mirror of
https://github.com/neovim/neovim.git
synced 2025-02-25 18:55:25 -06:00
vim-patch:8.2.1893: fuzzy matching does not support multiple words
Problem: Fuzzy matching does not support multiple words.
Solution: Add support for matching white space separated words. (Yegappan
Lakshmanan, closes vim/vim#7163)
8ded5b647a
This commit is contained in:
parent
8313d31e4a
commit
30deb14f39
@ -4866,8 +4866,15 @@ matchfuzzy({list}, {str} [, {dict}]) *matchfuzzy()*
|
||||
the strings in {list} that fuzzy match {str}. The strings in
|
||||
the returned list are sorted based on the matching score.
|
||||
|
||||
The optional {dict} argument always supports the following
|
||||
items:
|
||||
matchseq When this item is present and {str} contains
|
||||
multiple words separated by white space, then
|
||||
returns only matches that contain the words in
|
||||
the given sequence.
|
||||
|
||||
If {list} is a list of dictionaries, then the optional {dict}
|
||||
argument supports the following items:
|
||||
argument supports the following additional items:
|
||||
key key of the item which is fuzzy matched against
|
||||
{str}. The value of this item should be a
|
||||
string.
|
||||
@ -4881,6 +4888,9 @@ matchfuzzy({list}, {str} [, {dict}]) *matchfuzzy()*
|
||||
matching is NOT supported. The maximum supported {str} length
|
||||
is 256.
|
||||
|
||||
When {str} has multiple words each separated by white space,
|
||||
then the list of strings that have all the words is returned.
|
||||
|
||||
If there are no matching strings or there is an error, then an
|
||||
empty list is returned. If length of {str} is greater than
|
||||
256, then returns an empty list.
|
||||
@ -4900,7 +4910,12 @@ matchfuzzy({list}, {str} [, {dict}]) *matchfuzzy()*
|
||||
:echo v:oldfiles->matchfuzzy("test")
|
||||
< results in a list of file names fuzzy matching "test". >
|
||||
:let l = readfile("buffer.c")->matchfuzzy("str")
|
||||
< results in a list of lines in "buffer.c" fuzzy matching "str".
|
||||
< results in a list of lines in "buffer.c" fuzzy matching "str". >
|
||||
:echo ['one two', 'two one']->matchfuzzy('two one')
|
||||
< results in ['two one', 'one two']. >
|
||||
:echo ['one two', 'two one']->matchfuzzy('two one',
|
||||
\ {'matchseq': 1})
|
||||
< results in ['two one'].
|
||||
|
||||
matchfuzzypos({list}, {str} [, {dict}]) *matchfuzzypos()*
|
||||
Same as |matchfuzzy()|, but returns the list of matched
|
||||
|
@ -4771,16 +4771,16 @@ the_end:
|
||||
/// Ported from the lib_fts library authored by Forrest Smith.
|
||||
/// https://github.com/forrestthewoods/lib_fts/tree/master/code
|
||||
///
|
||||
/// Blog describing the algorithm:
|
||||
/// The following blog describes the fuzzy matching algorithm:
|
||||
/// https://www.forrestthewoods.com/blog/reverse_engineering_sublime_texts_fuzzy_match/
|
||||
///
|
||||
/// Each matching string is assigned a score. The following factors are checked:
|
||||
/// Matched letter
|
||||
/// Unmatched letter
|
||||
/// Consecutively matched letters
|
||||
/// Proximity to start
|
||||
/// Letter following a separator (space, underscore)
|
||||
/// Uppercase letter following lowercase (aka CamelCase)
|
||||
/// - Matched letter
|
||||
/// - Unmatched letter
|
||||
/// - Consecutively matched letters
|
||||
/// - Proximity to start
|
||||
/// - Letter following a separator (space, underscore)
|
||||
/// - Uppercase letter following lowercase (aka CamelCase)
|
||||
///
|
||||
/// Matched letters are good. Unmatched letters are bad. Matching near the start
|
||||
/// is good. Matching the first letter in the middle of a phrase is good.
|
||||
@ -4790,16 +4790,17 @@ the_end:
|
||||
/// File paths are different from file names. File extensions may be ignorable.
|
||||
/// Single words care about consecutive matches but not separators or camel
|
||||
/// case.
