freeipa/ipalib/plugins/trust.py

690 lines
26 KiB
Python
Raw Normal View History

# Authors:
# Alexander Bokovoy <abokovoy@redhat.com>
# Martin Kosek <mkosek@redhat.com>
#
# Copyright (C) 2011 Red Hat
# see file 'COPYING' for use and warranty information
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from ipalib.plugins.baseldap import *
from ipalib.plugins.dns import dns_container_exists
from ipalib import api, Str, StrEnum, Password, DefaultFrom, _, ngettext, Object
from ipalib.parameters import Enum
from ipalib import Command
from ipalib import errors
from ipapython import ipautil
from ipalib import util
try:
import pysss_murmur #pylint: disable=F0401
_murmur_installed = True
except Exception, e:
_murmur_installed = False
if api.env.in_server and api.env.context in ['lite', 'server']:
try:
import ipaserver.dcerpc #pylint: disable=F0401
_bindings_installed = True
except ImportError:
_bindings_installed = False
__doc__ = _("""
Cross-realm trusts
Manage trust relationship between IPA and Active Directory domains.
In order to allow users from a remote domain to access resources in IPA
domain, trust relationship needs to be established. Currently IPA supports
only trusts between IPA and Active Directory domains under control of Windows
Server 2008 or later, with functional level 2008 or later.
Please note that DNS on both IPA and Active Directory domain sides should be
configured properly to discover each other. Trust relationship relies on
ability to discover special resources in the other domain via DNS records.
Examples:
1. Establish cross-realm trust with Active Directory using AD administrator
credentials:
ipa trust-add --type=ad <ad.domain> --admin <AD domain administrator> --password
2. List all existing trust relationships:
ipa trust-find
3. Show details of the specific trust relationship:
ipa trust-show <ad.domain>
4. Delete existing trust relationship:
ipa trust-del <ad.domain>
Once trust relationship is established, remote users will need to be mapped
to local POSIX groups in order to actually use IPA resources. The mapping should
be done via use of external membership of non-POSIX group and then this group
should be included into one of local POSIX groups.
Example:
1. Create group for the trusted domain admins' mapping and their local POSIX group:
ipa group-add --desc='<ad.domain> admins external map' ad_admins_external --external
ipa group-add --desc='<ad.domain> admins' ad_admins
2. Add security identifier of Domain Admins of the <ad.domain> to the ad_admins_external
group:
ipa group-add-member ad_admins_external --external 'AD\\Domain Admins'
3. Allow members of ad_admins_external group to be associated with ad_admins POSIX group:
ipa group-add-member ad_admins --groups ad_admins_external
4. List members of external members of ad_admins_external group to see their SIDs:
ipa group-show ad_admins_external
GLOBAL TRUST CONFIGURATION
When IPA AD trust subpackage is installed and ipa-adtrust-install is run,
a local domain configuration (SID, GUID, NetBIOS name) is generated. These
identifiers are then used when communicating with a trusted domain of the
particular type.
1. Show global trust configuration for Active Directory type of trusts:
ipa trustconfig-show --type ad
2. Modify global configuration for all trusts of Active Directory type and set
a different fallback primary group (fallback primary group GID is used as
a primary user GID if user authenticating to IPA domain does not have any other
primary GID already set):
ipa trustconfig-mod --type ad --fallback-primary-group "alternative AD group"
3. Change primary fallback group back to default hidden group (any group with
posixGroup object class is allowed):
ipa trustconfig-mod --type ad --fallback-primary-group "Default SMB Group"
""")
trust_output_params = (
Str('trustdirection',
label=_('Trust direction')),
Str('trusttype',
label=_('Trust type')),
Str('truststatus',
label=_('Trust status')),
)
_trust_type_dict = {1 : _('Non-Active Directory domain'),
2 : _('Active Directory domain'),
3 : _('RFC4120-compliant Kerberos realm')}
_trust_direction_dict = {1 : _('Trusting forest'),
2 : _('Trusted forest'),
3 : _('Two-way trust')}
_trust_status_dict = {True : _('Established and verified'),
False : _('Waiting for confirmation by remote side')}
_trust_type_dict_unknown = _('Unknown')
_trust_type_option = StrEnum('trust_type',
cli_name='type',
label=_('Trust type (ad for Active Directory, default)'),
values=(u'ad',),
default=u'ad',
autofill=True,
)
def trust_type_string(level):
"""
Returns a string representing a type of the trust. The original field is an enum:
LSA_TRUST_TYPE_DOWNLEVEL = 0x00000001,
LSA_TRUST_TYPE_UPLEVEL = 0x00000002,
LSA_TRUST_TYPE_MIT = 0x00000003
"""
string = _trust_type_dict.get(int(level), _trust_type_dict_unknown)
return unicode(string)
def trust_direction_string(level):
"""
Returns a string representing a direction of the trust. The original field is a bitmask taking two bits in use
LSA_TRUST_DIRECTION_INBOUND = 0x00000001,
LSA_TRUST_DIRECTION_OUTBOUND = 0x00000002
"""
string = _trust_direction_dict.get(int(level), _trust_type_dict_unknown)
return unicode(string)
def trust_status_string(level):
string = _trust_status_dict.get(level, _trust_type_dict_unknown)
return unicode(string)
class trust(LDAPObject):
"""
Trust object.
