freeipa/contrib/RHEL4/ipa-client-setup

356 lines
13 KiB
Plaintext
Raw Normal View History

#! /usr/bin/python -E
# Authors: Simo Sorce <ssorce@redhat.com>
# Karl MacMillan <kmacmillan@mentalrootkit.com>
#
# Copyright (C) 2007 Red Hat
# see file 'COPYING' for use and warranty information
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
VERSION = "%prog .1"
import sys
import os
import string
import shutil
import socket
from ipapython.ipa_log_manager import *
from optparse import OptionParser
import ipachangeconf
import ldap
from ldap import LDAPError
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
from ipapython.dn import DN
class ipaserver:
def __init__(self, server):
self.server = server
self.realm = None
self.domain = None
self.basedn = None
def getServerName(self):
return str(self.server)
def getDomainName(self):
return str(self.domain)
def getRealmName(self):
return str(self.realm)
def getBaseDN(self):
return str(self.basedn)
def check(self):
lret = []
lres = []
lattr = ""
linfo = ""
lrealms = []
i = 0
#now verify the server is really an IPA server
try:
root_logger.debug("Init ldap with: ldap://"+self.server+":389")
lh = ldap.initialize("ldap://"+self.server+":389")
lh.simple_bind_s("","")
root_logger.debug("Search rootdse")
lret = lh.search_s("", ldap.SCOPE_BASE, "(objectClass=*)")
for lattr in lret[0][1]:
if lattr.lower() == "namingcontexts":
self.basedn = lret[0][1][lattr][0]
root_logger.debug("Search for (info=*) in "+self.basedn+"(base)")
lret = lh.search_s(self.basedn, ldap.SCOPE_BASE, "(info=IPA*)")
if not lret:
return False
root_logger.debug("Found: "+str(lret))
for lattr in lret[0][1]:
if lattr.lower() == "info":
linfo = lret[0][1][lattr][0].lower()
break
if not linfo:
return False
#search and return known realms
root_logger.debug("Search for (objectClass=krbRealmContainer) in "+self.basedn+"(sub)")
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
lret = lh.search_s(str(DN(('cn', 'kerberos'), self.basedn)),
ldap.SCOPE_SUBTREE, "(objectClass=krbRealmContainer)")
if not lret:
#something very wrong
return False
root_logger.debug("Found: "+str(lret))
for lres in lret:
for lattr in lres[1]:
if lattr.lower() == "cn":
lrealms.append(lres[1][lattr][0])
if len(lrealms) != 1:
#which one? we can't attach to a multi-realm server without DNS working
return False
else:
self.realm = lrealms[0]
self.domain = lrealms[0].lower()
return True
except LDAPError, err:
#no good
root_logger.error("Ldap Error: "+str(err))
return False
ntp_conf = """# Permit time synchronization with our time source, but do not
# permit the source to query or modify the service on this system.
restrict default kod nomodify notrap nopeer noquery
restrict -6 default kod nomodify notrap nopeer noquery
# Permit all access over the loopback interface. This could
# be tightened as well, but to do so would effect some of
# the administrative functions.
restrict 127.0.0.1
restrict -6 ::1
# Hosts on local network are less restricted.
#restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap
# Use public servers from the pool.ntp.org project.
# Please consider joining the pool (http://www.pool.ntp.org/join.html).
server $SERVER
#broadcast 192.168.1.255 key 42 # broadcast server
#broadcastclient # broadcast client
#broadcast 224.0.1.1 key 42 # multicast server
#multicastclient 224.0.1.1 # multicast client
#manycastserver 239.255.254.254 # manycast server
#manycastclient 239.255.254.254 key 42 # manycast client
# Undisciplined Local Clock. This is a fake driver intended for backup
# and when no outside source of synchronized time is available.
server 127.127.1.0 # local clock
#fudge 127.127.1.0 stratum 10
# Drift file. Put this in a directory which the daemon can write to.
# No symbolic links allowed, either, since the daemon updates the file
# by creating a temporary in the same directory and then rename()'ing
# it to the file.
driftfile /var/lib/ntp/drift
# Key file containing the keys and key identifiers used when operating
# with symmetric key cryptography.
keys /etc/ntp/keys
# Specify the key identifiers which are trusted.
#trustedkey 4 8 42
# Specify the key identifier to use with the ntpdc utility.
#requestkey 8
# Specify the key identifier to use with the ntpq utility.
#controlkey 8
"""
2008-03-31 16:34:40 -05:00
ntp_sysconfig = """# Drop root to id 'ntp:ntp' by default.