|
||||
/// Score starts at 0
|
||||
/// Score starts at 100
|
||||
/// Matched letter: +0 points
|
||||
/// Unmatched letter: -1 point
|
||||
/// Consecutive match bonus: +5 points
|
||||
/// Separator bonus: +10 points
|
||||
/// Camel case bonus: +10 points
|
||||
/// Unmatched leading letter: -3 points (max: -9)
|
||||
/// Consecutive match bonus: +15 points
|
||||
/// First letter bonus: +15 points
|
||||
/// Separator bonus: +30 points
|
||||
/// Camel case bonus: +30 points
|
||||
/// Unmatched leading letter: -5 points (max: -15)
|
||||
///
|
||||
/// There is some nuance to this. Scores don’t have an intrinsic meaning. The
|
||||
/// score range isn’t 0 to 100. It’s roughly [-50, 50]. Longer words have a
|
||||
/// score range isn’t 0 to 100. It’s roughly [50, 150]. Longer words have a
|
||||
/// lower minimum score due to unmatched letter penalty. Longer search patterns
|
||||
/// have a higher maximum score due to match bonuses.
|
||||
///
|
||||
@ -4813,6 +4814,7 @@ the_end:
|
||||
/// There is not an explicit bonus for an exact match. Unmatched letters receive
|
||||
/// a penalty. So shorter strings and closer matches are worth more.
|
||||
typedef struct {
|
||||
int idx; ///< used for stable sort
|
||||
listitem_T *item;
|
||||
int score;
|
||||
list_T *lmatchpos;
|
||||
@ -4833,6 +4835,8 @@ typedef struct {
|
||||
#define MAX_LEADING_LETTER_PENALTY -15
|
||||
/// penalty for every letter that doesn't match
|
||||
#define UNMATCHED_LETTER_PENALTY -1
|
||||
/// penalty for gap in matching positions (-2 * k)
|
||||
#define GAP_PENALTY -2
|
||||
/// Score for a string that doesn't fuzzy match the pattern
|
||||
#define SCORE_NONE -9999
|
||||
|
||||
@ -4870,6 +4874,8 @@ static int fuzzy_match_compute_score(const char_u *const str, const int strSz,
|
||||
// Sequential
|
||||
if (currIdx == prevIdx + 1) {
|
||||
score += SEQUENTIAL_BONUS;
|
||||
} else {
|
||||
score += GAP_PENALTY * (currIdx - prevIdx);
|
||||
}
|
||||
}
|
||||
|
||||
@ -4881,7 +4887,7 @@ static int fuzzy_match_compute_score(const char_u *const str, const int strSz,
|
||||
|
||||
for (matchidx_T sidx = 0; sidx < currIdx; sidx++) {
|
||||
neighbor = utf_ptr2char(p);
|
||||
mb_ptr2char_adv(&p);
|
||||
MB_PTR_ADV(p);
|
||||
}
|
||||
const int curr = utf_ptr2char(p);
|
||||
|
||||
@ -4902,11 +4908,13 @@ static int fuzzy_match_compute_score(const char_u *const str, const int strSz,
|
||||
return score;
|
||||
}
|
||||
|
||||
static bool fuzzy_match_recursive(const char_u *fuzpat, const char_u *str, matchidx_T strIdx,
|
||||
int *const outScore, const char_u *const strBegin,
|
||||
const int strLen, const matchidx_T *const srcMatches,
|
||||
matchidx_T *const matches, const int maxMatches, int nextMatch,
|
||||
int *const recursionCount)
|
||||
/// Perform a recursive search for fuzzy matching 'fuzpat' in 'str'.
|
||||
/// @return the number of matching characters.
