freeipa/ipaserver/dcerpc.py

854 lines
36 KiB
Python
Raw Normal View History

# Authors:
# Alexander Bokovoy <abokovoy@redhat.com>
#
# Copyright (C) 2011 Red Hat
# see file 'COPYING' for use and warranty information
#
# Portions (C) Andrew Tridgell, Andrew Bartlett
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Make sure we only run this module at the server where samba4-python
# package is installed to avoid issues with unavailable modules
from ipalib.plugins.baseldap import *
from ipalib import api, Str, Password, DefaultFrom, _, ngettext, Object
from ipalib.parameters import Enum
from ipalib import Command
from ipalib import errors
from ipapython import ipautil
from ipapython.ipa_log_manager import *
from ipapython.dn import DN
from ipaserver.install import installutils
from ipalib.util import normalize_name
import os, string, struct, copy
import uuid
from samba import param
from samba import credentials
from samba.dcerpc import security, lsa, drsblobs, nbt, netlogon
from samba.ndr import ndr_pack
from samba import net
import samba
import random
from M2Crypto import RC4
try:
from ldap.controls import RequestControl as LDAPControl #pylint: disable=F0401
except ImportError:
from ldap.controls import LDAPControl as LDAPControl #pylint: disable=F0401
import ldap as _ldap
from ipaserver.ipaldap import IPAdmin
from ipalib.session import krbccache_dir, krbccache_prefix
from dns import resolver, rdatatype
from dns.exception import DNSException
__doc__ = _("""
Classes to manage trust joins using DCE-RPC calls
The code in this module relies heavily on samba4-python package
and Samba4 python bindings.
""")
def is_sid_valid(sid):
try:
security.dom_sid(sid)
except TypeError:
return False
else:
return True
access_denied_error = errors.ACIError(info=_('CIFS server denied your credentials'))
dcerpc_error_codes = {
-1073741823:
errors.RemoteRetrieveError(reason=_('communication with CIFS server was unsuccessful')),
-1073741790: access_denied_error,
-1073741715: access_denied_error,
-1073741614: access_denied_error,
-1073741603:
errors.ValidationError(name=_('AD domain controller'), error=_('unsupported functional level')),
}
dcerpc_error_messages = {
"NT_STATUS_OBJECT_NAME_NOT_FOUND":
errors.NotFound(reason=_('Cannot find specified domain or server name')),
"NT_STATUS_INVALID_PARAMETER_MIX":
errors.RequirementError(name=_('At least the domain or IP address should be specified')),
}
def assess_dcerpc_exception(num=None,message=None):
"""
Takes error returned by Samba bindings and converts it into
an IPA error class.
"""
if num and num in dcerpc_error_codes:
return dcerpc_error_codes[num]
if message and message in dcerpc_error_messages:
return dcerpc_error_messages[message]
reason = _('''CIFS server communication error: code "%(num)s",
message "%(message)s" (both may be "None")''') % dict(num=num, message=message)
return errors.RemoteRetrieveError(reason=reason)
class ExtendedDNControl(LDAPControl):
# This class attempts to implement LDAP control that would work
# with both python-ldap 2.4.x and 2.3.x, thus there is mix of properties
# from both worlds and encodeControlValue has default parameter
def __init__(self):
self.controlValue = 1
self.controlType = "1.2.840.113556.1.4.529"
self.criticality = False
self.integerValue = 1
def encodeControlValue(self, value=None):
return '0\x03\x02\x01\x01'
class DomainValidator(object):
ATTR_FLATNAME = 'ipantflatname'
ATTR_SID = 'ipantsecurityidentifier'
ATTR_TRUSTED_SID = 'ipanttrusteddomainsid'
ATTR_TRUST_PARTNER = 'ipanttrustpartner'
ATTR_TRUST_AUTHOUT = 'ipanttrustauthoutgoing'
def __init__(self, api):
self.api = api
self.ldap = self.api.Backend.ldap2
self.domain = None
self.flatname = None
self.dn = None
self.sid = None
self._domains = None
self._info = dict()
self._creds = None
self._parm = None
def is_configured(self):
cn_trust_local = DN(('cn', self.api.env.domain), self.api.env.container_cifsdomains, self.api.env.basedn)