"""
trust_types = ('ad', 'ipa')
container_dn = api.env.container_trusts
object_name = _('trust')
object_name_plural = _('trusts')
object_class = ['ipaNTTrustedDomain']
default_attributes = ['cn', 'ipantflatname', 'ipanttrusteddomainsid',
'ipanttrusttype', 'ipanttrustattributes', 'ipanttrustdirection', 'ipanttrustpartner',
'ipantauthtrustoutgoing', 'ipanttrustauthincoming', 'ipanttrustforesttrustinfo',
'ipanttrustposixoffset', 'ipantsupportedencryptiontypes' ]
search_display_attributes = ['cn', 'ipantflatname',
'ipanttrusteddomainsid', 'ipanttrusttype' ]
label = _('Trusts')
label_singular = _('Trust')
takes_params = (
Str('cn',
cli_name='realm',
label=_('Realm name'),
primary_key=True,
),
Str('ipantflatname',
cli_name='flat_name',
label=_('Domain NetBIOS name'),
flags=['no_create', 'no_update']),
Str('ipanttrusteddomainsid',
cli_name='sid',
label=_('Domain Security Identifier'),
flags=['no_create', 'no_update']),
Str('ipantsidblacklistincoming*',
csv=True,
cli_name='sid_blacklist_incoming',
label=_('SID blacklist incoming'),
flags=['no_create']),
Str('ipantsidblacklistoutgoing*',
csv=True,
cli_name='sid_blacklist_outgoing',
label=_('SID blacklist outgoing'),
flags=['no_create']),
)
def validate_sid_blacklists(self, entry_attrs):
if not _bindings_installed:
# SID validator is not available, return
# Even if invalid SID gets in the trust entry, it won't crash
# the validation process as it is translated to SID S-0-0
return
for attr in ('ipantsidblacklistincoming', 'ipantsidblacklistoutgoing'):
values = entry_attrs.get(attr)
if not values:
continue
for value in values:
if not ipaserver.dcerpc.is_sid_valid(value):
raise errors.ValidationError(name=attr,
error=_("invalid SID: %(value)s") % dict(value=value))
def make_trust_dn(env, trust_type, dn):
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
assert isinstance(dn, DN)
if trust_type in trust.trust_types:
container_dn = DN(('cn', trust_type), env.container_trusts, env.basedn)
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
return DN(dn[0], container_dn)
return dn
class trust_add(LDAPCreate):
__doc__ = _('''
Add new trust to use.
This command establishes trust relationship to another domain
which becomes 'trusted'. As result, users of the trusted domain
may access resources of this domain.
Only trusts to Active Directory domains are supported right now.
The command can be safely run multiple times against the same domain,
this will cause change to trust relationship credentials on both
sides.
''')
takes_options = LDAPCreate.takes_options + (
_trust_type_option,
Str('realm_admin?',
cli_name='admin',
label=_("Active Directory domain administrator"),
),
Password('realm_passwd?',
cli_name='password',
label=_("Active directory domain administrator's password"),
confirm=False,
),
Str('realm_server?',
cli_name='server',
label=_('Domain controller for the Active Directory domain (optional)'),
),
Password('trust_secret?',
cli_name='trust_secret',
label=_('Shared secret for the trust'),
confirm=False,
),
Int('base_id?',
cli_name='base_id',
label=_('First Posix ID of the range reserved for the trusted domain'),
),
Int('range_size?',
cli_name='range_size',
label=_('Size of the ID range reserved for the trusted domain'),
default=200000,
autofill=True
),
)
msg_summary = _('Added Active Directory trust for realm "%(value)s"')
has_output_params = LDAPCreate.has_output_params + trust_output_params
def execute(self, *keys, **options):
if not _murmur_installed and 'base_id' not in options:
raise errors.ValidationError(name=_('missing base_id'),
error=_('pysss_murmur is not available on the server ' \
'and no base-id is given.'))
