gnucash/libgnucash/engine/gnc-int128.cpp
David Palma aab89065da
Bug 796949 - Fix division and rounding of zero.
Fix division of 128-bit integers so that the remainder inherits the dividend's sign.
Fix rounding for truncated zero.
2019-05-11 23:23:59 +01:00

1072 lines
27 KiB
C++

/********************************************************************
* qofmath128.c -- an 128-bit integer library *
* Copyright (C) 2004 Linas Vepstas <linas@linas.org> *
* Copyright (C) 2014 John Ralls <jralls@ceridwen.us> *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of *
* the License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License*
* along with this program; if not, contact: *
* *
* Free Software Foundation Voice: +1-617-542-5942 *
* 51 Franklin Street, Fifth Floor Fax: +1-617-542-2652 *
* Boston, MA 02110-1301, USA gnu@gnu.org *
* *
*******************************************************************/
extern "C"
{
#include <config.h>
}
#include "gnc-int128.hpp"
#include <iomanip>
#include <utility>
#include <cassert>
#include <cstdio>
#include <sstream>
/* All algorithms from Donald E. Knuth, "The Art of Computer
* Programming, Volume 2: Seminumerical Algorithms", 3rd Ed.,
* Addison-Wesley, 1998.
*/
namespace {
static const unsigned int upper_num_bits = 61;
static const unsigned int sublegs = GncInt128::numlegs * 2;
static const unsigned int sublegbits = GncInt128::legbits / 2;
static const uint64_t sublegmask = (UINT64_C(1) << sublegbits) - 1;
static const uint64_t flagmask = UINT64_C(0xe000000000000000);
static const uint64_t nummask = UINT64_C(0x1fffffffffffffff);
/* Assumes that the high bits represent old flags to be replaced.
* Any overflow must be detected first!
*/
static inline uint64_t set_flags(uint64_t leg, uint8_t flags)
{
auto flag_part = static_cast<uint64_t>(flags) << upper_num_bits;
return flag_part + (leg & nummask);
}
static inline uint8_t get_flags(uint64_t leg)
{
return (leg & flagmask) >> upper_num_bits;
}
static inline uint64_t get_num(uint64_t leg)
{
return leg & nummask;
}
}
GncInt128::GncInt128 () : m_hi {0}, m_lo {0}{}
GncInt128::GncInt128 (int64_t upper, int64_t lower, uint8_t flags) :
m_hi {static_cast<uint64_t>(upper < 0 ? -upper : upper)},
m_lo {static_cast<uint64_t>(lower < 0 ? -lower : lower)}
{
if ((upper < 0 && lower > 0) || (upper > 0 && lower < 0))
m_lo = (m_hi << 63) - m_lo;
else
m_lo += (m_hi << 63);
m_hi >>= 1;
if (m_hi & flagmask)
{
std::ostringstream ss;
ss << "Constructing GncInt128 with int64_t " << upper
<< " which is too big.";
throw std::overflow_error(ss.str());
}
flags ^= (upper < 0 ? neg : upper == 0 && lower < 0 ? neg : pos);
m_hi = set_flags(m_hi, flags);
}
GncInt128::GncInt128 (int64_t upper, uint64_t lower, uint8_t flags) :
m_hi {static_cast<uint64_t>(upper < 0 ? -upper : upper)}, m_lo {lower}
{
if (m_hi & flagmask)
{
std::ostringstream ss;
ss << "Constructing GncInt128 with int64_t " << upper
<< " which is too big when lower is unsigned.";
throw std::overflow_error(ss.str());
}
flags ^= (upper < 0 ? neg : pos);
m_hi = set_flags(m_hi, flags);
}
GncInt128::GncInt128 (uint64_t upper, uint64_t lower, uint8_t flags) :
m_hi {upper}, m_lo {lower}
{
/* somewhere in the bowels of gnc_module.scm compilation this gets called
* with upper=INT64_MAX, which would otherwise throw. Make it our max value
* instead.