try:
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
(dn, entry_attrs) = self.ldap.get_entry(cn_trust_local, [self.ATTR_FLATNAME, self.ATTR_SID])
self.flatname = entry_attrs[self.ATTR_FLATNAME][0]
self.sid = entry_attrs[self.ATTR_SID][0]
self.dn = dn
self.domain = self.api.env.domain
except errors.NotFound, e:
return False
return True
def get_trusted_domains(self):
"""Returns dict of trusted domain tuples (flatname, sid, trust_auth_outgoing), keyed by domain name"""
cn_trust = DN(('cn', 'ad'), self.api.env.container_trusts, self.api.env.basedn)
try:
search_kw = {'objectClass': 'ipaNTTrustedDomain'}
filter = self.ldap.make_filter(search_kw, rules=self.ldap.MATCH_ALL)
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
(entries, truncated) = self.ldap.find_entries(filter=filter, base_dn=cn_trust,
attrs_list=[self.ATTR_TRUSTED_SID,
self.ATTR_FLATNAME,
self.ATTR_TRUST_PARTNER,
self.ATTR_TRUST_AUTHOUT])
result = dict()
for dn, entry in entries:
try:
trust_partner = entry[self.ATTR_TRUST_PARTNER][0]
flatname_normalized = entry[self.ATTR_FLATNAME][0].lower()
trusted_sid = entry[self.ATTR_TRUSTED_SID][0]
except KeyError, e:
# Some piece of trusted domain info in LDAP is missing
# Skip the domain, but leave log entry for investigation
api.log.warn("Trusted domain '%s' entry misses an attribute: %s",
dn, e)
continue
trust_authout = entry.get(self.ATTR_TRUST_AUTHOUT, [None])[0]
# We were able to read all Trusted domain attributes but the secret
# User is not member of trust admins group
if trust_authout is None:
raise errors.ACIError(
info=_('communication with trusted domains is allowed '
'for Trusts administrator group members only'))
result[trust_partner] = (flatname_normalized,
security.dom_sid(trusted_sid),
trust_authout)
return result
except errors.NotFound, e:
return []
def get_domain_by_sid(self, sid):
if not self.domain:
# our domain is not configured or self.is_configured() never run
# reject SIDs as we can't check correctness of them
raise errors.ValidationError(name='sid',
error=_('domain is not configured'))
# Parse sid string to see if it is really in a SID format
try:
test_sid = security.dom_sid(sid)
except TypeError, e:
raise errors.ValidationError(name='sid',
error=_('SID is not valid'))
# At this point we have SID_NT_AUTHORITY family SID and really need to
# check it against prefixes of domain SIDs we trust to
if not self._domains:
self._domains = self.get_trusted_domains()
if len(self._domains) == 0:
# Our domain is configured but no trusted domains are configured
# This means we can't check the correctness of a trusted domain SIDs
raise errors.ValidationError(name='sid',
error=_('no trusted domain is configured'))
# We have non-zero list of trusted domains and have to go through them
# one by one and check their sids as prefixes
test_sid_subauths = test_sid.sub_auths
for domain in self._domains:
domsid = self._domains[domain][1]
sub_auths = domsid.sub_auths
num_auths = min(test_sid.num_auths, domsid.num_auths)
if test_sid_subauths[:num_auths] == sub_auths[:num_auths]:
return domain
raise errors.NotFound(reason=_('SID does not match any trusted domain'))
def is_trusted_sid_valid(self, sid):
try:
self.get_domain_by_sid(sid)
except (errors.ValidationError, errors.NotFound):
return False
else:
return True
def get_sid_from_domain_name(self, name):
"""Returns binary representation of SID for the trusted domain name
or None if name is not in the list of trusted domains."""
domains = self.get_trusted_domains()
if name in domains:
return domains[name][1]
else:
return None
def get_trusted_domain_objects(self, domain=None, flatname=None, filter="",
attrs=None, scope=_ldap.SCOPE_SUBTREE, basedn=None):
"""
Search for LDAP objects in a trusted domain specified either by `domain'
or `flatname'. The actual LDAP search is specified by `filter', `attrs',
`scope' and `basedn'. When `basedn' is empty, database root DN is used.
