mirror of
https://github.com/nosqlbench/nosqlbench.git
synced 2025-02-25 18:55:28 -06:00
update vec workload
This commit is contained in:
parent
093e5c9b93
commit
895d7d6659
@ -1,10 +1,14 @@
|
||||
min_version: 5.21
|
||||
description: |
|
||||
This is a template for live vector search testing.
|
||||
Key parameters:
|
||||
trainsize: TEMPLATE(trainsize)
|
||||
testsize: TEMPLATE(testsize)
|
||||
source_model: TEMPLATE(other)
|
||||
|
||||
schema: Install the schema required to run the test
|
||||
rampup: Measure how long it takes to load a set of embeddings
|
||||
search_and_index: Measure how the system responds to queries while it
|
||||
search_and_verify: Measure how the system responds to queries while it
|
||||
is indexing recently ingested data.
|
||||
#? await_index: Pause and wait for the system to complete compactions or index processing
|
||||
search: Run vector search with a set of default (or overridden) parameters
|
||||
@ -15,32 +19,157 @@ description: |
|
||||
Also, aggregates of recall should include total aggregate as well as a moving average.
|
||||
|
||||
scenarios:
|
||||
cassandra:
|
||||
drop: run tags='block:drop' threads==undef cycles==undef context=cassandra
|
||||
# nb5 cql-vector2 cassandra.schema host=localhost localdc=datacenter1 dimensions=100
|
||||
schema: run tags='op=create_.*' threads==undef cycles==undef context=cassandra
|
||||
# nb5 cql-vector2 cassandra.rampup host=localhost localdc=datacenter1 dimensions=100 trainsize=1000000 dataset=glove-100-angular rate=10000
|
||||
rampup: run tags='block:rampup' threads=auto cycles=TEMPLATE(trainsize,set-the-trainsize) errors=counter,warn context=cassandra
|
||||
# nb5 cql-vector2 cassandra.search_and_index testsize=10000 host=localhost localdc=datacenter1 dimensions=100 dataset=glove-100-angular --report-csv-to rmetrics:.*:5s
|
||||
read_recall: >-
|
||||
run alias=search_and_index tags='block:search_and_index,optype=select' labels='target:cassandra'
|
||||
cycles=TEMPLATE(testsize) errors=counter,warn threads=1
|
||||
|
||||
default:
|
||||
# Remove any existing data
|
||||
drop: >-
|
||||
run tags='block:drop' threads===1 cycles===UNDEF
|
||||
errors=count
|
||||
|
||||
# Install the schema required to run the test
|
||||
schema_ks: >-
|
||||
run tags='block:schema_ks' threads===1 cycles===UNDEF
|
||||
schema: >-
|
||||
run tags='block:schema' threads===1 cycles===UNDEF
|
||||
|
||||
# Truncate any data before loading
|
||||
# truncate: run tags='block:truncate' threads===1 cycles===UNDEF
|
||||
|
||||
# Load training data, measure how long it takes to load
|
||||
rampup: >-
|
||||
run tags='block:rampup' threads=TEMPLATE(rampup_threads,auto)
|
||||
cycles===TEMPLATE(rampup_cycles,TEMPLATE(trainsize))
|
||||
errors=count,warn
|
||||
|
||||
# Measure how the system responds to queries under a read only workload
|
||||
search_and_verify: >-
|
||||
run alias=search_and_verify tags='block:search_and_verify,optype=select'
|
||||
threads=TEMPLATE(search_threads,auto) cycles===TEMPLATE(search_cycles,TEMPLATE(testsize))
|
||||
errors=count,warn
|
||||
|
||||
verify_recall: >-
|
||||
run alias=verify_recall tags='block:search_and_verify,optype=select'
|
||||
threads=TEMPLATE(search_threads,auto) cycles===TEMPLATE(search_cycles,TEMPLATE(testsize))
|
||||
errors=count,warn
|
||||
|
||||
|
||||
|
||||
astra_vectors:
|
||||
drop: run tags='block:drop' tags='block:drop' threads==undef cycles==undef
|
||||
schema: run tags='block:schema' tags='op=create_.*(table|index)' threads==undef cycles==undef dimensions==TEMPLATE(dimensions,25)
|
||||
train: run tags='block:rampup' threads=20x cycles=TEMPLATE(trainsize) errors=counter,warn maxtries=2 dimensions==TEMPLATE(dimensions,25)
|
||||
# search_and_index_unthrottled: >-
|
||||
# run tags='block:search_and_index,optype=select' labels='target:astra'
|
||||
# cycles=TEMPLATE(testsize) threads=10 errors=count,retry stride=500 errors=counter
|
||||
testann: >-
|
||||
run tags='block:testann' cycles=TEMPLATE(testsize) errors=count,retry maxtries=2 threads=auto