if 'trust_type' in options:
if options['trust_type'] == u'ad':
result = self.execute_ad(*keys, **options)
else:
raise errors.ValidationError(name=_('trust type'), error=_('only "ad" is supported'))
else:
raise errors.RequirementError(name=_('trust type'))
self.add_range(*keys, **options)
trust_filter = "cn=%s" % result['value']
ldap = self.obj.backend
(trusts, truncated) = ldap.find_entries(
base_dn = DN(api.env.container_trusts, api.env.basedn),
filter = trust_filter)
result['result'] = entry_to_dict(trusts[0][1], **options)
result['result']['trusttype'] = [trust_type_string(result['result']['ipanttrusttype'][0])]
result['result']['trustdirection'] = [trust_direction_string(result['result']['ipanttrustdirection'][0])]
result['result']['truststatus'] = [trust_status_string(result['verified'])]
del result['verified']
return result
def add_range(self, *keys, **options):
new_obj = api.Command['trust_show'](keys[-1])
dom_sid = new_obj['result']['ipanttrusteddomainsid'][0];
range_name = keys[-1].upper()+'_id_range'
try:
2012-08-23 07:17:34 -05:00
old_range = api.Command['idrange_show'](range_name)
except errors.NotFound, e:
old_range = None
if old_range:
old_dom_sid = old_range['result']['ipanttrusteddomainsid'][0];
if old_dom_sid == dom_sid:
return
raise errors.ValidationError(name=_('range exists'),
error=_('ID range with the same name but different ' \
'domain SID already exists. The ID range for ' \
'the new trusted domain must be created manually.'))
if 'base_id' in options:
base_id = options['base_id']
else:
base_id = 200000 + (pysss_murmur.murmurhash3(dom_sid, len(dom_sid), 0xdeadbeef) % 10000) * 200000
# Add new ID range
api.Command['idrange_add'](range_name,
ipabaseid=base_id,
ipaidrangesize=options['range_size'],
ipabaserid=0,
ipanttrusteddomainsid=dom_sid)
def execute_ad(self, *keys, **options):
# Join domain using full credentials and with random trustdom
# secret (will be generated by the join method)
trustinstance = None
if not _bindings_installed:
raise errors.NotFound(name=_('AD Trust setup'),
reason=_('''Cannot perform join operation without Samba 4 support installed.
Make sure you have installed server-trust-ad sub-package of IPA'''))
if 'realm_server' not in options:
realm_server = None
else:
realm_server = options['realm_server']
trustinstance = ipaserver.dcerpc.TrustDomainJoins(self.api)
if not trustinstance.configured:
raise errors.NotFound(name=_('AD Trust setup'),
reason=_('''Cannot perform join operation without own domain configured.
Make sure you have run ipa-adtrust-install on the IPA server first'''))
try:
existing_trust = api.Command['trust_show'](keys[-1])
summary = _('Re-established trust to domain "%(value)s"')
except errors.NotFound:
summary = self.msg_summary
# 1. Full access to the remote domain. Use admin credentials and
# generate random trustdom password to do work on both sides
if 'realm_admin' in options:
realm_admin = options['realm_admin']
names = realm_admin.split('@')
if len(names) > 1:
# realm admin name is in UPN format, user@realm, check that
# realm is the same as the one that we are attempting to trust
if keys[-1].lower() != names[-1].lower():
raise errors.ValidationError(name=_('AD Trust setup'),
error=_('Trusted domain and administrator account use different realms'))
realm_admin = names[0]
if 'realm_passwd' not in options:
raise errors.ValidationError(name=_('AD Trust setup'), error=_('Realm administrator password should be specified'))
realm_passwd = options['realm_passwd']
try:
result = trustinstance.join_ad_full_credentials(keys[-1], realm_server, realm_admin, realm_passwd)
except errors.NotFound, e:
error_message=_("Unable to resolve domain controller for '%s' domain. ") % (keys[-1])
instructions=[]
if dns_container_exists(self.obj.backend):
try:
dns_zone = api.Command.dnszone_show(keys[-1])['result']
if ('idnsforwardpolicy' in dns_zone) and dns_zone['idnsforwardpolicy'][0] == u'only':
instructions.append(_("Forward policy is defined for it in IPA DNS, "
"perhaps forwarder points to incorrect host?"))
