same magnitude. */
GncRational abs() const noexcept;
/** Compare function
*
* @param b GncNumeric or integer value to compare to.
* @return -1 if < b, 0 if equal, 1 if > b.
*/
int cmp(GncRational b);
int cmp(GncInt128 b) { return cmp(GncRational(b, 1)); }
private:
struct round_param
{
GncInt128 num;
GncInt128 den;
GncInt128 rem;
};
/* Calculates the denominator required to convert to figs sigfigs. Note that
* it uses the same powten function that the GncNumeric version does because
* 17 significant figures should be plenty.
*/
GncInt128 sigfigs_denom(unsigned figs) const noexcept;
/* Calculates a round_param struct to pass to a rounding function that will
* finish computing a GncNumeric with the new denominator.
*/
round_param prepare_conversion(GncInt128 new_denom) const;
GncInt128 m_num;
GncInt128 m_den;
};
/**
* @return -1 if a < b, 0 if a == b, 1 if a > b.
*/
inline int cmp(GncRational a, GncRational b) { return a.cmp(b); }
inline int cmp(GncRational a, GncInt128 b) { return a.cmp(b); }
inline int cmp(GncInt128 a, GncRational b) { return GncRational(a, 1).cmp(b); }
/**
* \defgroup gnc_rational_comparison_operators
* @{
* Standard comparison operators, which do what one would expect.
*/
inline bool operator<(GncRational a, GncRational b) { return cmp(a, b) < 0; }
inline bool operator<(GncRational a, GncInt128 b) { return cmp(a, b) < 0; }
inline bool operator<(GncInt128 a, GncRational b) { return cmp(a, b) < 0; }
inline bool operator>(GncRational a, GncRational b) { return cmp(a, b) > 0; }
inline bool operator>(GncRational a, GncInt128 b) { return cmp(a, b) > 0; }
inline bool operator>(GncInt128 a, GncRational b) { return cmp(a, b) > 0; }
inline bool operator==(GncRational a, GncRational b) { return cmp(a, b) == 0; }
inline bool operator==(GncRational a, GncInt128 b) { return cmp(a, b) == 0; }
inline bool operator==(GncInt128 a, GncRational b) { return cmp(a, b) == 0; }
inline bool operator<=(GncRational a, GncRational b) { return cmp(a, b) <= 0; }
inline bool operator<=(GncRational a, GncInt128 b) { return cmp(a, b) <= 0; }
inline bool operator<=(GncInt128 a, GncRational b) { return cmp(a, b) <= 0; }
inline bool operator>=(GncRational a, GncRational b) { return cmp(a, b) >= 0; }
inline bool operator>=(GncRational a, GncInt128 b) { return cmp(a, b) >= 0; }
inline bool operator>=(GncInt128 a, GncRational b) { return cmp(a, b) >= 0; }
inline bool operator!=(GncRational a, GncRational b) { return cmp(a, b) != 0; }
inline bool operator!=(GncRational a, GncInt128 b) { return cmp(a, b) != 0; }
inline bool operator!=(GncInt128 a, GncRational b) { return cmp(a, b) != 0; }
/** @} */
/**
* \defgroup gnc_rational_arithmetic_operators
*
* Normal arithmetic operators. The class arithmetic operators are implemented
* in terms of these operators.
*
* These operators can throw std::overflow_error, std::underflow_error, or
* std::invalid argument as indicated in the class documentation.
*
* \param a The right-side operand
* \param b The left-side operand
* \return A GncRational computed from the operation.
*/
GncRational operator+(GncRational a, GncRational b);
inline GncRational operator+(GncRational a, GncInt128 b)
{
return a + GncRational(b, 1);
}
inline GncRational operator+(GncInt128 a, GncRational b)
{
return GncRational(a, 1) + b;
}
GncRational operator-(GncRational a, GncRational b);
inline GncRational operator-(GncRational a, GncInt128 b)
{
return a - GncRational(b, 1);
}
inline GncRational operator-(GncInt128 a, GncRational b)
{
return GncRational(a, 1) - b;
}
GncRational operator*(GncRational a, GncRational b);
inline GncRational operator*(GncRational a, GncInt128 b)
{
return a * GncRational(b, 1);
}
inline GncRational operator*(GncInt128 a, GncRational b)
{
return GncRational(a, 1) * b;
}
GncRational operator/(GncRational a, GncRational b);
inline GncRational operator/(GncRational a, GncInt128 b)
{
return a / GncRational(b, 1);
}
inline GncRational operator/(GncInt128 a, GncRational b)
{
return GncRational(a, 1) / b;
}
inline std::ostream& operator<<(std::ostream& stream, const GncRational& val) noexcept
{
stream << val.num() << "/" << val.denom();
return stream;
}
/** @} */
#endif //__GNC_RATIONAL_HPP__