|
||||
static int fuzzy_match_recursive(const char_u *fuzpat, const char_u *str, matchidx_T strIdx,
|
||||
int *const outScore, const char_u *const strBegin,
|
||||
const int strLen, const matchidx_T *const srcMatches,
|
||||
matchidx_T *const matches, const int maxMatches, int nextMatch,
|
||||
int *const recursionCount)
|
||||
FUNC_ATTR_NONNULL_ARG(1, 2, 4, 5, 8, 11) FUNC_ATTR_WARN_UNUSED_RESULT
|
||||
{
|
||||
// Recursion params
|
||||
@ -4917,12 +4925,12 @@ static bool fuzzy_match_recursive(const char_u *fuzpat, const char_u *str, match
|
||||
// Count recursions
|
||||
(*recursionCount)++;
|
||||
if (*recursionCount >= FUZZY_MATCH_RECURSION_LIMIT) {
|
||||
return false;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Detect end of strings
|
||||
if (*fuzpat == '\0' || *str == '\0') {
|
||||
return false;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Loop through fuzpat and str looking for a match
|
||||
@ -4935,7 +4943,7 @@ static bool fuzzy_match_recursive(const char_u *fuzpat, const char_u *str, match
|
||||
if (mb_tolower(c1) == mb_tolower(c2)) {
|
||||
// Supplied matches buffer was too short
|
||||
if (nextMatch >= maxMatches) {
|
||||
return false;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// "Copy-on-Write" srcMatches into matches
|
||||
@ -4962,9 +4970,9 @@ static bool fuzzy_match_recursive(const char_u *fuzpat, const char_u *str, match
|
||||
|
||||
// Advance
|
||||
matches[nextMatch++] = strIdx;
|
||||
mb_ptr2char_adv(&fuzpat);
|
||||
MB_PTR_ADV(fuzpat);
|
||||
}
|
||||
mb_ptr2char_adv(&str);
|
||||
MB_PTR_ADV(str);
|
||||
strIdx++;
|
||||
}
|
||||
|
||||
@ -4981,12 +4989,12 @@ static bool fuzzy_match_recursive(const char_u *fuzpat, const char_u *str, match
|
||||
// Recursive score is better than "this"
|
||||
memcpy(matches, bestRecursiveMatches, maxMatches * sizeof(matches[0]));
|
||||
*outScore = bestRecursiveScore;
|
||||
return true;
|
||||
return nextMatch;
|
||||
} else if (matched) {
|
||||
return true; // "this" score is better than recursive
|
||||
return nextMatch; // "this" score is better than recursive
|
||||
}
|
||||
|
||||
return false; // no match
|
||||
return 0; // no match
|
||||
}
|
||||
|
||||
/// fuzzy_match()
|
||||
@ -4996,45 +5004,98 @@ static bool fuzzy_match_recursive(const char_u *fuzpat, const char_u *str, match
|
||||
/// Scores values have no intrinsic meaning. Possible score range is not
|
||||
/// normalized and varies with pattern.
|
||||
/// Recursion is limited internally (default=10) to prevent degenerate cases
|
||||
/// (fuzpat="aaaaaa" str="aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa").
|
||||
/// (pat_arg="aaaaaa" str="aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa").
|
||||
/// Uses char_u for match indices. Therefore patterns are limited to MAXMATCHES
|
||||
/// characters.
|
||||
///
|
||||
/// @return true if 'fuzpat' matches 'str'. Also returns the match score in
|
||||
/// @return true if 'pat_arg' matches 'str'. Also returns the match score in
|
||||
/// 'outScore' and the matching character positions in 'matches'.
|
||||
static bool fuzzy_match(char_u *const str, const char_u *const fuzpat, int *const outScore,
|
||||
matchidx_T *const matches, const int maxMatches)
|
||||
static bool fuzzy_match(char_u *const str, const char_u *const pat_arg, const bool matchseq,
|
||||
int *const outScore, matchidx_T *const matches, const int maxMatches)
|
||||
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
|
||||
{
|
||||
int recursionCount = 0;
|
||||
const int len = mb_charlen(str);
|
||||
bool complete = false;
|
||||
int numMatches = 0;
|
||||
|
||||
*outScore = 0;
|
||||
|
||||
return fuzzy_match_recursive(fuzpat, str, 0, outScore, str, len, NULL, matches, maxMatches, 0,
|
||||
&recursionCount);
|
||||
char_u *const save_pat = vim_strsave(pat_arg);
|
||||
char_u *pat = save_pat;
|
||||
char_u *p = pat;
|
||||
|
||||
// Try matching each word in 'pat_arg' in 'str'
|
||||
while (true) {
|
||||
if (matchseq) {
|
||||
complete = true;
|
||||
} else {
|
||||
// Extract one word from the pattern (separated by space)
|
||||
p = skipwhite(p);
|
||||
if (*p == NUL) {
|
||||
break;
|
||||
}
|
||||
pat = p;
|
||||
while (*p != NUL && !ascii_iswhite(utf_ptr2char(p))) {
|
||||
MB_PTR_ADV(p);
|
||||
}
|
||||
if (*p == NUL) { // processed all the words
|
||||
complete = true;
|
||||
}
|
||||
*p = NUL;
|
||||
}
|
||||
|
||||
int score = 0;
|
||||
int recursionCount = 0;
|
||||
const int matchCount
|
||||
= fuzzy_match_recursive(pat, str, 0, &score, str, len, NULL, matches + numMatches,
|
||||
maxMatches - numMatches, 0, &recursionCount);
|
||||
if (matchCount == 0) {
|
||||
numMatches = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
// Accumulate the match score and the number of matches
|
||||
*outScore += score;
|
||||
numMatches += matchCount;
|
||||
|
||||
if (complete) {
|
||||
break;
|
||||
}
|
||||
|
||||
// try matching the next word
|
||||
p++;
|
||||
}
|
||||
|
||||
xfree(save_pat);
|
||||
return numMatches != 0;
|
||||
}
|
||||
|
||||
/// Sort the fuzzy matches in the descending order of the match score.