"""
assert domain is not None or flatname is not None
"""Returns SID for the trusted domain object (user or group only)"""
if not self.domain:
# our domain is not configured or self.is_configured() never run
raise errors.ValidationError(name=_('Trust setup'),
error=_('Our domain is not configured'))
if not self._domains:
self._domains = self.get_trusted_domains()
if len(self._domains) == 0:
# Our domain is configured but no trusted domains are configured
raise errors.ValidationError(name=_('Trust setup'),
error=_('No trusted domain is not configured'))
entries = None
if domain is not None:
if domain not in self._domains:
raise errors.ValidationError(name=_('trusted domain object'),
error= _('domain is not trusted'))
# Now we have a name to check against our list of trusted domains
entries = self.search_in_gc(domain, filter, attrs, scope, basedn)
elif flatname is not None:
# Flatname was specified, traverse through the list of trusted
# domains first to find the proper one
found_flatname = False
for domain in self._domains:
if self._domains[domain][0] == flatname:
found_flatname = True
entries = self.search_in_gc(domain, filter, attrs, scope, basedn)
if entries:
break
if not found_flatname:
raise errors.ValidationError(name=_('trusted domain object'),
error= _('no trusted domain matched the specified flat name'))
if not entries:
raise errors.NotFound(reason=_('trusted domain object not found'))
return entries
def get_trusted_domain_object_sid(self, object_name):
components = normalize_name(object_name)
if not ('domain' in components or 'flatname' in components):
# No domain or realm specified, ambiguous search
raise errors.ValidationError(name=_('trusted domain object'),
error= _('Ambiguous search, user domain was not specified'))
attrs = ['objectSid']
filter = '(&(sAMAccountName=%(name)s)(|(objectClass=user)(objectClass=group)))' \
% dict(name=components['name'])
scope = _ldap.SCOPE_SUBTREE
entries = self.get_trusted_domain_objects(components.get('domain'),
components.get('flatname'), filter, attrs, scope)
if len(entries) > 1:
# Treat non-unique entries as invalid
raise errors.ValidationError(name=_('trusted domain object'),
error= _('Trusted domain did not return a unique object'))
sid = self.__sid_to_str(entries[0][1]['objectSid'][0])
try:
test_sid = security.dom_sid(sid)
return unicode(test_sid)
except TypeError, e:
raise errors.ValidationError(name=_('trusted domain object'),
error= _('Trusted domain did not return a valid SID for the object'))
def get_trusted_domain_user_and_groups(self, object_name):
"""
Returns a tuple with user SID and a list of SIDs of all groups he is
a member of.
