freeipa/ipatests/test_ipaserver/test_ldap.py

341 lines
10 KiB
Python
Raw Normal View History

# Authors:
# Rob Crittenden <rcritten@redhat.com>
#
# Copyright (C) 2010 Red Hat
# see file 'COPYING' for use and warranty information
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Test some simple LDAP requests using the ldap2 backend
# This fetches a certificate from a host principal so we can ensure that the
# schema is working properly. We know this because the schema will tell the
# encoder not to utf-8 encode binary attributes.
# The DM password needs to be set in ~/.ipa/.dmpw
from __future__ import absolute_import
import os
import sys
2013-02-20 03:49:03 -06:00
import pytest
import six
2013-02-20 03:49:03 -06:00
from ipaplatform.paths import paths
from ipaserver.plugins.ldap2 import ldap2, AUTOBIND_DISABLED
from ipalib import api, create_api, errors
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
from ipapython.dn import DN
if six.PY3:
unicode = str
@pytest.mark.tier0
@pytest.mark.needs_ipaapi
class test_ldap:
"""
Test various LDAP client bind methods.
"""
@pytest.fixture(autouse=True)
def ldap_setup(self, request):
self.conn = None
self.ldapuri = api.env.ldap_uri
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
self.dn = DN(('krbprincipalname','ldap/%s@%s' % (api.env.host, api.env.realm)),
('cn','services'),('cn','accounts'),api.env.basedn)
def fin():
if self.conn and self.conn.isconnected():
self.conn.disconnect()
request.addfinalizer(fin)
def test_anonymous(self):
"""
Test an anonymous LDAP bind using ldap2
"""
self.conn = ldap2(api)
self.conn.connect(autobind=AUTOBIND_DISABLED)
dn = api.env.basedn
entry_attrs = self.conn.get_entry(dn, ['associateddomain'])
domain = entry_attrs.single_value['associateddomain']
assert domain == api.env.domain
def test_GSSAPI(self):
"""
Test a GSSAPI LDAP bind using ldap2
"""
self.conn = ldap2(api)
self.conn.connect(autobind=AUTOBIND_DISABLED)
entry_attrs = self.conn.get_entry(self.dn, ['usercertificate'])
cert = entry_attrs.get('usercertificate')[0]
assert cert.serial_number is not None
def test_simple(self):
"""
Test a simple LDAP bind using ldap2
"""
pwfile = api.env.dot_ipa + os.sep + ".dmpw"
if os.path.isfile(pwfile):
with open(pwfile, "r") as fp:
dm_password = fp.read().rstrip()
else:
pytest.skip(
"No directory manager password in %s" % pwfile
)
self.conn = ldap2(api)
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
self.conn.connect(bind_dn=DN(('cn', 'directory manager')), bind_pw=dm_password)
entry_attrs = self.conn.get_entry(self.dn, ['usercertificate'])
cert = entry_attrs.get('usercertificate')[0]
assert cert.serial_number is not None
def test_Backend(self):
"""
Test using the ldap2 Backend directly (ala ipa-server-install)
"""