|
||||
static int fuzzy_item_compare(const void *const s1, const void *const s2)
|
||||
/// For items with same score, retain the order using the index (stable sort)
|
||||
static int fuzzy_match_item_compare(const void *const s1, const void *const s2)
|
||||
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
|
||||
{
|
||||
const int v1 = ((const fuzzyItem_T *)s1)->score;
|
||||
const int v2 = ((const fuzzyItem_T *)s2)->score;
|
||||
const int idx1 = ((const fuzzyItem_T *)s1)->idx;
|
||||
const int idx2 = ((const fuzzyItem_T *)s2)->idx;
|
||||
|
||||
return v1 == v2 ? 0 : v1 > v2 ? -1 : 1;
|
||||
return v1 == v2 ? (idx1 - idx2) : v1 > v2 ? -1 : 1;
|
||||
}
|
||||
|
||||
/// Fuzzy search the string 'str' in a list of 'items' and return the matching
|
||||
/// strings in 'fmatchlist'.
|
||||
/// If 'matchseq' is true, then for multi-word search strings, match all the
|
||||
/// words in sequence.
|
||||
/// If 'items' is a list of strings, then search for 'str' in the list.
|
||||
/// If 'items' is a list of dicts, then either use 'key' to lookup the string
|
||||
/// for each item or use 'item_cb' Funcref function to get the string.
|
||||
/// If 'retmatchpos' is true, then return a list of positions where 'str'
|
||||
/// matches for each item.
|
||||
static void match_fuzzy(list_T *const items, char_u *const str, const char_u *const key,
|
||||
Callback *const item_cb, const bool retmatchpos, list_T *const fmatchlist)
|
||||
FUNC_ATTR_NONNULL_ARG(2, 4, 6)
|
||||
static void fuzzy_match_in_list(list_T *const items, char_u *const str, const bool matchseq,
|
||||
const char_u *const key, Callback *const item_cb,
|
||||
const bool retmatchpos, list_T *const fmatchlist)
|
||||
FUNC_ATTR_NONNULL_ARG(2, 5, 7)
|
||||
{
|
||||
const long len = tv_list_len(items);
|
||||
if (len == 0) {
|
||||
@ -5048,6 +5109,7 @@ static void match_fuzzy(list_T *const items, char_u *const str, const char_u *co
|
||||
|
||||
// For all the string items in items, get the fuzzy matching score
|
||||
TV_LIST_ITER(items, li, {
|
||||
ptrs[i].idx = i;
|
||||
ptrs[i].item = li;
|
||||
ptrs[i].score = SCORE_NONE;
|
||||
char_u *itemstr = NULL;
|
||||
@ -5079,15 +5141,20 @@ static void match_fuzzy(list_T *const items, char_u *const str, const char_u *co
|
||||
}
|
||||
|
||||
int score;
|
||||
if (itemstr != NULL
|
||||
&& fuzzy_match(itemstr, str, &score, matches, sizeof(matches) / sizeof(matches[0]))) {
|
||||
if (itemstr != NULL && fuzzy_match(itemstr, str, matchseq, &score, matches,
|
||||
sizeof(matches) / sizeof(matches[0]))) {
|
||||
// Copy the list of matching positions in itemstr to a list, if
|
||||
// 'retmatchpos' is set.