*/
if (m_hi == UINT64_MAX)
m_hi = nummask;
if (m_hi & flagmask)
{
std::ostringstream ss;
ss << "Constructing GncInt128 with uint64_t " << upper
<< " which is too big.";
throw std::overflow_error(ss.str());
}
m_hi = set_flags(m_hi, flags);
}
GncInt128&
GncInt128::zero () noexcept
{
m_lo = m_hi = UINT64_C(0);
return *this;
}
GncInt128::operator int64_t() const
{
auto flags = get_flags(m_hi);
if ((flags & neg) && isBig())
throw std::underflow_error ("Negative value too large to represent as int64_t");
if ((flags & (overflow | NaN)) || isBig())
throw std::overflow_error ("Value too large to represent as int64_t");
int64_t retval = static_cast<int64_t>(m_lo);
return flags & neg ? -retval : retval;
}
GncInt128::operator uint64_t() const
{
auto flags = get_flags(m_hi);
if ((flags & neg) && !isZero()) // exclude negative zero
throw std::underflow_error ("Can't represent negative value as uint64_t");
if ((flags & (overflow | NaN)) || (m_hi || m_lo > UINT64_MAX))
throw std::overflow_error ("Value to large to represent as uint64_t");
return m_lo;
}
int
GncInt128::cmp (const GncInt128& b) const noexcept
{
auto flags = get_flags(m_hi);
if (flags & (overflow | NaN))
return -1;
if (b.isOverflow () || b.isNan ())
return 1;
auto hi = get_num(m_hi);
auto bhi = get_num(b.m_hi);
if (isZero() && b.isZero()) return 0;
if (flags & neg)
{
if (!b.isNeg()) return -1;
if (hi > bhi) return -1;
if (hi < bhi) return 1;
if (m_lo > b.m_lo) return -1;
if (m_lo < b.m_lo) return 1;
return 0;
}
if (b.isNeg()) return 1;
if (hi < bhi) return -1;
if (hi > bhi) return 1;
if (m_lo < b.m_lo) return -1;
if (m_lo > b.m_lo) return 1;
return 0;
}
/* Knuth 4.5.3 Algo B, recommended by GMP as much faster than Algo A (Euclidean
* method).
*/
GncInt128
GncInt128::gcd(GncInt128 b) const noexcept
{
if (b.isZero())
return *this;
if (isZero())
return b;
if (b.isOverflow() || b.isNan())
return b;
if (isOverflow() || isNan())
return *this;
GncInt128 a (isNeg() ? -(*this) : *this);
if (b.isNeg()) b = -b;
unsigned int k {};
const uint64_t one {1};
while (!((a & one) || (b & one))) //B1
{
a >>= 1;
b >>= 1;
++k;
}
GncInt128 t {a & one ? -b : a}; //B2
while (a != b)
{
while (t && ((t & one) ^ one)) t >>= 1; //B3 & B4
if (t.isNeg()) //B5
b = -t;
else
a = t;
t = a - b; //B6
}
return a << k;
}
/* Since u * v = gcd(u, v) * lcm(u, v), we find lcm by u / gcd * v. */
GncInt128
GncInt128::lcm(const GncInt128& b) const noexcept
{
auto common = gcd(b);
return *this / common * b.abs(); //Preserve our sign, discard the other's.
}
/* Knuth section 4.6.3 */
GncInt128
GncInt128::pow(unsigned int b) const noexcept
{
if (isZero() || (m_lo == 1 && m_hi == 0) || isNan() || isOverflow())
return *this;
if (b == 0)
return GncInt128 (1);
GncInt128 retval (1), squares = *this;
while (b && !retval.isOverflow())
{
if (b & 1)
retval *= squares;
squares *= squares;
b >>= 1;
}
return retval;
}
bool
GncInt128::isNeg () const noexcept
{
return (get_flags(m_hi) & neg);
}
bool
GncInt128::isBig () const noexcept
{
return (get_num(m_hi) || m_lo > INT64_MAX);
}
bool
GncInt128::isOverflow () const noexcept
{
return (get_flags(m_hi) & overflow);
}
bool
GncInt128::isNan () const noexcept
{
return (get_flags(m_hi) & NaN);
}
bool
GncInt128::valid() const noexcept
{
return !(get_flags(m_hi) & (overflow | NaN));