LIMITATIONS:
- only Trusted Admins group members can use this function as it
uses secret for IPA-Trusted domain link
- List of group SIDs does not contain group memberships outside
of the trusted domain
"""
components = normalize_name(object_name)
domain = components.get('domain')
flatname = components.get('flatname')
name = components.get('name')
is_valid_sid = is_sid_valid(object_name)
if is_valid_sid:
# Find a trusted domain for the SID
domain = self.get_domain_by_sid(object_name)
# Now search a trusted domain for a user with this SID
attrs = ['cn']
filter = '(&(objectClass=user)(objectSid=%(sid)s))' \
% dict(sid=object_name)
try:
entries = self.get_trusted_domain_objects(domain=domain, filter=filter,
attrs=attrs, scope=_ldap.SCOPE_SUBTREE)
except errors.NotFound:
raise errors.NotFound(reason=_('trusted domain user not found'))
user_dn = entries[0][0]
elif domain or flatname:
attrs = ['cn']
filter = '(&(sAMAccountName=%(name)s)(objectClass=user))' \
% dict(name=name)
try:
entries = self.get_trusted_domain_objects(domain,
flatname, filter, attrs, _ldap.SCOPE_SUBTREE)
except errors.NotFound:
raise errors.NotFound(reason=_('trusted domain user not found'))
user_dn = entries[0][0]
else:
# No domain or realm specified, ambiguous search
raise errors.ValidationError(name=_('trusted domain object'),
error= _('Ambiguous search, user domain was not specified'))
# Get SIDs of user object and it's groups
# tokenGroups attribute must be read with a scope BASE for a known user
# distinguished name to avoid search error
attrs = ['objectSID', 'tokenGroups']
filter = "(objectClass=user)"
entries = self.get_trusted_domain_objects(domain,
flatname, filter, attrs, _ldap.SCOPE_BASE, user_dn)
object_sid = self.__sid_to_str(entries[0][1]['objectSid'][0])
group_sids = [self.__sid_to_str(sid) for sid in entries[0][1]['tokenGroups']]
return (object_sid, group_sids)
def __sid_to_str(self, sid):
"""
Converts binary SID to string representation
Returns unicode string
"""
sid_rev_num = ord(sid[0])
number_sub_id = ord(sid[1])
ia = struct.unpack('!Q','\x00\x00'+sid[2:8])[0]
subs = [
struct.unpack('<I',sid[8+4*i:12+4*i])[0]
for i in range(number_sub_id)
]
return u'S-%d-%d-%s' % ( sid_rev_num, ia, '-'.join([str(s) for s in subs]),)
def __extract_trusted_auth(self, info):
"""
Returns in clear trusted domain account credentials
"""
clear = None
auth = drsblobs.trustAuthInOutBlob()
auth.__ndr_unpack__(info['auth'])
auth_array = auth.current.array[0]
if auth_array.AuthType == lsa.TRUST_AUTH_TYPE_CLEAR:
clear = ''.join(map(chr, auth_array.AuthInfo.password)).decode('utf-16-le')
return clear
def __kinit_as_trusted_account(self, info, password):
"""
Initializes ccache with trusted domain account credentials.
Applies session code defaults for ccache directory and naming prefix.
Session code uses krbccache_prefix+<pid>, we use
krbccache_prefix+<TD>+<domain netbios name> so there is no clash
Returns tuple (ccache name, principal) where (None, None) signifes an error
on ccache initialization
"""
ccache_name = os.path.join(krbccache_dir, "%sTD%s" % (krbccache_prefix, info['name'][0]))
principal = '%s$@%s' % (self.flatname, info['dns_domain'].upper())
(stdout, stderr, returncode) = ipautil.run(['/usr/bin/kinit', principal],
env={'KRB5CCNAME':ccache_name},
stdin=password, raiseonerr=False)
if returncode == 0:
return (ccache_name, principal)
else:
if returncode == 1:
raise errors.ACIError(
info=_("KDC for %(domain)s denied trust account for IPA domain with a message '%(message)s'") %
dict(domain=info['dns_domain'],message=stderr.strip()))
return (None, None)
def search_in_gc(self, domain, filter, attrs, scope, basedn=None):
"""
Perform LDAP search in a trusted domain `domain' Global Catalog.
Returns resulting entries or None
"""
entries = None
sid = None
info = self.__retrieve_trusted_domain_gc_list(domain)
if not info:
raise errors.ValidationError(name=_('Trust setup'),
error=_('Cannot retrieve trusted domain GC list'))
for (host, port) in info['gc']:
entries = self.__search_in_gc(info, host, port, filter, attrs, scope, basedn)
if entries:
break
return entries
def __search_in_gc(self, info, host, port, filter, attrs, scope, basedn=None):
"""
Actual search in AD LDAP server, using SASL GSSAPI authentication
Returns LDAP result or None
"""
conn = IPAdmin(host=host, port=port, no_schema=True, decode_attrs=False)
auth = self.__extract_trusted_auth(info)
if attrs is None:
attrs = []
if auth:
(ccache_name, principal) = self.__kinit_as_trusted_account(info, auth)
if ccache_name:
old_ccache = os.environ.get('KRB5CCNAME')
os.environ["KRB5CCNAME"] = ccache_name
# OPT_X_SASL_NOCANON is used to avoid hard requirement for PTR
# records pointing back to the same host name
conn.set_option(_ldap.OPT_X_SASL_NOCANON, _ldap.OPT_ON)
conn.do_sasl_gssapi_bind()
if basedn is None:
# Use domain root base DN
basedn = DN(*map(lambda p: ('dc', p), info['dns_domain'].split('.')))