|
||||
if (retmatchpos) {
|
||||
const int strsz = mb_charlen(str);
|
||||
ptrs[i].lmatchpos = tv_list_alloc(strsz);
|
||||
for (int j = 0; j < strsz; j++) {
|
||||
tv_list_append_number(ptrs[i].lmatchpos, matches[j]);
|
||||
ptrs[i].lmatchpos = tv_list_alloc(kListLenMayKnow);
|
||||
int j = 0;
|
||||
const char_u *p = str;
|
||||
while (*p != NUL) {
|
||||
if (!ascii_iswhite(utf_ptr2char(p))) {
|
||||
tv_list_append_number(ptrs[i].lmatchpos, matches[j]);
|
||||
j++;
|
||||
}
|
||||
MB_PTR_ADV(p);
|
||||
}
|
||||
}
|
||||
ptrs[i].score = score;
|
||||
@ -5099,7 +5166,7 @@ static void match_fuzzy(list_T *const items, char_u *const str, const char_u *co
|
||||
|
||||
if (found_match) {
|
||||
// Sort the list by the descending order of the match score
|
||||
qsort(ptrs, len, sizeof(fuzzyItem_T), fuzzy_item_compare);
|
||||
qsort(ptrs, len, sizeof(fuzzyItem_T), fuzzy_match_item_compare);
|
||||
|
||||
// For matchfuzzy(), return a list of matched strings.
|
||||
// ['str1', 'str2', 'str3']
|
||||
@ -5159,6 +5226,7 @@ static void do_fuzzymatch(const typval_T *const argvars, typval_T *const rettv,
|
||||
|
||||
Callback cb = CALLBACK_NONE;
|
||||
const char_u *key = NULL;
|
||||
bool matchseq = false;
|
||||
if (argvars[2].v_type != VAR_UNKNOWN) {
|
||||
if (argvars[2].v_type != VAR_DICT || argvars[2].vval.v_dict == NULL) {
|
||||
emsg(_(e_dictreq));
|
||||
@ -5168,8 +5236,8 @@ static void do_fuzzymatch(const typval_T *const argvars, typval_T *const rettv,
|
||||
// To search a dict, either a callback function or a key can be
|
||||
// specified.
|
||||
dict_T *const d = argvars[2].vval.v_dict;
|
||||
const dictitem_T *const di = tv_dict_find(d, "key", -1);
|
||||
if (di != NULL) {
|
||||
const dictitem_T *di;
|
||||
if ((di = tv_dict_find(d, "key", -1)) != NULL) {
|
||||
if (di->di_tv.v_type != VAR_STRING || di->di_tv.vval.v_string == NULL
|
||||
|| *di->di_tv.vval.v_string == NUL) {
|
||||
semsg(_(e_invarg2), tv_get_string(&di->di_tv));
|
||||
@ -5180,6 +5248,9 @@ static void do_fuzzymatch(const typval_T *const argvars, typval_T *const rettv,
|
||||
semsg(_(e_invargval), "text_cb");
|
||||
return;
|
||||
}
|
||||
if ((di = tv_dict_find(d, "matchseq", -1)) != NULL) {
|
||||
matchseq = true;
|
||||
}
|
||||
}
|
||||
|
||||
// get the fuzzy matches
|
||||
@ -5192,8 +5263,8 @@ static void do_fuzzymatch(const typval_T *const argvars, typval_T *const rettv,
|
||||
tv_list_append_list(rettv->vval.v_list, tv_list_alloc(kListLenUnknown));
|
||||
}
|
||||
|
||||
match_fuzzy(argvars[0].vval.v_list, (char_u *)tv_get_string(&argvars[1]), key, &cb, retmatchpos,
|
||||
rettv->vval.v_list);
|
||||
fuzzy_match_in_list(argvars[0].vval.v_list, (char_u *)tv_get_string(&argvars[1]), matchseq, key,
|
||||
&cb, retmatchpos, rettv->vval.v_list);
|
||||
callback_free(&cb);
|
||||
}
|
||||
|
||||
|
@ -24,16 +24,15 @@ func Test_matchfuzzy()
|
||||
call assert_equal(['aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa'], matchfuzzy(['aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa'], 'aa'))