}
bool
GncInt128::isZero() const noexcept
{
return ((get_flags(m_hi) & (overflow | NaN)) == 0 &&
get_num(m_hi) == 0 && m_lo == 0);
}
GncInt128
GncInt128::abs() const noexcept
{
if (isNeg())
return operator-();
return *this;
}
unsigned int
GncInt128::bits() const noexcept
{
auto hi = get_num(m_hi);
unsigned int bits {static_cast<unsigned int>(hi == 0 ? 0 : 64)};
uint64_t temp {(hi == 0 ? m_lo : hi)};
for (;temp > 0; temp >>= 1)
++bits;
return bits;
}
GncInt128
GncInt128::operator-() const noexcept
{
auto retval = *this;
auto flags = get_flags(retval.m_hi);
if (isNeg())
flags ^= neg;
else
flags |= neg;
retval.m_hi = set_flags(retval.m_hi, flags);
return retval;
}
GncInt128::operator bool() const noexcept
{
return ! isZero ();
}
GncInt128&
GncInt128::operator++ () noexcept
{
return operator+=(UINT64_C(1));
}
GncInt128&
GncInt128::operator++ (int) noexcept
{
return operator+=(UINT64_C(1));
}
GncInt128&
GncInt128::operator-- () noexcept
{
return operator-=(UINT64_C(1));
}
GncInt128&
GncInt128::operator-- (int) noexcept
{
return operator-=(UINT64_C(1));
}
GncInt128&
GncInt128::operator+= (const GncInt128& b) noexcept
{
auto flags = get_flags(m_hi);
if (b.isOverflow())
flags |= overflow;
if (b.isNan())
flags |= NaN;
m_hi = set_flags(m_hi, flags);
if (isOverflow() || isNan())
return *this;
if ((isNeg () && !b.isNeg ()) || (!isNeg () && b.isNeg ()))
return this->operator-= (-b);
uint64_t result = m_lo + b.m_lo;
uint64_t carry = static_cast<int64_t>(result < m_lo); //Wrapping
m_lo = result;
auto hi = get_num(m_hi);
auto bhi = get_num(b.m_hi);
result = hi + bhi + carry;
if (result < hi || result & flagmask)
flags |= overflow;
m_hi = set_flags(result, flags);
return *this;
}
GncInt128&
GncInt128::operator<<= (unsigned int i) noexcept
{
auto flags = get_flags(m_hi);
if (i == 0)
return *this;
if (i > maxbits)
{
flags &= 0xfe;
m_hi = set_flags(0, flags);
m_lo = 0;
return *this;
}
auto hi = get_num(m_hi);
if (i < legbits)
{
uint64_t carry {(m_lo & (((UINT64_C(1) << i) - 1) << (legbits - i))) >> (legbits - i)};
m_lo <<= i;
hi <<= i;
hi += carry;
m_hi = set_flags(hi, flags);
return *this;
}
hi = m_lo << (i - legbits);
m_hi = set_flags(hi, flags);
m_lo = 0;
return *this;
}
GncInt128&
GncInt128::operator>>= (unsigned int i) noexcept
{
auto flags = get_flags(m_hi);
if (i > maxbits)
{
flags &= 0xfe;
m_hi = set_flags(0, flags);
m_lo = 0;
return *this;
}
auto hi = get_num(m_hi);
if (i < legbits)
{
uint64_t carry {(hi & ((UINT64_C(1) << i) - 1))};
m_lo >>= i;
hi >>= i;
m_lo += (carry << (legbits - i));
m_hi = set_flags(hi, flags);
return *this;
}
m_lo = hi >> (i - legbits);
m_hi = set_flags(0, flags);
return *this;
}
GncInt128&
GncInt128::operator-= (const GncInt128& b) noexcept
{
auto flags = get_flags(m_hi);
if (b.isOverflow())
flags |= overflow;
if (b.isNan())
flags |= NaN;
m_hi = set_flags(m_hi, flags);
if (isOverflow() || isNan())
return *this;
if ((!isNeg() && b.isNeg()) || (isNeg() && !b.isNeg()))
return this->operator+= (-b);
bool operand_bigger {abs().cmp (b.abs()) < 0};
auto hi = get_num(m_hi);
auto far_hi = get_num(b.m_hi);
if (operand_bigger)
{
flags ^= neg; // ^= flips the bit
if (m_lo > b.m_lo)
{
/* The + 1 on the end is because we really want to use 2^64, or
* UINT64_MAX + 1, but that can't be represented in a uint64_t.