entries = conn.get_entries(basedn, scope, filter, attrs)
os.environ["KRB5CCNAME"] = old_ccache
return entries
def __retrieve_trusted_domain_gc_list(self, domain):
"""
Retrieves domain information and preferred GC list
Returns dictionary with following keys
name -- NetBIOS name of the trusted domain
dns_domain -- DNS name of the trusted domain
auth -- encrypted credentials for trusted domain account
gc -- array of tuples (server, port) for Global Catalog
"""
if domain in self._info:
return self._info[domain]
if not self._creds:
self._parm = param.LoadParm()
self._parm.load(os.path.join(ipautil.SHARE_DIR,"smb.conf.empty"))
self._parm.set('netbios name', self.flatname)
self._creds = credentials.Credentials()
self._creds.set_kerberos_state(credentials.MUST_USE_KERBEROS)
self._creds.guess(self._parm)
self._creds.set_workstation(self.flatname)
netrc = net.Net(creds=self._creds, lp=self._parm)
finddc_error = None
result = None
try:
result = netrc.finddc(domain=domain, flags=nbt.NBT_SERVER_LDAP | nbt.NBT_SERVER_GC | nbt.NBT_SERVER_CLOSEST)
except RuntimeError, e:
finddc_error = e
info = dict()
info['auth'] = self._domains[domain][2]
servers = []
if result:
info['name'] = unicode(result.domain_name)
info['dns_domain'] = unicode(result.dns_domain)
servers = [(unicode(result.pdc_dns_name), 3268)]
else:
info['name'] = self._domains[domain]
info['dns_domain'] = domain
# Retrieve GC servers list
gc_name = '_gc._tcp.%s.' % info['dns_domain']
try:
answers = resolver.query(gc_name, rdatatype.SRV)
except DNSException, e:
answers = []
for answer in answers:
server = str(answer.target).rstrip(".")
servers.append((server, answer.port))
info['gc'] = servers
# Both methods should not fail at the same time
if finddc_error and len(info['gc']) == 0:
raise assess_dcerpc_exception(message=str(finddc_error))
self._info[domain] = info
return info
class TrustDomainInstance(object):
def __init__(self, hostname, creds=None):
self.parm = param.LoadParm()
self.parm.load(os.path.join(ipautil.SHARE_DIR,"smb.conf.empty"))
if len(hostname) > 0:
self.parm.set('netbios name', hostname)
self.creds = creds
self.hostname = hostname
self.info = {}
self._pipe = None
self._policy_handle = None
self.read_only = False
def __gen_lsa_connection(self, binding):
if self.creds is None:
raise errors.RequirementError(name=_('CIFS credentials object'))
try:
result = lsa.lsarpc(binding, self.parm, self.creds)
return result
except RuntimeError, (num, message):
raise assess_dcerpc_exception(num=num, message=message)
def __init_lsa_pipe(self, remote_host):
"""
Try to initialize connection to the LSA pipe at remote host.
This method tries consequently all possible transport options
and selects one that works. See __gen_lsa_bindings() for details.
The actual result may depend on details of existing credentials.
For example, using signing causes NO_SESSION_KEY with Win2K8 and
using kerberos against Samba with signing does not work.
