mirror of
https://github.com/nosqlbench/nosqlbench.git
synced 2024-12-22 23:23:56 -06:00
add file format variant for vecs vs hdf5
This commit is contained in:
parent
ece9618344
commit
7ed01e4671
@ -0,0 +1,154 @@
|
||||
min_version: 5.21
|
||||
description: |
|
||||
This is a template for live vector search testing.
|
||||
|
||||
schema: Install the schema required to run the test
|
||||
rampup: Measure how long it takes to load a set of embeddings
|
||||
search_and_index: Measure how the system responds to queries while it
|
||||
is indexing recently ingested data.
|
||||
#? await_index: Pause and wait for the system to complete compactions or index processing
|
||||
search: Run vector search with a set of default (or overridden) parameters
|
||||
search_and_rewrite: Run the same search operations as above, but while rewriting the data
|
||||
search_and_invalidate: Run the same search operations as above, but while overwriting the data
|
||||
with different content using the same vector id.
|
||||
In all of these phases, it is important to instance the metrics with distinct names.
|
||||
Also, aggregates of recall should include total aggregate as well as a moving average.
|
||||
|
||||
scenarios:
|
||||
cassandra:
|
||||
drop: run tags='block:drop' threads==undef cycles==undef
|
||||
# nb5 cql-vector2 cassandra.schema host=localhost localdc=datacenter1 dimensions=100
|
||||
schema: run tags='op=create_.*' threads==undef cycles==undef
|
||||
# nb5 cql-vector2 cassandra.rampup host=localhost localdc=datacenter1 dimensions=100 trainsize=1000000 dataset=glove-100-angular rate=10000
|
||||
rampup: run tags='block:rampup' threads=auto cycles=TEMPLATE(trainsize,set-the-trainsize) errors=counter,warn
|
||||
# nb5 cql-vector2 cassandra.search_and_index testsize=10000 host=localhost localdc=datacenter1 dimensions=100 dataset=glove-100-angular --report-csv-to rmetrics:.*:5s
|
||||
read_recall: >-
|
||||
run alias=search_and_index tags='block:search_and_index,optype=select' labels='target:cassandra'
|
||||
cycles=TEMPLATE(testsize) errors=counter,warn threads=1
|
||||
astra_vectors:
|
||||
drop: run tags='block:drop' tags='block:drop' threads==undef cycles==undef
|
||||
schema: run tags='block:schema' tags='op=create_.*(table|index)' threads==undef cycles==undef dimensions==TEMPLATE(dimensions,25)
|
||||
train: run tags='block:rampup' threads=20x cycles=TEMPLATE(trainsize) errors=counter,warn maxtries=2 dimensions==TEMPLATE(dimensions,25)
|
||||
# search_and_index_unthrottled: >-
|
||||
# run tags='block:search_and_index,optype=select' labels='target:astra'
|
||||
# cycles=TEMPLATE(testsize) threads=10 errors=count,retry stride=500 errors=counter
|
||||
testann: >-
|
||||
run tags='block:testann' cycles=TEMPLATE(testsize) errors=count,retry maxtries=2 threads=auto
|
||||
# one activity or two? data leap-frog? or concurrency separate for both?
|
||||
# await_index: run tags='block:await_index' # This would need to exit when a condition is met
|
||||
# stop_search_and_index: stop search_and_index
|
||||
# only possible if we have a triggering event to indicated
|
||||
# live_search: run tags='block:search' labels='target:astra' threads=1 cycles=TEMPLATE(testsize,10000)
|
||||
search_and_rewrite: run tags='block:search_and_rewrite' labels='target:astra'
|
||||
search_and_invalidate: run tags='block:search_and_invalidate' labels='target:astra'
|
||||
|
||||
params:
|
||||
driver: cqld4
|
||||
instrument: true
|
||||
|
||||
bindings:
|
||||
id: ToString()
|
||||
# filetype=hdf5 for TEMPLATE(filetype,hdf5)
|
||||
test_floatlist_hdf5: HdfFileToFloatList("testdata/TEMPLATE(datafile).hdf5", "/test"); ToCqlVector();
|
||||
relevant_indices_hdf5: HdfFileToIntArray("testdata/TEMPLATE(datafile).hdf5", "/neighbors")
|
||||
distance_floatlist_hdf5: HdfFileToFloatList("testdata/TEMPLATE(datafile).hdf5", "/distance")
|
||||
train_floatlist_hdf5: HdfFileToFloatList("testdata/TEMPLATE(datafile).hdf5", "/train"); ToCqlVector();
|
||||
# filetype=vecs for TEMPLATE(filetype,vecs)
|
||||
test_floatlist_vecs: FVecReader("testdata/TEMPLATE(datafile).fvec"); ToCqlVector();
|
||||
relevant_indices_vecs: IVecReader("testdata/TEMPLATE(datafile).ivec");
|
||||
distance_floatlist_vecs: FVecReader("testdata/TEMPLATE(datafile).fvec");
|
||||