*/
m_lo = UINT64_MAX - m_lo + b.m_lo + 1;
--far_hi; //borrow
}
else
m_lo = b.m_lo - m_lo;
hi = far_hi - hi;
m_hi = set_flags(hi, flags);
return *this;
}
if (m_lo < b.m_lo)
{
m_lo = UINT64_MAX - b.m_lo + m_lo + 1; //See UINT64_MAX comment above
--hi; //borrow
}
else
m_lo -= b.m_lo;
hi -= far_hi;
m_hi = set_flags(hi, flags);
return *this;
}
GncInt128&
GncInt128::operator*= (const GncInt128& b) noexcept
{
/* Test for 0 first */
auto flags = get_flags(m_hi);
/* Handle the sign; ^ flips if b is negative */
flags ^= (get_flags(b.m_hi) & neg);
if (isZero() || b.isZero())
{
m_lo = 0;
m_hi = set_flags(0, flags);
return *this;
}
if (b.isOverflow())
flags |= overflow;
if (b.isNan())
flags |= NaN;
m_hi = set_flags(m_hi, flags);
if (isOverflow() || isNan())
return *this;
/* Test for overflow before spending time on the calculation */
auto hi = get_num(m_hi);
auto bhi = get_num(b.m_hi);
if (hi && bhi)
{
flags |= overflow;
m_hi = set_flags(hi, flags);
return *this;
}
unsigned int abits {bits()}, bbits {b.bits()};
/* If the product of the high bytes < 7fff then the result will have abits +
* bbits -1 bits and won't actually overflow. It's not worth the effort to
* work that out for this corner-case, so we'll take the risk and calculate
* the product and catch the overflow later.
*/
if (abits + bbits - 1 > maxbits)
{
flags |= overflow;
m_hi = set_flags(m_hi, flags);
return *this;
}
/* The trivial case */
if (abits + bbits <= legbits)
{
m_lo *= b.m_lo;
m_hi = set_flags(m_hi, flags);
return *this;
}
/* This is Knuth's "classical" multi-precision multiplication algorithm
* truncated to a GncInt128 result with the loop unrolled for clarity and with
* overflow and zero checks beforehand to save time. See Donald Knuth, "The Art
* of Computer Programming Volume 2: Seminumerical Algorithms", Addison-Wesley,
* 1998, p 268.
*
* There are potentially faster algorithms (O(n^1.6) instead of O(n^2) for the
* full precision), but this is already close to that fast because of truncation
* and it's not clear that the truncation is applicable to the faster
* algorithms.
*/
uint64_t av[sublegs] {(m_lo & sublegmask), (m_lo >> sublegbits),
(hi & sublegmask), (hi >> sublegbits)};
uint64_t bv[sublegs] {(b.m_lo & sublegmask), (b.m_lo >> sublegbits),
(bhi & sublegmask), (bhi >> sublegbits)};
uint64_t rv[sublegs] {};
uint64_t carry {}, scratch {};
rv[0] = av[0] * bv[0];
rv[1] = av[1] * bv [0];
scratch = rv[1] + av[0] * bv[1];
carry = rv[1] > scratch ? 1 : 0;
rv[1] = scratch;
rv[2] = av[2] * bv[0] + carry; //0xffff^2 + 1 < 0xffffffff, can't overflow
scratch = rv[2] + av[1] * bv[1];
carry = rv[2] > scratch ? 1 : 0;
rv[2] = scratch + av[0] * bv[2];
carry += scratch > rv[2] ? 1 : 0;
rv[3] = av[3] * bv[0] + carry;
scratch = rv[3] + av[2] * bv[1];
carry = rv[3] > scratch ? 1 : 0;
rv[3] = scratch + av[1] * bv[2];
carry += scratch > rv[3] ? 1 : 0;
scratch = rv[3] + av[0] * bv[3];
carry += rv[3] > scratch ? 1 : 0;
rv[3] = scratch;
if (carry) //Shouldn't happen because of the checks above
{
flags |= overflow;
m_hi = set_flags(m_hi, flags);
return *this;
}
m_lo = rv[0] + (rv[1] << sublegbits);
carry = rv[1] >> sublegbits;
carry += (rv[1] << sublegbits) > m_lo || rv[0] > m_lo ? 1 : 0;
hi = rv[2] + (rv[3] << sublegbits) + carry;
if ((rv[3] << sublegbits) > hi || rv[2] > hi || (rv[3] >> sublegbits) ||
hi & flagmask)
{
flags |= overflow;
m_hi = set_flags(hi, flags);
return *this;
}
m_hi = set_flags(hi, flags);
return *this;
}
namespace {
/* Algorithm from Knuth (full citation at operator*=) p272ff. Again, there
* are faster algorithms out there, but they require much larger numbers to
* be of benefit.