|
||||
call assert_equal(256, matchfuzzy([repeat('a', 256)], repeat('a', 256))[0]->len())
|
||||
call assert_equal([], matchfuzzy([repeat('a', 300)], repeat('a', 257)))
|
||||
" matches with same score should not be reordered
|
||||
let l = ['abc1', 'abc2', 'abc3']
|
||||
call assert_equal(l, l->matchfuzzy('abc'))
|
||||
|
||||
" Tests for match preferences
|
||||
" preference for camel case match
|
||||
call assert_equal(['oneTwo', 'onetwo'], ['onetwo', 'oneTwo']->matchfuzzy('onetwo'))
|
||||
" preference for match after a separator (_ or space)
|
||||
if has("win32")
|
||||
call assert_equal(['onetwo', 'one two', 'one_two'], ['onetwo', 'one_two', 'one two']->matchfuzzy('onetwo'))
|
||||
else
|
||||
call assert_equal(['onetwo', 'one_two', 'one two'], ['onetwo', 'one_two', 'one two']->matchfuzzy('onetwo'))
|
||||
endif
|
||||
call assert_equal(['onetwo', 'one_two', 'one two'], ['onetwo', 'one_two', 'one two']->matchfuzzy('onetwo'))
|
||||
" preference for leading letter match
|
||||
call assert_equal(['onetwo', 'xonetwo'], ['xonetwo', 'onetwo']->matchfuzzy('onetwo'))
|
||||
" preference for sequential match
|
||||
@ -44,6 +43,17 @@ func Test_matchfuzzy()
|
||||
call assert_equal(['one', 'onex', 'onexx'], ['onexx', 'one', 'onex']->matchfuzzy('one'))
|
||||
" prefer complete matches over separator matches
|
||||
call assert_equal(['.vim/vimrc', '.vim/vimrc_colors', '.vim/v_i_m_r_c'], ['.vim/vimrc', '.vim/vimrc_colors', '.vim/v_i_m_r_c']->matchfuzzy('vimrc'))
|
||||
" gap penalty
|
||||
call assert_equal(['xxayybxxxx', 'xxayyybxxx', 'xxayyyybxx'], ['xxayyyybxx', 'xxayyybxxx', 'xxayybxxxx']->matchfuzzy('ab'))
|
||||
|
||||
" match multiple words (separated by space)
|
||||
call assert_equal(['foo bar baz'], ['foo bar baz', 'foo', 'foo bar', 'baz bar']->matchfuzzy('baz foo'))
|
||||
call assert_equal([], ['foo bar baz', 'foo', 'foo bar', 'baz bar']->matchfuzzy('one two'))
|
||||
call assert_equal([], ['foo bar']->matchfuzzy(" \t "))
|
||||
|
||||
" test for matching a sequence of words
|
||||
call assert_equal(['bar foo'], ['foo bar', 'bar foo', 'foobar', 'barfoo']->matchfuzzy('bar foo', {'matchseq' : 1}))
|
||||
call assert_equal([#{text: 'two one'}], [#{text: 'one two'}, #{text: 'two one'}]->matchfuzzy('two one', #{key: 'text', matchseq: v:true}))
|
||||
|
||||
%bw!
|
||||
eval ['somebuf', 'anotherone', 'needle', 'yetanotherone']->map({_, v -> bufadd(v) + bufload(v)})
|
||||
@ -51,6 +61,7 @@ func Test_matchfuzzy()
|
||||
call assert_equal(1, len(l))
|
||||
call assert_match('needle', l[0])
|
||||
|
||||
" Test for fuzzy matching dicts
|
||||
let l = [{'id' : 5, 'val' : 'crayon'}, {'id' : 6, 'val' : 'camera'}]
|
||||
call assert_equal([{'id' : 6, 'val' : 'camera'}], matchfuzzy(l, 'cam', {'text_cb' : {v -> v.val}}))
|
||||
call assert_equal([{'id' : 6, 'val' : 'camera'}], matchfuzzy(l, 'cam', {'key' : 'val'}))
|
||||
@ -72,6 +83,9 @@ func Test_matchfuzzy()