# Create our own api because the one generated for the tests is
# a client-only api. Then we register in the commands and objects
# we need for the test.
myapi = create_api(mode=None)
myapi.bootstrap(context='cli', in_server=True, confdir=paths.ETC_IPA)
myapi.finalize()
pwfile = api.env.dot_ipa + os.sep + ".dmpw"
if os.path.isfile(pwfile):
with open(pwfile, "r") as fp:
dm_password = fp.read().rstrip()
else:
pytest.skip(
"No directory manager password in %s" % pwfile
)
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
myapi.Backend.ldap2.connect(bind_dn=DN(('cn', 'Directory Manager')), bind_pw=dm_password)
result = myapi.Command['service_show']('ldap/%s@%s' % (api.env.host, api.env.realm,))
entry_attrs = result['result']
cert = entry_attrs.get('usercertificate')[0]
assert cert.serial_number is not None
def test_autobind(self):
"""
Test an autobind LDAP bind using ldap2
"""
self.conn = ldap2(api)
try:
self.conn.connect(autobind=True)
except errors.ACIError:
pytest.skip("Only executed as root")
entry_attrs = self.conn.get_entry(self.dn, ['usercertificate'])
cert = entry_attrs.get('usercertificate')[0]
assert cert.serial_number is not None
@pytest.mark.tier0
@pytest.mark.needs_ipaapi
class test_LDAPEntry:
2013-02-20 03:49:03 -06:00
"""
Test the LDAPEntry class
"""
cn1 = [u'test1']
cn2 = [u'test2']
dn1 = DN(('cn', cn1[0]))
dn2 = DN(('cn', cn2[0]))
@pytest.fixture(autouse=True)
def ldapentry_setup(self, request):
self.ldapuri = api.env.ldap_uri
self.conn = ldap2(api)
self.conn.connect(autobind=AUTOBIND_DISABLED)
2013-02-20 03:49:03 -06:00
self.entry = self.conn.make_entry(self.dn1, cn=self.cn1)
def fin():
if self.conn and self.conn.isconnected():
self.conn.disconnect()
request.addfinalizer(fin)
2013-02-20 03:49:03 -06:00
def test_entry(self):
e = self.entry
assert e.dn is self.dn1
assert u'cn' in e
assert u'cn' in e.keys()
assert 'CN' in e
if six.PY2:
assert 'CN' not in e.keys()
else:
assert 'CN' in e.keys()
assert 'commonName' in e
if six.PY2:
assert 'commonName' not in e.keys()
else:
assert 'commonName' in e.keys()
2013-02-20 03:49:03 -06:00
assert e['CN'] is self.cn1
assert e['CN'] is e[u'cn']
2013-02-20 03:49:03 -06:00
e.dn = self.dn2
assert e.dn is self.dn2
2013-02-20 03:49:03 -06:00
def test_set_attr(self):
e = self.entry
e['commonName'] = self.cn2
assert u'cn' in e
assert u'cn' in e.keys()
assert 'CN' in e
if six.PY2:
assert 'CN' not in e.keys()
else:
assert 'CN' in e.keys()
assert 'commonName' in e
if six.PY2:
assert 'commonName' not in e.keys()
else:
assert 'commonName' in e.keys()
2013-02-20 03:49:03 -06:00
assert e['CN'] is self.cn2
assert e['CN'] is e[u'cn']
2013-02-20 03:49:03 -06:00
def test_del_attr(self):
e = self.entry
del e['CN']
assert 'CN' not in e
assert 'CN' not in e.keys()
assert u'cn' not in e
assert u'cn' not in e.keys()
assert 'commonName' not in e
assert 'commonName' not in e.keys()
2013-02-20 03:49:03 -06:00
def test_popitem(self):
e = self.entry
assert e.popitem() == ('cn', self.cn1)
Enable pylint expression-not-assigned check Enables check and fixes: ************* Module ipa-replica-conncheck install/tools/ipa-replica-conncheck:150: [W0106(expression-not-assigned), parse_options] Expression "(replica_group.add_option('-w', '--password', dest='password', sensitive=True, help='Password for the principal'), )" is assigned to nothing) ************* Module ipatests.test_xmlrpc.test_automount_plugin ipatests/test_xmlrpc/test_automount_plugin.py:437: [W0106(expression-not-assigned), test_automount_indirect.test_1a_automountmap_add_indirect] Expression "api.Command['automountmap_add_indirect'](self.locname, self.mapname, **self.map_kw)['result']" is assigned to nothing) ************* Module ipatests.test_ipaserver.test_otptoken_import ipatests/test_ipaserver/test_otptoken_import.py:128: [W0106(expression-not-assigned), test_otptoken_import.test_mini] Expression "[(t.id, t.options) for t in doc.getKeyPackages()]" is assigned to nothing) ************* Module ipatests.test_ipaserver.test_ldap ipatests/test_ipaserver/test_ldap.py:221: [W0106(expression-not-assigned), test_LDAPEntry.test_popitem] Expression "list(e) == []" is assigned to nothing) ************* Module ipa-client-install ipa-client/ipa-install/ipa-client-install:114: [W0106(expression-not-assigned), parse_options] Expression "(basic_group.add_option('-p', '--principal', dest='principal', help='principal to use to join the IPA realm'), )" is assigned to nothing) ipa-client/ipa-install/ipa-client-install:116: [W0106(expression-not-assigned), parse_options] Expression "(basic_group.add_option('-w', '--password', dest='password', sensitive=True, help='password to join the IPA realm (assumes bulk password unless principal is also set)'), )" is assigned to nothing) ipa-client/ipa-install/ipa-client-install:118: [W0106(expression-not-assigned), parse_options] Expression "(basic_group.add_option('-k', '--keytab', dest='keytab', help='path to backed up keytab from previous enrollment'), )" is assigned to nothing) ipa-client/ipa-install/ipa-client-install:120: [W0106(expression-not-assigned), parse_options] Expression "(basic_group.add_option('-W', dest='prompt_password', action='store_true', default=False, help='Prompt for a password to join the IPA realm'), )" is assigned to nothing) Reviewed-By: Jan Cholasta <jcholast@redhat.com>
2015-12-16 17:33:57 -06:00
assert list(e) == []
2013-02-20 03:49:03 -06:00
def test_setdefault(self):
e = self.entry
assert e.setdefault('cn', self.cn2) == self.cn1
assert e['cn'] == self.cn1
assert e.setdefault('xyz', self.cn2) == self.cn2
assert e['xyz'] == self.cn2
def test_update(self):
e = self.entry
e.update({'cn': self.cn2}, xyz=self.cn2)
assert e['cn'] == self.cn2
assert e['xyz'] == self.cn2
def test_pop(self):
e = self.entry
assert e.pop('cn') == self.cn1
assert 'cn' not in e
assert e.pop('cn', 'default') == 'default'
with pytest.raises(KeyError):
2013-02-20 03:49:03 -06:00
e.pop('cn')
def test_clear(self):
e = self.entry
e.clear()
assert not e
assert 'cn' not in e
@pytest.mark.skipif(sys.version_info >= (3, 0), reason="Python 2 only")
2013-02-20 03:49:03 -06:00
def test_has_key(self):
e = self.entry
assert not e.has_key('xyz')
assert e.has_key('cn')
assert e.has_key('COMMONNAME')
def test_in(self):
e = self.entry
assert 'xyz' not in e
assert 'cn' in e
assert 'COMMONNAME' in e
2013-02-20 03:49:03 -06:00
def test_get(self):
e = self.entry
assert e.get('cn') == self.cn1
assert e.get('commonname') == self.cn1
assert e.get('COMMONNAME', 'default') == self.cn1
assert e.get('bad key', 'default') == 'default'
def test_single_value(self):
e = self.entry
assert e.single_value['cn'] == self.cn1[0]
assert e.single_value['commonname'] == self.cn1[0]
assert e.single_value.get('COMMONNAME', 'default') == self.cn1[0]
assert e.single_value.get('bad key', 'default') == 'default'
def test_sync(self):
e = self.entry
nice = e['test'] = [1, 2, 3]
assert e['test'] is nice
raw = e.raw['test']
assert raw == [b'1', b'2', b'3']
nice.remove(1)
assert e.raw['test'] is raw
assert raw == [b'2', b'3']
raw.append(b'4')
assert e['test'] is nice
assert nice == [2, 3, u'4']
nice.remove(2)
raw.append(b'5')
assert nice == [3, u'4']
assert raw == [b'2', b'3', b'4', b'5']
assert e['test'] is nice
assert e.raw['test'] is raw
assert nice == [3, u'4', u'5']
assert raw == [b'3', b'4', b'5']
nice.insert(0, 2)
raw.remove(b'4')
assert nice == [2, 3, u'4', u'5']
assert raw == [b'3', b'5']
assert e.raw['test'] is raw
assert e['test'] is nice
assert nice == [2, 3, u'5']
assert raw == [b'3', b'5', b'2']
raw = [b'a', b'b']
e.raw['test'] = raw
assert e['test'] is not nice
assert e['test'] == [u'a', u'b']
nice = 'not list'
e['test'] = nice
assert e['test'] is nice
assert e.raw['test'] == [b'not list']
e.raw['test'].append(b'second')
assert e['test'] == ['not list', u'second']
def test_modlist_with_varying_encodings(self):
"""
Test modlist is correct when only encoding of new value differs
See: https://bugzilla.redhat.com/show_bug.cgi?id=1658302
"""
dn_ipa_encoded = b'O=Red Hat\\, Inc.'
dn_389ds_encoded = b'O=Red Hat\\2C Inc.'
entry = self.entry
entry.raw['distinguishedName'] = [dn_389ds_encoded]
# This is to make entry believe that that value was part of the
# original data we received from LDAP
entry.reset_modlist()
entry['distinguishedName'] = [entry['distinguishedName'][0]]
assert entry.generate_modlist() == [
(1, 'distinguishedName', [dn_389ds_encoded]),
(0, 'distinguishedName', [dn_ipa_encoded])]