add probcurves example to verify bundled functions

This commit is contained in:
Jonathan Shook 2020-05-05 01:05:46 -05:00
parent dce8dcdc22
commit 23dd2f1cb3

View File

@ -0,0 +1,92 @@
description: |
This set of bindings demonstrates example settings for all
of the built-in probability curves.
scenarios:
default:
readout1: run driver===stdout format===readout cycles=1
bindings:
cycle: Identity()
# parameter types and symbolic names included below with links
#
# https://en.wikipedia.org/wiki/L%C3%A9vy_distribution
# (double location, double scale)
levy: Levy(0.0,0.5)
# https://en.wikipedia.org/wiki/Nakagami_distribution
# (double shape, double spread)
nakagami: Nakagami(0.5,1.0)
# https://en.wikipedia.org/wiki/Triangular_distribution
# (double a, double b, double c)
triangular: Triangular(1.0, 2.0, 3.0)
# http://homepage.divms.uiowa.edu/~mbognar/applets/exp.html
# https://en.wikipedia.org/wiki/Exponential_distribution
# (double rate)
exponential: Exponential(1.5)
# https://en.wikipedia.org/wiki/Logistic_distribution
# (double mean, double scale)
logistic: Logistic(5.0,2.0)
# https://en.wikipedia.org/wiki/Wrapped_asymmetric_Laplace_distribution
# (double location, double scale)
laplace: Laplace(1.0,2.0)
# https://en.wikipedia.org/wiki/Log-normal_distribution
# (double mean, double stddev)
log_normal: LogNormal(1.0,0.25)
# https://en.wikipedia.org/wiki/Cauchy_distribution
# (double location, double scale)
cauchy: Cauchy(0.0,0.5)
# https://en.wikipedia.org/wiki/F-distribution
# (double d1, double d2)
f: F(10.0,1.0)
# https://en.wikipedia.org/wiki/Student%27s_t-distribution
# (double dof)
t: T(2.0)
# https://en.wikipedia.org/wiki/Empirical_distribution_function
# (int bincount)
# empirical: empirical(10)
# https://en.wikipedia.org/wiki/Normal_distribution
# (double mean, double variance)
normal: Normal(5.0, 1.0)
# https://en.wikipedia.org/wiki/Weibull_distribution
# (double scale, double shape)
weibull: Weibull(1.0,1.5)
# https://en.wikipedia.org/wiki/Chi-squared_distribution
# (double dof)
chi_squared: ChiSquared(5.0)
# https://en.wikipedia.org/wiki/Gumbel_distribution
# (double location, double scale)
gumbel: Gumbel(0.5,2.0)
# https://en.wikipedia.org/wiki/Beta_distribution
# (double shape1, double shape2)
beta: Beta(2.0,2.0)
# https://en.wikipedia.org/wiki/Pareto_distribution
# (double scale, double shape)
pareto: Pareto(1.0, 3.0)
# https://en.wikipedia.org/wiki/Gamma_distribution
# (double shape, double scale)
gamma: Gamma(3.0,2.0)
# https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
# (double min, double max)
uniform_real: Uniform(0.0,100.0) -> double
# http://homepage.divms.uiowa.edu/~mbognar/applets/hg.html
# https://en.wikipedia.org/wiki/Hypergeometric_distribution
# (int pop, int successes, int sample)
hypergeometric: Hypergeometric(40,20,10)
# (int min, int max)
uniform_int: Uniform(0,100) -> int
# http://homepage.divms.uiowa.edu/~mbognar/applets/geo1.html
# https://en.wikipedia.org/wiki/Geometric_distribution
# (double probability)
geometric: Geometric(0.5)
# https://en.wikipedia.org/wiki/Poisson_distribution
# (double avgrate)
poisson: Poisson(5.0)
# https://en.wikipedia.org/wiki/Zipf%27s_law
# (int elements, double exponent)
zipf: Zipf(10,5.0)
# https://en.wikipedia.org/wiki/Binomial_distribution
# (int trials, double probability)
binomial: Binomial(8,0.5)
# https://en.wikipedia.org/wiki/Negative_binomial_distribution
# (int successes, double probability)
pascal: Pascal(10,0.33)