except (errors.NotFound, KeyError) as e:
instructions.append(_("IPA manages DNS, please verify "
"your DNS configuration and "
"make sure that service records "
"of the '%(domain)s' domain can "
"be resolved. Examples how to "
"configure DNS with CLI commands "
"or the Web UI can be found in "
"the documentation. " ) %
dict(domain=keys[-1]))
else:
instructions.append(_("Since IPA does not manage DNS records, ensure DNS "
"is configured to resolve '%(domain)s' domain from "
"IPA hosts and back.") % dict(domain=keys[-1]))
raise errors.NotFound(reason=error_message, instructions=instructions)
if result is None:
raise errors.ValidationError(name=_('AD Trust setup'),
error=_('Unable to verify write permissions to the AD'))
ret = dict(value=trustinstance.remote_domain.info['dns_domain'], verified=result['verified'])
ret['summary'] = summary % ret
return ret
# 2. We don't have access to the remote domain and trustdom password
# is provided. Do the work on our side and inform what to do on remote
# side.
if 'trust_secret' in options:
result = trustinstance.join_ad_ipa_half(keys[-1], realm_server, options['trust_secret'])
ret = dict(value=trustinstance.remote_domain.info['dns_domain'], verified=result['verified'])
ret['summary'] = summary % ret
return ret
raise errors.ValidationError(name=_('AD Trust setup'),
error=_('Not enough arguments specified to perform trust setup'))
class trust_del(LDAPDelete):
__doc__ = _('Delete a trust.')
msg_summary = _('Deleted trust "%(value)s"')
def pre_callback(self, ldap, dn, *keys, **options):
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
assert isinstance(dn, DN)
try:
result = self.api.Command.trust_show(keys[-1])
except errors.NotFound, e:
self.obj.handle_not_found(*keys)
return result['result']['dn']
class trust_mod(LDAPUpdate):
__doc__ = _("""
Modify a trust (for future use).
Currently only the default option to modify the LDAP attributes is
available. More specific options will be added in coming releases.
""")
msg_summary = _('Modified trust "%(value)s" '
'(change will be effective in 60 seconds)')
def pre_callback(self, ldap, dn, entry_attrs, attrs_list, *keys, **options):
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
assert isinstance(dn, DN)
result = None
try:
result = self.api.Command.trust_show(keys[-1])
except errors.NotFound, e:
self.obj.handle_not_found(*keys)
self.obj.validate_sid_blacklists(entry_attrs)
# TODO: we found the trust object, now modify it
return result['result']['dn']
class trust_find(LDAPSearch):
__doc__ = _('Search for trusts.')
has_output_params = LDAPSearch.has_output_params + trust_output_params
msg_summary = ngettext(
'%(count)d trust matched', '%(count)d trusts matched', 0
)
# Since all trusts types are stored within separate containers under 'cn=trusts',
# search needs to be done on a sub-tree scope
def pre_callback(self, ldap, filters, attrs_list, base_dn, scope, *args, **options):
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
assert isinstance(base_dn, DN)
return (filters, base_dn, ldap.SCOPE_SUBTREE)
def post_callback(self, ldap, entries, truncated, *args, **options):
if options.get('pkey_only', False):
return truncated
for entry in entries:
(dn, attrs) = entry
attrs['trusttype'] = trust_type_string(attrs['ipanttrusttype'][0])
return truncated
class trust_show(LDAPRetrieve):