"""
# short-cut: if LSA pipe is initialized, skip completely
if self._pipe:
return
attempts = 0
bindings = self.__gen_lsa_bindings(remote_host)
for binding in bindings:
try:
self._pipe = self.__gen_lsa_connection(binding)
if self._pipe:
break
except errors.ACIError, e:
attempts = attempts + 1
if self._pipe is None and attempts == len(bindings):
raise errors.ACIError(
info=_('CIFS server %(host)s denied your credentials') % dict(host=remote_host))
if self._pipe is None:
raise errors.RemoteRetrieveError(
reason=_('Cannot establish LSA connection to %(host)s. Is CIFS server running?') % dict(host=remote_host))
self.binding = binding
def __gen_lsa_bindings(self, remote_host):
"""
There are multiple transports to issue LSA calls. However, depending on a
system in use they may be blocked by local operating system policies.
Generate all we can use. __init_lsa_pipe() will try them one by one until
there is one working.
We try NCACN_NP before NCACN_IP_TCP and signed sessions before unsigned.
"""
transports = (u'ncacn_np', u'ncacn_ip_tcp')
options = ( u',', u'')
binding_template=lambda x,y,z: u'%s:%s[%s]' % (x, y, z)
return [binding_template(t, remote_host, o) for t in transports for o in options]
def retrieve_anonymously(self, remote_host, discover_srv=False):
"""
When retrieving DC information anonymously, we can't get SID of the domain
"""
netrc = net.Net(creds=self.creds, lp=self.parm)
try:
if discover_srv:
result = netrc.finddc(domain=remote_host, flags=nbt.NBT_SERVER_LDAP | nbt.NBT_SERVER_DS)
else:
result = netrc.finddc(address=remote_host, flags=nbt.NBT_SERVER_LDAP | nbt.NBT_SERVER_DS)
except RuntimeError, e:
raise assess_dcerpc_exception(message=str(e))
if not result:
return False
self.info['name'] = unicode(result.domain_name)
self.info['dns_domain'] = unicode(result.dns_domain)
self.info['dns_forest'] = unicode(result.forest)
self.info['guid'] = unicode(result.domain_uuid)
self.info['dc'] = unicode(result.pdc_dns_name)
# Netlogon response doesn't contain SID of the domain.
# We need to do rootDSE search with LDAP_SERVER_EXTENDED_DN_OID control to reveal the SID
ldap_uri = 'ldap://%s' % (result.pdc_dns_name)
conn = _ldap.initialize(ldap_uri)
conn.set_option(_ldap.OPT_SERVER_CONTROLS, [ExtendedDNControl()])
result = None
try:
(objtype, res) = conn.search_s('', _ldap.SCOPE_BASE)[0]
result = res['defaultNamingContext'][0]
self.info['dns_hostname'] = res['dnsHostName'][0]
except _ldap.LDAPError, e:
root_logger.error(
"LDAP error when connecting to %(host)s: %(error)s" %
dict(host=unicode(result.pdc_name), error=str(e)))
if result:
self.info['sid'] = self.parse_naming_context(result)
return True
def parse_naming_context(self, context):
naming_ref = re.compile('.*<SID=(S-.*)>.*')
return naming_ref.match(context).group(1)
def retrieve(self, remote_host):
self.__init_lsa_pipe(remote_host)
objectAttribute = lsa.ObjectAttribute()
objectAttribute.sec_qos = lsa.QosInfo()
try:
self._policy_handle = self._pipe.OpenPolicy2(u"", objectAttribute, security.SEC_FLAG_MAXIMUM_ALLOWED)
result = self._pipe.QueryInfoPolicy2(self._policy_handle, lsa.LSA_POLICY_INFO_DNS)
except RuntimeError, (num, message):
raise assess_dcerpc_exception(num=num, message=message)
self.info['name'] = unicode(result.name.string)
self.info['dns_domain'] = unicode(result.dns_domain.string)
self.info['dns_forest'] = unicode(result.dns_forest.string)
self.info['guid'] = unicode(result.domain_guid)
self.info['sid'] = unicode(result.sid)
self.info['dc'] = remote_host
def generate_auth(self, trustdom_secret):
def arcfour_encrypt(key, data):
c = RC4.RC4(key)
return c.update(data)
def string_to_array(what):
blob = [0] * len(what)
for i in range(len(what)):
blob[i] = ord(what[i])
return blob
password_blob = string_to_array(trustdom_secret.encode('utf-16-le'))