|
||||
# one activity or two? data leap-frog? or concurrency separate for both?
|
||||
# await_index: run tags='block:await_index' # This would need to exit when a condition is met
|
||||
# stop_search_and_index: stop search_and_index
|
||||
# only possible if we have a triggering event to indicated
|
||||
# live_search: run tags='block:search' labels='target:astra' threads=1 cycles=TEMPLATE(testsize,10000)
|
||||
search_and_rewrite: run tags='block:search_and_rewrite' labels='target:astra'
|
||||
search_and_invalidate: run tags='block:search_and_invalidate' labels='target:astra'
|
||||
|
||||
# Remove any existing data
|
||||
drop: >-
|
||||
run tags='block:drop' threads===1 cycles===UNDEF
|
||||
errors=count
|
||||
|
||||
# Install the schema required to run the test
|
||||
schema_ks: >-
|
||||
run tags='block:schema_ks' threads===1 cycles===UNDEF
|
||||
schema: >-
|
||||
run tags='block:schema' threads===1 cycles===UNDEF
|
||||
|
||||
# Truncate any data before loading
|
||||
# truncate: run tags='block:truncate' threads===1 cycles===UNDEF
|
||||
|
||||
# Load training data, measure how long it takes to load
|
||||
rampup: >-
|
||||
run tags='block:rampup' threads=TEMPLATE(rampup_threads,auto)
|
||||
cycles===TEMPLATE(rampup_cycles,TEMPLATE(trainsize))
|
||||
errors=count,warn
|
||||
|
||||
# Measure how the system responds to queries under a read only workload
|
||||
search_and_verify: >-
|
||||
run alias=search_and_verify tags='block:search_and_verify,optype=select'
|
||||
threads=TEMPLATE(search_threads,auto) cycles===TEMPLATE(search_cycles,TEMPLATE(testsize))
|
||||
errors=count,warn
|
||||
|
||||
verify_recall: >-
|
||||
run alias=verify_recall tags='block:search_and_verify,optype=select'
|
||||
threads=TEMPLATE(search_threads,auto) cycles===TEMPLATE(search_cycles,TEMPLATE(testsize))
|
||||
errors=count,warn
|
||||
|
||||
astra_vectors_with_source_model:
|
||||
|
||||
# Remove any existing data
|
||||
drop: >-
|
||||
run tags='block:drop' threads===1 cycles===UNDEF
|
||||
errors=count
|
||||
|
||||
# Install the schema required to run the test
|
||||
schema: >-
|
||||
run tags='block:schema_with_source_model' threads===1 cycles===UNDEF
|
||||
|
||||
# Truncate any data before loading
|
||||
# truncate: run tags='block:truncate' threads===1 cycles===UNDEF
|
||||
|
||||
# Load training data, measure how long it takes to load
|
||||
rampup: >-
|
||||
run tags='block:rampup' threads=TEMPLATE(rampup_threads,auto)
|
||||
cycles===TEMPLATE(rampup_cycles,TEMPLATE(trainsize))
|
||||
errors=count,warn
|
||||
|
||||
# Measure how the system responds to queries under a read only workload
|
||||
search_and_verify: >-
|
||||
run alias=search_and_verify tags='block:search_and_verify,optype=select'
|
||||
threads=TEMPLATE(search_threads,auto) cycles===TEMPLATE(search_cycles,TEMPLATE(testsize))
|
||||
errors=count,warn
|
||||
|
||||
verify_recall: >-
|
||||
run alias=verify_recall tags='block:search_and_verify,optype=select'
|
||||
threads=TEMPLATE(search_threads,auto) cycles===TEMPLATE(search_cycles,TEMPLATE(testsize))
|
||||
errors=count,warn
|
||||
|
||||
astra_vectors_mixed_workload:
|
||||
# Measure how the system responds to queries while
|
||||
# it is indexing recently ingested data
|
||||
search_and_verify: >-
|
||||
run alias=search_and_verify tags='block:search_and_verify'
|
||||
cycles===TEMPLATE(search_cycles) errors=count,retry stride=100 striderate=7.50
|
||||
errors=counter threads=500
|
||||
|
||||
# search_and_rewrite: run tags='block:search_and_rewrite'
|
||||
# search_and_invalidate: run tags='block:search_and_invalidate'
|
||||
|
||||
optimize:
|
||||
# Remove any existing data
|