__doc__ = _('Display information about a trust.')
has_output_params = LDAPRetrieve.has_output_params + trust_output_params
def execute(self, *keys, **options):
error = None
result = None
for trust_type in trust.trust_types:
options['trust_show_type'] = trust_type
try:
result = super(trust_show, self).execute(*keys, **options)
except errors.NotFound, e:
result = None
error = e
if result:
result['result']['trusttype'] = [trust_type_string(result['result']['ipanttrusttype'][0])]
result['result']['trustdirection'] = [trust_direction_string(result['result']['ipanttrustdirection'][0])]
break
if error or not result:
self.obj.handle_not_found(*keys)
return result
def pre_callback(self, ldap, dn, entry_attrs, *keys, **options):
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
assert isinstance(dn, DN)
if 'trust_show_type' in options:
return make_trust_dn(self.env, options['trust_show_type'], dn)
return dn
api.register(trust)
api.register(trust_add)
api.register(trust_mod)
api.register(trust_del)
api.register(trust_find)
api.register(trust_show)
_trustconfig_dn = {
u'ad': DN(('cn', api.env.domain), api.env.container_cifsdomains, api.env.basedn),
}
class trustconfig(LDAPObject):
"""
Trusts global configuration object
"""
object_name = _('trust configuration')
default_attributes = [
'cn', 'ipantsecurityidentifier', 'ipantflatname', 'ipantdomainguid',
'ipantfallbackprimarygroup',
]
label = _('Global Trust Configuration')
label_singular = _('Global Trust Configuration')
takes_params = (
Str('cn',
label=_('Domain'),
flags=['no_update'],
),
Str('ipantsecurityidentifier',
label=_('Security Identifier'),
flags=['no_update'],
),
Str('ipantflatname',
label=_('NetBIOS name'),
flags=['no_update'],
),
Str('ipantdomainguid',
label=_('Domain GUID'),
flags=['no_update'],
),
Str('ipantfallbackprimarygroup',
cli_name='fallback_primary_group',
label=_('Fallback primary group'),
),
)
def get_dn(self, *keys, **kwargs):
trust_type = kwargs.get('trust_type')
if trust_type is None:
raise errors.RequirementError(name='trust_type')
try:
return _trustconfig_dn[kwargs['trust_type']]
except KeyError:
raise errors.ValidationError(name='trust_type',
error=_("unsupported trust type"))
def _normalize_groupdn(self, entry_attrs):
"""
Checks that group with given name/DN exists and updates the entry_attrs
"""
if 'ipantfallbackprimarygroup' not in entry_attrs:
return
group = entry_attrs['ipantfallbackprimarygroup']
if isinstance(group, (list, tuple)):
group = group[0]
if group is None:
return
try:
dn = DN(group)
# group is in a form of a DN
try:
self.backend.get_entry(dn)
except errors.NotFound:
self.api.Object['group'].handle_not_found(group)
# DN is valid, we can just return
return
except ValueError:
# The search is performed for groups with "posixgroup" objectclass
# and not "ipausergroup" so that it can also match groups like
# "Default SMB Group" which does not have this objectclass.
try:
(dn, group_entry) = self.backend.find_entry_by_attr(
self.api.Object['group'].primary_key.name,
group,
['posixgroup'],
[''],
DN(api.env.container_group, api.env.basedn))
except errors.NotFound:
self.api.Object['group'].handle_not_found(group)
else:
entry_attrs['ipantfallbackprimarygroup'] = [dn]
def _convert_groupdn(self, entry_attrs, options):
"""
Convert an group dn into a name. As we use CN as user RDN, its value
can be extracted from the DN without further LDAP queries.
"""
if options.get('raw', False):
return
try:
groupdn = entry_attrs['ipantfallbackprimarygroup'][0]
except (IndexError, KeyError):
groupdn = None
if groupdn is None:
return
assert isinstance(groupdn, DN)
entry_attrs['ipantfallbackprimarygroup'] = [groupdn[0][0].value]
api.register(trustconfig)
class trustconfig_mod(LDAPUpdate):
__doc__ = _('Modify global trust configuration.')
takes_options = LDAPUpdate.takes_options + (_trust_type_option,)
msg_summary = _('Modified "%(value)s" trust configuration')
def pre_callback(self, ldap, dn, entry_attrs, attrs_list, *keys, **options):
self.obj._normalize_groupdn(entry_attrs)
return dn
def execute(self, *keys, **options):
result = super(trustconfig_mod, self).execute(*keys, **options)
result['value'] = options['trust_type']
return result
def post_callback(self, ldap, dn, entry_attrs, *keys, **options):
self.obj._convert_groupdn(entry_attrs, options)
return dn
api.register(trustconfig_mod)
class trustconfig_show(LDAPRetrieve):
__doc__ = _('Show global trust configuration.')
takes_options = LDAPRetrieve.takes_options + (_trust_type_option,)
def execute(self, *keys, **options):
result = super(trustconfig_show, self).execute(*keys, **options)
result['value'] = options['trust_type']
return result
def post_callback(self, ldap, dn, entry_attrs, *keys, **options):
self.obj._convert_groupdn(entry_attrs, options)
return dn
api.register(trustconfig_show)