OPTIONS="-x -u ntp:ntp -p /var/run/ntpd.pid"
# Set to 'yes' to sync hw clock after successful ntpdate
SYNC_HWCLOCK=yes
# Additional options for ntpdate
NTPDATE_OPTIONS=""
"""
def config_ntp(server_fqdn):
nc = string.replace(ntp_conf, "$SERVER", server_fqdn)
2008-03-31 16:34:40 -05:00
shutil.copy("/etc/ntp.conf", "/etc/ntp.conf.ipasave")
fd = open("/etc/ntp.conf", "w")
fd.write(nc)
fd.close()
2008-03-31 16:34:40 -05:00
shutil.copy("/etc/sysconfig/ntpd", "/etc/sysconfig/ntpd.ipasave")
fd = open("/etc/sysconfig/ntpd", "w")
fd.write(ntp_sysconfig)
fd.close()
# Set the ntpd to start on boot
os.system("/sbin/chkconfig ntpd on")
2008-03-31 16:34:40 -05:00
# Restart ntpd
os.system("/sbin/service ntpd restart")
def parse_options():
parser = OptionParser(version=VERSION)
parser.add_option("--server", dest="server", help="IPA server")
parser.add_option("-d", "--debug", dest="debug", action="store_true",
default=False, help="print debugging information")
parser.add_option("-U", "--unattended", dest="unattended",
action="store_true",
help="unattended installation never prompts the user")
parser.add_option("-N", "--no-ntp", action="store_false",
help="do not configure ntp", default=True, dest="conf_ntp")
options, args = parser.parse_args()
if not options.server:
2008-03-27 13:03:04 -05:00
parser.error("must provide an IPA server name with --server")
return options
def ask_for_confirmation(message):
yesno = raw_input(message + " [y/N]: ")
if not yesno or yesno.lower()[0] != "y":
return False
print "\n"
return True
def logging_setup(options):
standard_logging_setup('ipaclient-install.log', debug=options.debug)
def main():
options = parse_options()
logging_setup(options)
dnsok = True
ipasrv = ipaserver(options.server)
ret = ipasrv.check()
if ret == False:
print "Failed to verify that ["+options.server+"] is an IPA Server, aborting!"
return -1
print "IPA Server verified."
print "Realm: "+ipasrv.getRealmName()
print "DNS Domain: "+ipasrv.getDomainName()
print "IPA Server: "+ipasrv.getServerName()
print "BaseDN: "+ipasrv.getBaseDN()
print "\n"
if not options.unattended and not ask_for_confirmation("Continue to configure the system with these values?"):
return 1
# Configure ipa.conf
ipaconf = ipachangeconf.IPAChangeConf("IPA Installer")
ipaconf.setOptionAssignment(" = ")
ipaconf.setSectionNameDelimiters(("[","]"))
opts = [{'name':'comment', 'type':'comment', 'value':'File modified by ipa-client-install'},
{'name':'empty', 'type':'empty'}]
#[global]
defopts = [{'name':'xmlrpc_uri', 'type':'option', 'value':'https://%s/ipa/xml' % ipasrv.getServerName()},
{'name':'realm', 'type':'option', 'value':ipasrv.getRealmName()}]
opts.append({'name':'global', 'type':'section', 'value':defopts})
opts.append({'name':'empty', 'type':'empty'})
ipaconf.newConf("/etc/ipa/default.conf", opts)
# Configure ldap.conf
ldapconf = ipachangeconf.IPAChangeConf("IPA Installer")
ldapconf.setOptionAssignment(" ")
opts = [{'name':'comment', 'type':'comment', 'value':'File modified by ipa-client-install'},
{'name':'empty', 'type':'empty'},
{'name':'ldap_version', 'type':'option', 'value':'3'},
2008-04-02 10:57:52 -05:00
{'name':'base', 'type':'option', 'value':ipasrv.getBaseDN()},
{'name':'empty', 'type':'empty'},
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
{'name':'nss_base_passwd', 'type':'option', 'value':str(DN(('cn', 'users'), ('cn', 'accounts'), ipasrv.getBaseDN()))+'?sub'},