|
||||
call assert_fails("let x = matchfuzzy(l, 'foo', {'key' : v:_null_string})", 'E475:')
|
||||
" Nvim doesn't have null functions
|
||||
" call assert_fails("let x = matchfuzzy(l, 'foo', {'text_cb' : test_null_function()})", 'E475:')
|
||||
" matches with same score should not be reordered
|
||||
let l = [#{text: 'abc', id: 1}, #{text: 'abc', id: 2}, #{text: 'abc', id: 3}]
|
||||
call assert_equal(l, l->matchfuzzy('abc', #{key: 'text'}))
|
||||
|
||||
let l = [{'id' : 5, 'name' : 'foo'}, {'id' : 6, 'name' : []}, {'id' : 7}]
|
||||
call assert_fails("let x = matchfuzzy(l, 'foo', {'key' : 'name'})", 'E730:')
|
||||
@ -84,7 +98,7 @@ func Test_matchfuzzy()
|
||||
let &encoding = save_enc
|
||||
endfunc
|
||||
|
||||
" Test for the fuzzymatchpos() function
|
||||
" Test for the matchfuzzypos() function
|
||||
func Test_matchfuzzypos()
|
||||
call assert_equal([['curl', 'world'], [[2,3], [2,3]]], matchfuzzypos(['world', 'curl'], 'rl'))
|
||||
call assert_equal([['curl', 'world'], [[2,3], [2,3]]], matchfuzzypos(['world', 'one', 'curl'], 'rl'))
|
||||
@ -92,6 +106,10 @@ func Test_matchfuzzypos()
|
||||
\ [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]],
|
||||
\ matchfuzzypos(['hello world hello world', 'hello', 'world'], 'hello'))
|
||||
call assert_equal([['aaaaaaa'], [[0, 1, 2]]], matchfuzzypos(['aaaaaaa'], 'aaa'))
|
||||
call assert_equal([['a b'], [[0, 3]]], matchfuzzypos(['a b'], 'a b'))
|
||||
call assert_equal([['a b'], [[0, 3]]], matchfuzzypos(['a b'], 'a b'))
|
||||
call assert_equal([['a b'], [[0]]], matchfuzzypos(['a b'], ' a '))
|
||||
call assert_equal([[], []], matchfuzzypos(['a b'], ' '))
|
||||
call assert_equal([[], []], matchfuzzypos(['world', 'curl'], 'ab'))
|
||||
let x = matchfuzzypos([repeat('a', 256)], repeat('a', 256))
|
||||
call assert_equal(range(256), x[1][0])
|
||||
@ -113,6 +131,12 @@ func Test_matchfuzzypos()
|
||||
" best recursive match
|
||||
call assert_equal([['xoone'], [[2, 3, 4]]], matchfuzzypos(['xoone'], 'one'))
|
||||
|
||||
" match multiple words (separated by space)
|
||||
call assert_equal([['foo bar baz'], [[8, 9, 10, 0, 1, 2]]], ['foo bar baz', 'foo', 'foo bar', 'baz bar']->matchfuzzypos('baz foo'))
|
||||
call assert_equal([[], []], ['foo bar baz', 'foo', 'foo bar', 'baz bar']->matchfuzzypos('one two'))
|
||||
call assert_equal([[], []], ['foo bar']->matchfuzzypos(" \t "))
|
||||
call assert_equal([['grace'], [[1, 2, 3, 4, 2, 3, 4, 0, 1, 2, 3, 4]]], ['grace']->matchfuzzypos('race ace grace'))
|
||||
|
||||
let l = [{'id' : 5, 'val' : 'crayon'}, {'id' : 6, 'val' : 'camera'}]
|
||||
call assert_equal([[{'id' : 6, 'val' : 'camera'}], [[0, 1, 2]]],
|
||||
\ matchfuzzypos(l, 'cam', {'text_cb' : {v -> v.val}}))
|
||||
@ -141,6 +165,7 @@ func Test_matchfuzzypos()
|
||||
call assert_fails("let x = matchfuzzypos(l, 'foo', {'key' : 'name'})", 'E730:')
|
||||
endfunc
|
||||
|
||||
" Test for matchfuzzy() with multibyte characters
|
||||
func Test_matchfuzzy_mbyte()