||||
drop: >-
|
||||
run tags='block:drop' threads===1 cycles===UNDEF
|
||||
errors=count
|
||||
|
||||
# Install the schema required to run the test
|
||||
schema: >-
|
||||
run tags='block:schema' threads===1 cycles===UNDEF
|
||||
|
||||
# Load training data, measure how long it takes to load
|
||||
rampup: >-
|
||||
run tags='block:rampup' threads=TEMPLATE(rampup_threads,auto)
|
||||
cycles===TEMPLATE(rampup_cycles,TEMPLATE(trainsize))
|
||||
errors=count,warn
|
||||
|
||||
# Start the read only vectory query workload
|
||||
search_and_verify: >-
|
||||
start alias=search_and_verify tags='block:search_and_verify,optype=select'
|
||||
threads=TEMPLATE(search_threads,auto) cycles===TEMPLATE(search_cycles,TEMPLATE(testsize))
|
||||
errors=count,warn
|
||||
|
||||
# Find the optimal rate for the search workload
|
||||
findmax: >-
|
||||
findmax activity=search_and_verify
|
||||
base_value=200
|
||||
step_value=50
|
||||
min_frames=10
|
||||
optimization_type=rate
|
||||
|
||||
# Optimize the search workload
|
||||
optimo: >-
|
||||
optimo activity=search_and_verify
|
||||
startrate=${findmax.rate}
|
||||
sample_time_ms=1000
|
||||
|
||||
# Retest the search workload with the optimized rate and thread count
|
||||
retest: >-
|
||||
reset activity=search_and_verify
|
||||
threads==${optimo.threads}
|
||||
rate==${optimo.rate}
|
||||
|
||||
params:
|
||||
driver: cqld4
|
||||
@ -48,43 +177,70 @@ params:
|
||||
|
||||
bindings:
|
||||
id: ToString()
|
||||
test_floatlist: HdfFileToFloatList("testdata/TEMPLATE(datafile).hdf5", "/test"); ToCqlVector();
|
||||
relevant_indices: HdfFileToIntArray("testdata/TEMPLATE(datafile).hdf5", "/neighbors")
|
||||
distance_floatlist: HdfFileToFloatList("testdata/TEMPLATE(datafile).hdf5", "/distance")
|
||||
train_floatlist: HdfFileToFloatList("testdata/TEMPLATE(datafile).hdf5", "/train"); ToCqlVector();
|
||||
test_floatlist: HdfFileToFloatList("testdata/TEMPLATE(dataset).hdf5", "/test"); ToCqlVector();
|
||||
relevant_indices: HdfFileToIntArray("testdata/TEMPLATE(dataset).hdf5", "/neighbors")
|
||||
distance_floatlist: HdfFileToFloatList("testdata/TEMPLATE(dataset).hdf5", "/distances")
|
||||
train_floatlist: HdfFileToFloatList("testdata/TEMPLATE(dataset).hdf5", "/train"); ToCqlVector();
|
||||
synthetic_vectors: HashedFloatVectors(TEMPLATE(dimensions));
|
||||
|
||||
blocks:
|
||||
drop:
|
||||
params:
|
||||
cl: TEMPLATE(cl,LOCAL_QUORUM)
|
||||
prepared: false
|
||||
timeout: 600
|
||||
ops:
|
||||
drop_index:
|
||||
raw: |
|
||||
DROP INDEX IF EXISTS TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors);
|
||||
drop_table:
|
||||
raw: |
|
||||
DROP TABLE IF EXISTS TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors);
|
||||
drop_index: |
|
||||
DROP INDEX IF EXISTS TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors)_value_idx;
|
||||
drop_table: |
|
||||
DROP TABLE IF EXISTS TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors);
|
||||
truncate:
|
||||
params:
|
||||
cl: TEMPLATE(cl,LOCAL_QUORUM)
|
||||
prepared: false
|
||||
timeout: 600
|
||||
ops:
|
||||
truncate_table: |
|
||||
truncate TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors);
|
||||
|
||||
schema_ks:
|
||||
params:
|
||||
cl: TEMPLATE(cl,LOCAL_QUORUM)
|
||||
prepared: false
|
||||
ops:
|
||||
create_keyspace: |
|
||||
create keyspace if not exists TEMPLATE(keyspace,baselines)
|
||||
WITH replication = {'class': 'SimpleStrategy', 'replication_factor': 'TEMPLATE(rf:1)'}
|
||||
AND durable_writes = true;
|
||||
|
||||
schema:
|
||||
params:
|
||||
cl: TEMPLATE(cl,LOCAL_QUORUM)
|
||||
prepared: false
|
||||
ops:
|
||||
create_keyspace:
|
||||