*/
/* We're using arrays here instead of vectors to avoid an alloc. */
void
div_multi_leg (uint64_t* u, size_t m, uint64_t* v, size_t n,
GncInt128& q, GncInt128& r) noexcept
{
/* D1, Normalization */
uint64_t qv[sublegs] {};
uint64_t d {(UINT64_C(1) << sublegbits)/(v[n - 1] + UINT64_C(1))};
uint64_t carry {UINT64_C(0)};
bool negative {q.isNeg()};
bool rnegative {r.isNeg()};
for (size_t i = 0; i < m; ++i)
{
u[i] = u[i] * d + carry;
if (u[i] > sublegmask)
{
carry = u[i] >> sublegbits;
u[i] &= sublegmask;
}
else
carry = UINT64_C(0);
assert (u[i] <= sublegmask);
}
if (carry)
{
u[m++] = carry;
carry = UINT64_C(0);
}
for (size_t i = 0; i < n; ++i)
{
v[i] = v[i] * d + carry;
if (v[i] > sublegmask)
{
carry = v[i] >> sublegbits;
v[i] &= sublegmask;
}
else
carry = UINT64_C(0);
assert (v[i] < sublegmask);
}
assert (carry == UINT64_C(0));
for (int j = m - n; j >= 0; j--) //D3
{
uint64_t qhat, rhat;
qhat = ((u[j + n] << sublegbits) + u[j + n - 1]) / v[n - 1];
rhat = ((u[j + n] << sublegbits) + u[j + n - 1]) % v[n - 1];
while (qhat > sublegmask ||
(rhat <= sublegmask &&
((qhat * v[n - 2]) > ((rhat << sublegbits) + u[j + n - 2]))))
{
--qhat;
rhat += v[n - 1];
}
carry = UINT64_C(0);
uint64_t borrow {};
for (size_t k = 0; k < n; ++k) //D4
{
auto subend = qhat * v[k] + carry;
carry = subend >> sublegbits;
subend &= sublegmask;
if (u[j + k] >= subend)
{
u[j + k] = u[j + k] - subend;
borrow = UINT64_C(0);
}
else
{
if (u[j + k + 1] > 0)
--u[j + k + 1];
else
++borrow;
u[j + k] = u[j + k] + sublegmask + 1 - subend;
u[j + k] &= sublegmask;
}
}
u[j + n] -= carry;
qv[j] = qhat;
if (borrow) //D5
{ //D6
--qv[j];
carry = UINT64_C(0);
for (size_t k = 0; k < n; ++k)
{
u[j + k] += v[k] + carry;
if (u[j + k] > sublegmask)
{
carry = u[j + k] >> sublegbits;
u[j + k] &= sublegmask;
}
}
u[j + n] += carry;
}
}//D7
q = GncInt128 ((qv[3] << sublegbits) + qv[2], (qv[1] << sublegbits) + qv[0]);
r = GncInt128 ((u[3] << sublegbits) + u[2], (u[1] << sublegbits) + u[0]);
r /= d;
if (negative) q = -q;
if (rnegative) r = -r;
}
void
div_single_leg (uint64_t* u, size_t m, uint64_t v,
GncInt128& q, GncInt128& r) noexcept
{
uint64_t qv[sublegs] {};
uint64_t carry {};
bool negative {q.isNeg()};
bool rnegative {r.isNeg()};
for (int i = m - 1; i >= 0; --i)
{
qv[i] = u[i] / v;
if (i > 0)
{
u[i - 1] += ((u[i] % v) << sublegbits);
u[i] = UINT64_C(0);
}
else
u[i] %= v;
}
q = GncInt128 ((qv[3] << sublegbits) + qv[2], (qv[1] << sublegbits) + qv[0]);
r = GncInt128 ((u[3] << sublegbits) + u[2], (u[1] << sublegbits) + u[0]);
if (negative) q = -q;
if (rnegative) r = -r;
}
}// namespace
void
GncInt128::div (const GncInt128& b, GncInt128& q, GncInt128& r) const noexcept
{
// clear remainder and quotient
r = GncInt128(0);
q = GncInt128(0);
auto qflags = get_flags(q.m_hi);
auto rflags = get_flags(r.m_hi);
if (isOverflow() || b.isOverflow())
{
qflags |= overflow;
rflags |= overflow;
q.m_hi = set_flags(q.m_hi, qflags);
r.m_hi = set_flags(r.m_hi, rflags);
return;
}
if (isNan() || b.isNan())
{
qflags |= NaN;
rflags |= NaN;
q.m_hi = set_flags(q.m_hi, qflags);
r.m_hi = set_flags(r.m_hi, rflags);
return;
}
assert (&q != this);
assert (&r != this);
assert (&q != &b);
assert (&r != &b);
q.zero(), r.zero();
qflags = rflags = 0;
if (b.isZero())
{
qflags |= NaN;
rflags |= NaN;
q.m_hi = set_flags(q.m_hi, qflags);
r.m_hi = set_flags(r.m_hi, rflags);
return;
}
if (isNeg())
{
qflags |= neg;
rflags |= neg; // the remainder inherits the dividend's sign
}
if (b.isNeg())
qflags ^= neg;
q.m_hi = set_flags(q.m_hi, qflags);
r.m_hi = set_flags(r.m_hi, rflags);
if (abs() < b.abs())
{
r = *this;
return;
}
auto hi = get_num(m_hi);
auto bhi = get_num(b.m_hi);
if (hi == 0 && bhi == 0) //let the hardware do it
{
assert (b.m_lo != 0); // b.m_hi is 0 but b isn't or we didn't get here.