train_floatlist_vecs: FVecReader("testdata/TEMPLATE(datafile).fvec"); ToCqlVector();
|
||||
synthetic_vectors: HashedFloatVectors(TEMPLATE(dimensions));
|
||||
|
||||
blocks:
|
||||
drop:
|
||||
params:
|
||||
cl: TEMPLATE(cl,LOCAL_QUORUM)
|
||||
ops:
|
||||
drop_index:
|
||||
raw: |
|
||||
DROP INDEX IF EXISTS TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors);
|
||||
drop_table:
|
||||
raw: |
|
||||
DROP TABLE IF EXISTS TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors);
|
||||
schema:
|
||||
params:
|
||||
cl: TEMPLATE(cl,LOCAL_QUORUM)
|
||||
ops:
|
||||
create_keyspace:
|
||||
raw: |
|
||||
CREATE KEYSPACE IF NOT EXISTS TEMPLATE(keyspace,baselines)
|
||||
WITH replication = {'class': 'SimpleStrategy', 'replication_factor': '1'};
|
||||
create_table:
|
||||
raw: |
|
||||
CREATE TABLE IF NOT EXISTS TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors) (
|
||||
key TEXT,
|
||||
value vector<float,TEMPLATE(dimensions,set-the-dimensions-template-var)>,
|
||||
PRIMARY KEY (key)
|
||||
);
|
||||
create_sai_index:
|
||||
raw: |
|
||||
CREATE CUSTOM INDEX IF NOT EXISTS ON TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors) (value) USING 'StorageAttachedIndex'
|
||||
WITH OPTIONS = {'similarity_function' : 'TEMPLATE(similarity_function,cosine)'};
|
||||
# WITH OPTIONS = {'maximum_node_connections' : TEMPLATE(M,16), 'construction_beam_width' : TEMPLATE(ef,100), 'similarity_function' : 'TEMPLATE(similarity_function,dot_product)'};
|
||||
rampup:
|
||||
params:
|
||||
cl: TEMPLATE(write_cl,LOCAL_QUORUM)
|
||||
prepared: true
|
||||
ops:
|
||||
insert: |
|
||||
INSERT INTO TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors)
|
||||
(key, value) VALUES ({id},{train_floatlist_TEMPLATE(filetype,hdf5)});
|
||||
# await_index:
|
||||
# ops:
|
||||
testann:
|
||||
ops:
|
||||
select_ann_limit_TEMPLATE(k,100):
|
||||
prepared: |
|
||||
SELECT * FROM TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors)
|
||||
ORDER BY value ANN OF {test_floatlist_TEMPLATE(filetype,hdf5)} LIMIT TEMPLATE(select_limit,100);
|
||||
tags:
|
||||
optype: select
|
||||
verifier-init: |
|
||||
k=TEMPLATE(k,100)
|
||||
relevancy= new io.nosqlbench.api.engine.metrics.wrappers.RelevancyMeasures(_parsed_op);
|
||||
relevancy.addFunction(io.nosqlbench.engine.extensions.computefunctions.RelevancyFunctions.recall("recall",k));
|
||||
relevancy.addFunction(io.nosqlbench.engine.extensions.computefunctions.RelevancyFunctions.precision("precision",k));
|
||||
relevancy.addFunction(io.nosqlbench.engine.extensions.computefunctions.RelevancyFunctions.F1("F1",k));
|
||||
relevancy.addFunction(io.nosqlbench.engine.extensions.computefunctions.RelevancyFunctions.reciprocal_rank("RR",k));
|
||||
relevancy.addFunction(io.nosqlbench.engine.extensions.computefunctions.RelevancyFunctions.average_precision("AP",k));
|
||||
verifier: |
|
||||
actual_indices=io.nosqlbench.engine.extensions.vectormath.CqlUtils.cqlStringColumnToIntArray("key",result);
|
||||
relevancy.accept({relevant_indices_TEMPLATE(filetype,hdf5)},actual_indices);
|
||||
return true;
|
||||
insert_rewrite:
|
||||
prepared: |
|
||||
INSERT INTO TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors)
|
||||
(key, value) VALUES ({id},{train_floatlist_TEMPLATE(filetype,hdf5)});
|
||||
tags:
|
||||
optype: insert
|
||||
|
||||
search_and_rewrite:
|
||||
ops:
|
||||
select_ann_limit:
|
||||
stmt: |
|
||||
SELECT * FROM TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors) ORDER BY value ANN OF {test_vector} LIMIT TEMPLATE(select_limit,100);
|
||||
verifier-init: |
|
||||
scriptingmetrics.newSummaryGauge(_parsed_op,"recall")
|
||||
# verifier: |
|
||||
upsert_same:
|
||||
stmt: |
|
||||
INSERT INTO TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors)
|
||||
(key, value) VALUES ({rw_key},{train_vector});
|
||||
search_and_invalidate:
|
||||
ops:
|
||||
select_ann_limit:
|
||||
stmt: |
|
||||
SELECT * FROM TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors) ORDER BY value ANN OF {test_vector} LIMIT TEMPLATE(select_limit,100);
|
||||
# verifier-init: |
|
||||
# verifier: |
|
||||
upsert_random: |
|
||||
INSERT INTO TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors)
|
||||
(key, value) VALUES ({rw_key},{train_vector});
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user