raw: |
|
||||
CREATE KEYSPACE IF NOT EXISTS TEMPLATE(keyspace,baselines)
|
||||
WITH replication = {'class': 'SimpleStrategy', 'replication_factor': '1'};
|
||||
create_table:
|
||||
raw: |
|
||||
CREATE TABLE IF NOT EXISTS TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors) (
|
||||
key TEXT,
|
||||
value vector<float,TEMPLATE(dimensions,set-the-dimensions-template-var)>,
|
||||
PRIMARY KEY (key)
|
||||
);
|
||||
create_sai_index:
|
||||
raw: |
|
||||
CREATE CUSTOM INDEX IF NOT EXISTS ON TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors) (value) USING 'StorageAttachedIndex'
|
||||
WITH OPTIONS = {'similarity_function' : 'TEMPLATE(similarity_function,cosine)'};
|
||||
# WITH OPTIONS = {'maximum_node_connections' : TEMPLATE(M,16), 'construction_beam_width' : TEMPLATE(ef,100), 'similarity_function' : 'TEMPLATE(similarity_function,dot_product)'};
|
||||
create_table: |
|
||||
CREATE TABLE IF NOT EXISTS TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors) (
|
||||
key TEXT,
|
||||
value vector<float,TEMPLATE(dimensions)>,
|
||||
PRIMARY KEY (key)
|
||||
);
|
||||
create_sai_index: |
|
||||
CREATE CUSTOM INDEX IF NOT EXISTS ON TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors) (value) USING 'StorageAttachedIndex'
|
||||
WITH OPTIONS = {'similarity_function' : 'TEMPLATE(similarity_function,cosine)'};
|
||||
schema_with_source_model:
|
||||
params:
|
||||
cl: TEMPLATE(cl,LOCAL_QUORUM)
|
||||
prepared: false
|
||||
ops:
|
||||
create_table: |
|
||||
CREATE TABLE IF NOT EXISTS TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors) (
|
||||
key TEXT,
|
||||
value vector<float,TEMPLATE(dimensions)>,
|
||||
PRIMARY KEY (key)
|
||||
);
|
||||
create_sai_index: |
|
||||
CREATE CUSTOM INDEX IF NOT EXISTS ON TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors) (value) USING 'StorageAttachedIndex'
|
||||
WITH OPTIONS = {'similarity_function' : 'TEMPLATE(similarity_function,cosine)', 'source_model' : 'TEMPLATE(source_model,other)'};
|
||||
rampup:
|
||||
params:
|
||||
cl: TEMPLATE(write_cl,LOCAL_QUORUM)
|
||||
@ -93,9 +249,7 @@ blocks:
|
||||
insert: |
|
||||
INSERT INTO TEMPLATE(keyspace,baselines).TEMPLATE(table,vectors)
|
||||
(key, value) VALUES ({id},{train_floatlist});
|
||||
# await_index:
|
||||
# ops:
|
||||
testann:
|
||||
search_and_verify:
|
||||
ops:
|
||||
select_ann_limit_TEMPLATE(k,100):
|
||||
prepared: |
|
||||
@ -105,14 +259,14 @@ blocks:
|
||||
optype: select
|
||||
verifier-init: |
|
||||
k=TEMPLATE(k,100)
|
||||
relevancy= new io.nosqlbench.api.engine.metrics.wrappers.RelevancyMeasures(_parsed_op);
|
||||
relevancy=new io.nosqlbench.nb.api.engine.metrics.wrappers.RelevancyMeasures(_parsed_op)
|
||||
relevancy.addFunction(io.nosqlbench.engine.extensions.computefunctions.RelevancyFunctions.recall("recall",k));
|
||||
relevancy.addFunction(io.nosqlbench.engine.extensions.computefunctions.RelevancyFunctions.precision("precision",k));
|
||||
relevancy.addFunction(io.nosqlbench.engine.extensions.computefunctions.RelevancyFunctions.F1("F1",k));
|
||||
relevancy.addFunction(io.nosqlbench.engine.extensions.computefunctions.RelevancyFunctions.reciprocal_rank("RR",k));
|
||||
relevancy.addFunction(io.nosqlbench.engine.extensions.computefunctions.RelevancyFunctions.average_precision("AP",k));
|
||||
verifier: |
|
||||
actual_indices=io.nosqlbench.engine.extensions.vectormath.CqlUtils.cqlStringColumnToIntArray("key",result);
|
||||
actual_indices=cql_utils.cqlStringColumnToIntArray("key",result);
|
||||
relevancy.accept({relevant_indices},actual_indices);
|
||||
return true;
|
||||
insert_rewrite:
|
||||
|
Loading…
Reference in New Issue
Block a user