freeipa/ipalib/x509.py

262 lines
7.5 KiB
Python
Raw Normal View History

# Authors:
# Rob Crittenden <rcritten@redhat.com>
#
# Copyright (C) 2010 Red Hat
# see file 'COPYING' for use and warranty information
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Certificates should be stored internally DER-encoded. We can be passed
# a certificate several ways: read if from LDAP, read it from a 3rd party
# app (dogtag, candlepin, etc) or as user input. The normalize_certificate()
# function will convert an incoming certificate to DER-encoding.
# Conventions
#
# Where possible the following naming conventions are used:
#
# cert: the certificate is a PEM-encoded certificate
# dercert: the certificate is DER-encoded
# nsscert: the certificate is an NSS Certificate object
# rawcert: the cert is in an unknown format
import os
import sys
import base64
import re
import nss.nss as nss
from nss.error import NSPRError
from ipapython import ipautil
from ipalib import api
from ipalib import _
from ipalib import util
from ipalib import errors
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
from ipapython.dn import DN
PEM = 0
DER = 1
PEM_REGEX = re.compile(r'(?<=-----BEGIN CERTIFICATE-----).*?(?=-----END CERTIFICATE-----)', re.DOTALL)
_subject_base = None
def subject_base():
global _subject_base
if _subject_base is None:
config = api.Command['config_show']()['result']
_subject_base = DN(config['ipacertificatesubjectbase'][0])
return _subject_base
def valid_issuer(issuer):
# Handle all supported forms of issuer -- currently dogtag only.
if api.env.ra_plugin == 'dogtag':
return DN(issuer) == DN(('CN', 'Certificate Authority'), subject_base())
def strip_header(pem):
"""
Remove the header and footer from a certificate.
"""
s = pem.find("-----BEGIN CERTIFICATE-----")
if s >= 0:
e = pem.find("-----END CERTIFICATE-----")
pem = pem[s+27:e]
return pem
def load_certificate(data, datatype=PEM, dbdir=None):
"""
Given a base64-encoded certificate, with or without the
header/footer, return a request object.
Returns a nss.Certificate type
"""
if type(data) in (tuple, list):
data = data[0]
if (datatype == PEM):
data = strip_header(data)
data = base64.b64decode(data)
if not nss.nss_is_initialized():
if dbdir is None:
if 'in_tree' in api.env:
if api.env.in_tree:
dbdir = api.env.dot_ipa + os.sep + 'alias'
else:
dbdir = "/etc/httpd/alias"
nss.nss_init(dbdir)
else:
nss.nss_init_nodb()
else:
nss.nss_init(dbdir)
return nss.Certificate(buffer(data))
def load_certificate_chain_from_file(filename, dbdir=None):
"""
Load a certificate chain from a PEM file.
Returns a list of nss.Certificate objects.
"""
fd = open(filename, 'r')
data = fd.read()
fd.close()
chain = PEM_REGEX.findall(data)
chain = [load_certificate(cert, PEM, dbdir) for cert in chain]
return chain
def load_certificate_from_file(filename, dbdir=None):
"""
Load a certificate from a PEM file.
Returns a nss.Certificate type
"""
fd = open(filename, 'r')
data = fd.read()
fd.close()
return load_certificate(data, PEM, dbdir)
def get_subject(certificate, datatype=PEM, dbdir=None):
"""
Load an X509.3 certificate and get the subject.
"""
nsscert = load_certificate(certificate, datatype, dbdir)
subject = nsscert.subject
del(nsscert)
return subject
Use certmonger to renew CA subsystem certificates Certificate renewal can be done only one one CA as the certificates need to be shared amongst them. certmonger has been trained to communicate directly with dogtag to perform the renewals. The initial CA installation is the defacto certificate renewal master. A copy of the certificate is stored in the IPA LDAP tree in cn=ca_renewal,cn=ipa,cn=etc,$SUFFIX, the rdn being the nickname of the certificate, when a certificate is renewed. Only the most current certificate is stored. It is valid to have no certificates there, it means that no renewals have taken place. The clones are configured with a new certmonger CA type that polls this location in the IPA tree looking for an updated certificate. If one is not found then certmonger is put into the CA_WORKING state and will poll every 8 hours until an updated certificate is available. The RA agent certificate, ipaCert in /etc/httpd/alias, is a special case. When this certificate is updated we also need to update its entry in the dogtag tree, adding the updated certificate and telling dogtag which certificate to use. This is the certificate that lets IPA issue certificates. On upgrades we check to see if the certificate tracking is already in place. If not then we need to determine if this is the master that will do the renewals or not. This decision is made based on whether it was the first master installed. It is concievable that this master is no longer available meaning that none are actually tracking renewal. We will need to document this. https://fedorahosted.org/freeipa/ticket/2803
2012-07-11 14:51:01 -05:00
def get_issuer(certificate, datatype=PEM, dbdir=None):
"""
Load an X509.3 certificate and get the issuer.