|
||||
CheckFeature multi_lang
|
||||
call assert_equal(['ンヹㄇヺヴ'], matchfuzzy(['ンヹㄇヺヴ'], 'ヹヺ'))
|
||||
@ -151,19 +176,19 @@ func Test_matchfuzzy_mbyte()
|
||||
call assert_equal(['ππbbππ', 'πππbbbπππ', 'ππππbbbbππππ', 'πbπ'],
|
||||
\ matchfuzzy(['πbπ', 'ππbbππ', 'πππbbbπππ', 'ππππbbbbππππ'], 'ππ'))
|
||||
|
||||
" match multiple words (separated by space)
|
||||
call assert_equal(['세 마리의 작은 돼지'], ['세 마리의 작은 돼지', '마리의', '마리의 작은', '작은 돼지']->matchfuzzy('돼지 마리의'))
|
||||
call assert_equal([], ['세 마리의 작은 돼지', '마리의', '마리의 작은', '작은 돼지']->matchfuzzy('파란 하늘'))
|
||||
|
||||
" preference for camel case match
|
||||
call assert_equal(['oneĄwo', 'oneąwo'],
|
||||
\ ['oneąwo', 'oneĄwo']->matchfuzzy('oneąwo'))
|
||||
" preference for complete match then match after separator (_ or space)
|
||||
if has("win32")
|
||||
" order is different between Windows and Unix :(
|
||||
" It's important that the complete match is first
|
||||
call assert_equal(['ⅠⅡabㄟㄠ', 'ⅠⅡa bㄟㄠ', 'ⅠⅡa_bㄟㄠ'],
|
||||
\ ['ⅠⅡabㄟㄠ', 'ⅠⅡa_bㄟㄠ', 'ⅠⅡa bㄟㄠ']->matchfuzzy('ⅠⅡabㄟㄠ'))
|
||||
else
|
||||
call assert_equal(['ⅠⅡabㄟㄠ'] + sort(['ⅠⅡa_bㄟㄠ', 'ⅠⅡa bㄟㄠ']),
|
||||
call assert_equal(['ⅠⅡabㄟㄠ'] + sort(['ⅠⅡa_bㄟㄠ', 'ⅠⅡa bㄟㄠ']),
|
||||
\ ['ⅠⅡabㄟㄠ', 'ⅠⅡa bㄟㄠ', 'ⅠⅡa_bㄟㄠ']->matchfuzzy('ⅠⅡabㄟㄠ'))
|
||||
endif
|
||||
" preference for match after a separator (_ or space)
|
||||
call assert_equal(['ㄓㄔabㄟㄠ', 'ㄓㄔa_bㄟㄠ', 'ㄓㄔa bㄟㄠ'],
|
||||
\ ['ㄓㄔa_bㄟㄠ', 'ㄓㄔa bㄟㄠ', 'ㄓㄔabㄟㄠ']->matchfuzzy('ㄓㄔabㄟㄠ'))
|
||||
" preference for leading letter match
|
||||
call assert_equal(['ŗŝţũŵż', 'xŗŝţũŵż'],
|
||||
\ ['xŗŝţũŵż', 'ŗŝţũŵż']->matchfuzzy('ŗŝţũŵż'))
|
||||
@ -178,6 +203,7 @@ func Test_matchfuzzy_mbyte()
|
||||
\ ['ŗŝţxx', 'ŗŝţ', 'ŗŝţx']->matchfuzzy('ŗŝţ'))
|
||||
endfunc
|
||||
|
||||
" Test for matchfuzzypos() with multibyte characters
|
||||
func Test_matchfuzzypos_mbyte()
|
||||
CheckFeature multi_lang
|
||||
call assert_equal([['こんにちは世界'], [[0, 1, 2, 3, 4]]],
|
||||
@ -198,9 +224,13 @@ func Test_matchfuzzypos_mbyte()
|
||||
call assert_equal(range(256), x[1][0])
|
||||
call assert_equal([[], []], matchfuzzypos([repeat('✓', 300)], repeat('✓', 257)))
|
||||
|
||||
" match multiple words (separated by space)
|
||||
call assert_equal([['세 마리의 작은 돼지'], [[9, 10, 2, 3, 4]]], ['세 마리의 작은 돼지', '마리의', '마리의 작은', '작은 돼지']->matchfuzzypos('돼지 마리의'))
|
||||
call assert_equal([[], []], ['세 마리의 작은 돼지', '마리의', '마리의 작은', '작은 돼지']->matchfuzzypos('파란 하늘'))
|
||||
|
||||
" match in a long string
|
||||
call assert_equal([[repeat('♪', 300) .. '✗✗✗'], [[300, 301, 302]]],
|
||||
\ matchfuzzypos([repeat('♪', 300) .. '✗✗✗'], '✗✗✗'))
|
||||
call assert_equal([[repeat('ぶ', 300) .. 'ẼẼẼ'], [[300, 301, 302]]],
|
||||
\ matchfuzzypos([repeat('ぶ', 300) .. 'ẼẼẼ'], 'ẼẼẼ'))
|
||||
" preference for camel case match
|
||||
call assert_equal([['xѳѵҁxxѳѴҁ'], [[6, 7, 8]]], matchfuzzypos(['xѳѵҁxxѳѴҁ'], 'ѳѵҁ'))
|
||||
" preference for match after a separator (_ or space)
|
||||
|
Loading…
Reference in New Issue
Block a user