{'name':'nss_base_group', 'type':'option', 'value':str(DN(('cn', 'users'), ('cn', 'accounts'), ipasrv.getBaseDN()))+'?sub'},
{'name':'nss_schema', 'type':'option', 'value':'rfc2307bis'},
{'name':'nss_map_attribute', 'type':'option', 'value':'uniqueMember member'},
{'name':'nss_initgroups_ignoreusers', 'type':'option', 'value':'root,dirsrv'},
{'name':'empty', 'type':'empty'},
{'name':'nss_reconnect_maxsleeptime', 'type':'option', 'value':'8'},
{'name':'nss_reconnect_sleeptime', 'type':'option', 'value':'1'},
{'name':'bind_timelimit', 'type':'option', 'value':'5'},
{'name':'timelimit', 'type':'option', 'value':'15'},
{'name':'empty', 'type':'empty'},
{'name':'uri', 'type':'option', 'value':'ldap://'+ipasrv.getServerName()},
{'name':'empty', 'type':'empty'}]
try:
ldapconf.newConf("/etc/ldap.conf", opts)
except Exception, e:
print "Configuration failed: " + str(e)
return 1
if not "" == ipasrv.getRealmName():
#Configure krb5.conf
krbconf = ipachangeconf.IPAChangeConf("IPA Installer")
krbconf.setOptionAssignment(" = ")
krbconf.setSectionNameDelimiters(("[","]"))
krbconf.setSubSectionDelimiters(("{","}"))
krbconf.setIndent((""," "," "))
opts = [{'name':'comment', 'type':'comment', 'value':'File modified by ipa-client-install'},
{'name':'empty', 'type':'empty'}]
#[libdefaults]
libopts = [{'name':'default_realm', 'type':'option', 'value':ipasrv.getRealmName()}]
libopts.append({'name':'dns_lookup_realm', 'type':'option', 'value':'false'})
libopts.append({'name':'dns_lookup_kdc', 'type':'option', 'value':'false'})
libopts.append({'name':'ticket_lifetime', 'type':'option', 'value':'24h'})
libopts.append({'name':'forwardable', 'type':'option', 'value':'yes'})
opts.append({'name':'libdefaults', 'type':'section', 'value':libopts})
opts.append({'name':'empty', 'type':'empty'})
#[realms]
kropts =[{'name':'kdc', 'type':'option', 'value':ipasrv.getServerName()+':88'},
{'name':'admin_server', 'type':'option', 'value':ipasrv.getServerName()+':749'},
{'name':'default_domain', 'type':'option', 'value':ipasrv.getDomainName()}]
ropts = [{'name':ipasrv.getRealmName(), 'type':'subsection', 'value':kropts}]
opts.append({'name':'realms', 'type':'section', 'value':ropts})
opts.append({'name':'empty', 'type':'empty'})
#[domain_realm]
dropts = [{'name':'.'+ipasrv.getDomainName(), 'type':'option', 'value':ipasrv.getRealmName()},
{'name':ipasrv.getDomainName(), 'type':'option', 'value':ipasrv.getRealmName()}]
opts.append({'name':'domain_realm', 'type':'section', 'value':dropts})
opts.append({'name':'empty', 'type':'empty'})
#[appdefaults]
pamopts = [{'name':'debug', 'type':'option', 'value':'false'},
{'name':'ticket_lifetime', 'type':'option', 'value':'36000'},
{'name':'renew_lifetime', 'type':'option', 'value':'36000'},
{'name':'forwardable', 'type':'option', 'value':'true'},
{'name':'krb4_convert', 'type':'option', 'value':'false'}]
appopts = [{'name':'pam', 'type':'subsection', 'value':pamopts}]
opts.append({'name':'appdefaults', 'type':'section', 'value':appopts})
krbconf.newConf("/etc/krb5.conf", opts);
#Modify nsswitch to add nss_ldap
os.system("/usr/sbin/authconfig --enableldap --kickstart")
#Modify pam to add pam_krb5
os.system("/usr/sbin/authconfig --enablekrb5 --kickstart")
if options.conf_ntp:
config_ntp(ipasrv.getServerName())
print "Client configuration complete."
return 0
sys.exit(main())