q.m_lo = m_lo / b.m_lo;
r.m_lo = m_lo % b.m_lo;
return;
}
uint64_t u[sublegs + 2] {(m_lo & sublegmask), (m_lo >> sublegbits),
(hi & sublegmask), (hi >> sublegbits), 0, 0};
uint64_t v[sublegs] {(b.m_lo & sublegmask), (b.m_lo >> sublegbits),
(bhi & sublegmask), (bhi >> sublegbits)};
auto m = u[3] ? 4 : u[2] ? 3 : u[1] ? 2 : u[0] ? 1 : 0;
auto n = v[3] ? 4 : v[2] ? 3 : v[1] ? 2 : v[0] ? 1 : 0;
if (m == 0 || n == 0) //Shouldn't happen
return;
if (n == 1)
return div_single_leg (u, m, v[0], q, r);
return div_multi_leg (u, m, v, n, q, r);
}
GncInt128&
GncInt128::operator/= (const GncInt128& b) noexcept
{
GncInt128 q {}, r {};
div(b, q, r);
std::swap (*this, q);
return *this;
}
GncInt128&
GncInt128::operator%= (const GncInt128& b) noexcept
{
GncInt128 q {}, r {};
div(b, q, r);
std::swap (*this, r);
if (q.isNan())
m_hi = set_flags(m_hi, (get_flags(m_hi) | NaN));
return *this;
}
GncInt128&
GncInt128::operator&= (const GncInt128& b) noexcept
{
auto flags = get_flags(m_hi);
if (b.isOverflow())
flags |= overflow;
if (b.isNan())
flags |= NaN;
m_hi = set_flags(m_hi, flags);
if (isOverflow() || isNan())
return *this;
auto hi = get_num(m_hi);
hi &= get_num(b.m_hi);
m_lo &= b.m_lo;
m_hi = set_flags(hi, flags);
return *this;
}
GncInt128&
GncInt128::operator|= (const GncInt128& b) noexcept
{
auto flags = get_flags(m_hi);
auto hi = get_num(m_hi);
hi ^= get_num(b.m_hi);
m_hi = set_flags(hi, flags);
m_lo ^= b.m_lo;
return *this;
}
GncInt128&
GncInt128::operator^= (const GncInt128& b) noexcept
{
auto flags = get_flags(m_hi);
if (b.isOverflow())
flags |= overflow;
if (b.isNan())
flags |= NaN;
m_hi = set_flags(m_hi, flags);
if (isOverflow() || isNan())
return *this;
auto hi = get_num(m_hi);
hi ^= get_num(b.m_hi);
m_hi = set_flags(hi, flags);
m_lo ^= b.m_lo;
return *this;
}
static const uint8_t dec_array_size {5};
/* Convert a uint128 represented as a binary number into 4 10-digit decimal
* equivalents. Adapted from Douglas W. Jones, "Binary to Decimal Conversion in
* Limited Precision", http://homepage.cs.uiowa.edu/~jones/bcd/decimal.html,
* accessed 28 Oct 2014. */
static void
decimal_from_binary (uint64_t d[dec_array_size], uint64_t hi, uint64_t lo)
{
/* Coefficients are the values of 2^96, 2^64, and 2^32 divided into 8-digit
* segments:
* 2^96 = 79228,16251426,43375935,43950336
* 2^64 = 1844,67440737,09551616
* 2^32 = 42,94967296
*/
const uint8_t coeff_array_size = dec_array_size - 1;
const uint32_t coeff_3 [coeff_array_size] {79228, 16251426, 43375935, 43950336};
const uint32_t coeff_2 [coeff_array_size] {0, 1844, 67440737, 9551616};
const uint32_t coeff_1 [coeff_array_size] {0, 0, 42, 94967296};
const uint32_t bin_mask {0xffffffff};
const uint32_t dec_div {UINT32_C(100000000)};