clear_value = drsblobs.AuthInfoClear()
clear_value.size = len(password_blob)
clear_value.password = password_blob
clear_authentication_information = drsblobs.AuthenticationInformation()
clear_authentication_information.LastUpdateTime = samba.unix2nttime(int(time.time()))
clear_authentication_information.AuthType = lsa.TRUST_AUTH_TYPE_CLEAR
clear_authentication_information.AuthInfo = clear_value
authentication_information_array = drsblobs.AuthenticationInformationArray()
authentication_information_array.count = 1
authentication_information_array.array = [clear_authentication_information]
outgoing = drsblobs.trustAuthInOutBlob()
outgoing.count = 1
outgoing.current = authentication_information_array
confounder = [3]*512
for i in range(512):
confounder[i] = random.randint(0, 255)
trustpass = drsblobs.trustDomainPasswords()
trustpass.confounder = confounder
trustpass.outgoing = outgoing
trustpass.incoming = outgoing
trustpass_blob = ndr_pack(trustpass)
encrypted_trustpass = arcfour_encrypt(self._pipe.session_key, trustpass_blob)
auth_blob = lsa.DATA_BUF2()
auth_blob.size = len(encrypted_trustpass)
auth_blob.data = string_to_array(encrypted_trustpass)
auth_info = lsa.TrustDomainInfoAuthInfoInternal()
auth_info.auth_blob = auth_blob
self.auth_info = auth_info
def establish_trust(self, another_domain, trustdom_secret):
"""
Establishes trust between our and another domain
Input: another_domain -- instance of TrustDomainInstance, initialized with #retrieve call
trustdom_secret -- shared secred used for the trust
"""
self.generate_auth(trustdom_secret)
info = lsa.TrustDomainInfoInfoEx()
info.domain_name.string = another_domain.info['dns_domain']
info.netbios_name.string = another_domain.info['name']
info.sid = security.dom_sid(another_domain.info['sid'])
info.trust_direction = lsa.LSA_TRUST_DIRECTION_INBOUND | lsa.LSA_TRUST_DIRECTION_OUTBOUND
info.trust_type = lsa.LSA_TRUST_TYPE_UPLEVEL
info.trust_attributes = lsa.LSA_TRUST_ATTRIBUTE_FOREST_TRANSITIVE
if self.info['name'] == info.netbios_name.string:
# Check that NetBIOS names do not clash
raise errors.ValidationError(name=u'AD Trust Setup',
error=_('the IPA server and the remote domain cannot share the same '
'NetBIOS name: %s') % self.info['name'])
try:
dname = lsa.String()
dname.string = another_domain.info['dns_domain']
res = self._pipe.QueryTrustedDomainInfoByName(self._policy_handle, dname, lsa.LSA_TRUSTED_DOMAIN_INFO_FULL_INFO)
self._pipe.DeleteTrustedDomain(self._policy_handle, res.info_ex.sid)
except RuntimeError, e:
pass
try:
trustdom_handle = self._pipe.CreateTrustedDomainEx2(self._policy_handle, info, self.auth_info, security.SEC_STD_DELETE)
except RuntimeError, (num, message):
raise assess_dcerpc_exception(num=num, message=message)
try:
infoclass = lsa.TrustDomainInfoSupportedEncTypes()
infoclass.enc_types = security.KERB_ENCTYPE_RC4_HMAC_MD5
infoclass.enc_types |= security.KERB_ENCTYPE_AES128_CTS_HMAC_SHA1_96
infoclass.enc_types |= security.KERB_ENCTYPE_AES256_CTS_HMAC_SHA1_96
self._pipe.SetInformationTrustedDomain(trustdom_handle, lsa.LSA_TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES, infoclass)
except RuntimeError, e:
pass
def verify_trust(self, another_domain):
def retrieve_netlogon_info_2(domain, function_code, data):
try:
netr_pipe = netlogon.netlogon(domain.binding, domain.parm, domain.creds)
result = netr_pipe.netr_LogonControl2Ex(logon_server=None,
function_code=function_code,
level=2,
data=data
)
return result
except RuntimeError, (num, message):
raise assess_dcerpc_exception(num=num, message=message)
result = retrieve_netlogon_info_2(self,
netlogon.NETLOGON_CONTROL_TC_VERIFY,
another_domain.info['dns_domain'])
if (result and (result.flags and netlogon.NETLOGON_VERIFY_STATUS_RETURNED)):