"""
nsscert = load_certificate(certificate, datatype, dbdir)
issuer = nsscert.issuer
del(nsscert)
return issuer
Use certmonger to renew CA subsystem certificates Certificate renewal can be done only one one CA as the certificates need to be shared amongst them. certmonger has been trained to communicate directly with dogtag to perform the renewals. The initial CA installation is the defacto certificate renewal master. A copy of the certificate is stored in the IPA LDAP tree in cn=ca_renewal,cn=ipa,cn=etc,$SUFFIX, the rdn being the nickname of the certificate, when a certificate is renewed. Only the most current certificate is stored. It is valid to have no certificates there, it means that no renewals have taken place. The clones are configured with a new certmonger CA type that polls this location in the IPA tree looking for an updated certificate. If one is not found then certmonger is put into the CA_WORKING state and will poll every 8 hours until an updated certificate is available. The RA agent certificate, ipaCert in /etc/httpd/alias, is a special case. When this certificate is updated we also need to update its entry in the dogtag tree, adding the updated certificate and telling dogtag which certificate to use. This is the certificate that lets IPA issue certificates. On upgrades we check to see if the certificate tracking is already in place. If not then we need to determine if this is the master that will do the renewals or not. This decision is made based on whether it was the first master installed. It is concievable that this master is no longer available meaning that none are actually tracking renewal. We will need to document this. https://fedorahosted.org/freeipa/ticket/2803
2012-07-11 14:51:01 -05:00
def get_serial_number(certificate, datatype=PEM, dbdir=None):
"""
Return the decimal value of the serial number.
"""
nsscert = load_certificate(certificate, datatype, dbdir)
serial_number = nsscert.serial_number
del(nsscert)
return serial_number
def make_pem(data):
"""
Convert a raw base64-encoded blob into something that looks like a PE
file with lines split to 64 characters and proper headers.
"""
pemcert = '\n'.join([data[x:x+64] for x in range(0, len(data), 64)])
return '-----BEGIN CERTIFICATE-----\n' + \
pemcert + \
'\n-----END CERTIFICATE-----'
def normalize_certificate(rawcert):
"""
Incoming certificates should be DER-encoded. If not it is converted to
DER-format.
Note that this can't be a normalizer on a Param because only unicode
variables are normalized.
"""
if not rawcert:
return None
rawcert = strip_header(rawcert)
if util.isvalid_base64(rawcert):
try:
dercert = base64.b64decode(rawcert)
except Exception, e:
raise errors.Base64DecodeError(reason=str(e))
else:
dercert = rawcert
# At this point we should have a certificate, either because the data
# was base64-encoded and now its not or it came in as DER format.
# Let's decode it and see. Fetching the serial number will pass the
# certificate through the NSS DER parser.
try:
serial = unicode(get_serial_number(dercert, DER))
except NSPRError, nsprerr:
if nsprerr.errno == -8183: # SEC_ERROR_BAD_DER
raise errors.CertificateFormatError(
error=_('improperly formatted DER-encoded certificate'))
else:
raise errors.CertificateFormatError(error=str(nsprerr))
return dercert
def write_certificate(rawcert, filename):
"""
Write the certificate to a file in PEM format.
The cert value can be either DER or PEM-encoded, it will be normalized
to DER regardless, then back out to PEM.
"""
dercert = normalize_certificate(rawcert)
try:
fp = open(filename, 'w')
fp.write(make_pem(base64.b64encode(dercert)))
fp.close()
except (IOError, OSError), e:
raise errors.FileError(reason=str(e))
def verify_cert_subject(ldap, hostname, dercert):
"""
Verify that the certificate issuer we're adding matches the issuer
base of our installation.
This assumes the certificate has already been normalized.
This raises an exception on errors and returns nothing otherwise.
"""
nsscert = load_certificate(dercert, datatype=DER)
subject = str(nsscert.subject)
issuer = str(nsscert.issuer)
del(nsscert)
if (not valid_issuer(issuer)):
raise errors.CertificateOperationError(error=_('Issuer "%(issuer)s" does not match the expected issuer') % \
{'issuer' : issuer})
if __name__ == '__main__':
# this can be run with:
# python ipalib/x509.py < /etc/ipa/ca.crt
from ipalib import api
api.bootstrap()
api.finalize()
nss.nss_init_nodb()
# Read PEM certs from stdin and print out its components
certlines = sys.stdin.readlines()
cert = ''.join(certlines)
nsscert = load_certificate(cert)
print nsscert