const uint8_t last {dec_array_size - 1};
d[0] = lo & bin_mask;
d[1] = (lo >> 32) & bin_mask;
d[2] = hi & bin_mask;
d[3] = (hi >> 32) & bin_mask, 0;
d[0] += coeff_3[3] * d[3] + coeff_2[3] * d[2] + coeff_1[3] * d[1];
uint64_t q {d[0] / dec_div};
d[0] %= dec_div;
for (int i {1}; i < coeff_array_size; ++i)
{
int j = coeff_array_size - i - 1;
d[i] = q + coeff_3[j] * d[3] + coeff_2[j] * d[2] + coeff_1[j] * d[1];
q = d[i] / dec_div;
d[i] %= dec_div;
}
d[last] = q;
return;
}
static const uint8_t char_buf_size {41}; //39 digits plus sign and trailing null
char*
GncInt128::asCharBufR(char* buf) const noexcept
{
if (isOverflow())
{
sprintf (buf, "%s", "Overflow");
return buf;
}
if (isNan())
{
sprintf (buf, "%s", "NaN");
return buf;
}
if (isZero())
{
sprintf (buf, "%d", 0);
return buf;
}
uint64_t d[dec_array_size] {};
decimal_from_binary(d, get_num(m_hi), m_lo);
char* next = buf;
char neg {'-'};
if (isNeg()) *(next++) = neg;
bool trailing {false};
for (unsigned int i {dec_array_size}; i; --i)
if (d[i - 1] || trailing)
{
if (trailing)
next += sprintf (next, "%8.8" PRIu64, d[i - 1]);
else
next += sprintf (next, "%" PRIu64, d[i - 1]);
trailing = true;
}
return buf;
}
std::ostream&
operator<< (std::ostream& stream, const GncInt128& a) noexcept
{
char buf[char_buf_size] {};
stream << a.asCharBufR (buf);
return stream;
}
bool
operator== (const GncInt128& a, const GncInt128& b) noexcept
{
return a.cmp(b) == 0;
}
bool
operator!= (const GncInt128& a, const GncInt128& b) noexcept
{
return a.cmp(b) != 0;
}
bool
operator< (const GncInt128& a, const GncInt128& b) noexcept
{
return a.cmp(b) < 0;
}
bool
operator> (const GncInt128& a, const GncInt128& b) noexcept
{
return a.cmp(b) > 0;
}
bool
operator<= (const GncInt128& a, const GncInt128& b) noexcept
{
return a.cmp(b) <= 0;
}
bool
operator>= (const GncInt128& a, const GncInt128& b) noexcept
{
return a.cmp(b) >= 0;
}
GncInt128
operator+ (GncInt128 a, const GncInt128& b) noexcept
{
a += b;
return a;
}
GncInt128
operator- (GncInt128 a, const GncInt128& b) noexcept
{
a -= b;
return a;
}
GncInt128
operator* (GncInt128 a, const GncInt128& b) noexcept
{
a *= b;
return a;
}
GncInt128
operator/ (GncInt128 a, const GncInt128& b) noexcept
{
a /= b;
return a;
}
GncInt128
operator% (GncInt128 a, const GncInt128& b) noexcept
{
a %= b;
return a;
}
GncInt128
operator& (GncInt128 a, const GncInt128& b) noexcept
{
a &= b;
return a;
}
GncInt128
operator| (GncInt128 a, const GncInt128& b) noexcept
{
a |= b;
return a;
}
GncInt128
operator^ (GncInt128 a, const GncInt128& b) noexcept
{
a ^= b;
return a;
}
GncInt128
operator<< (GncInt128 a, unsigned int b) noexcept
{
a <<= b;
return a;
}
GncInt128
operator>> (GncInt128 a, unsigned int b) noexcept
{
a >>= b;
return a;
}