# netr_LogonControl2Ex() returns non-None result only if overall call
# result was WERR_OK which means verification was correct.
# We only check that it was indeed status for verification process
return True
return False
class TrustDomainJoins(object):
def __init__(self, api):
self.api = api
self.local_domain = None
self.remote_domain = None
domain_validator = DomainValidator(api)
self.configured = domain_validator.is_configured()
if self.configured:
self.local_flatname = domain_validator.flatname
self.local_dn = domain_validator.dn
self.__populate_local_domain()
def __populate_local_domain(self):
# Initialize local domain info using kerberos only
ld = TrustDomainInstance(self.local_flatname)
ld.creds = credentials.Credentials()
ld.creds.set_kerberos_state(credentials.MUST_USE_KERBEROS)
ld.creds.guess(ld.parm)
ld.creds.set_workstation(ld.hostname)
ld.retrieve(installutils.get_fqdn())
self.local_domain = ld
def __populate_remote_domain(self, realm, realm_server=None, realm_admin=None, realm_passwd=None):
def get_instance(self):
# Fetch data from foreign domain using password only
rd = TrustDomainInstance('')
rd.parm.set('workgroup', self.local_domain.info['name'])
rd.creds = credentials.Credentials()
rd.creds.set_kerberos_state(credentials.DONT_USE_KERBEROS)
rd.creds.guess(rd.parm)
return rd
rd = get_instance(self)
rd.creds.set_anonymous()
rd.creds.set_workstation(self.local_domain.hostname)
if realm_server is None:
rd.retrieve_anonymously(realm, discover_srv=True)
else:
rd.retrieve_anonymously(realm_server, discover_srv=False)
rd.read_only = True
if realm_admin and realm_passwd:
if 'name' in rd.info:
names = realm_admin.split('\\')
if len(names) > 1:
# realm admin is in DOMAIN\user format
# strip DOMAIN part as we'll enforce the one discovered
realm_admin = names[-1]
auth_string = u"%s\%s%%%s" % (rd.info['name'], realm_admin, realm_passwd)
td = get_instance(self)
td.creds.parse_string(auth_string)
td.creds.set_workstation(self.local_domain.hostname)
if realm_server is None:
# we must have rd.info['dns_hostname'] then, part of anonymous discovery
td.retrieve(rd.info['dns_hostname'])
else:
td.retrieve(realm_server)
td.read_only = False
self.remote_domain = td
return
# Otherwise, use anonymously obtained data
self.remote_domain = rd
def join_ad_full_credentials(self, realm, realm_server, realm_admin, realm_passwd):
if not self.configured:
return None
self.__populate_remote_domain(realm, realm_server, realm_admin, realm_passwd)
if not self.remote_domain.read_only:
trustdom_pass = samba.generate_random_password(128, 128)
self.remote_domain.establish_trust(self.local_domain, trustdom_pass)
self.local_domain.establish_trust(self.remote_domain, trustdom_pass)
result = self.remote_domain.verify_trust(self.local_domain)
return dict(local=self.local_domain, remote=self.remote_domain, verified=result)
return None
def join_ad_ipa_half(self, realm, realm_server, trustdom_passwd):
if not self.configured:
return None
self.__populate_remote_domain(realm, realm_server, realm_passwd=None)
self.local_domain.establish_trust(self.remote_domain, trustdom_passwd)
return dict(local=self.local_domain, remote=self.remote_domain, verified=False)