freeipa/ipaserver/install/installutils.py

1402 lines
48 KiB
Python
Raw Normal View History

# Authors: Simo Sorce <ssorce@redhat.com>
#
# Copyright (C) 2007 Red Hat
# see file 'COPYING' for use and warranty information
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
from __future__ import absolute_import
from __future__ import print_function
import errno
import socket
import getpass
import gssapi
import ldif
0000-12-31 18:09:24 -05:50
import os
import re
import fileinput
import sys
import tempfile
import shutil
import traceback
import textwrap
from contextlib import contextmanager
from dns import resolver, rdatatype
from dns.exception import DNSException
import ldap
import ldapurl
import six
# pylint: disable=import-error
from six.moves.configparser import SafeConfigParser, NoOptionError
# pylint: enable=import-error
import ipaplatform
from ipapython import ipautil, sysrestore, admintool, version
from ipapython.admintool import ScriptError
from ipapython.ipa_log_manager import root_logger
from ipalib.util import validate_hostname
from ipapython import config
from ipalib import errors, x509
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
from ipapython.dn import DN
from ipaserver.install import certs, service, sysupgrade
from ipaplatform import services
from ipaplatform.paths import paths
from ipaplatform.tasks import tasks
from ipapython import dnsutil
if six.PY3:
unicode = str
# Used to determine install status
IPA_MODULES = [
'httpd', 'kadmin', 'dirsrv', 'pki-tomcatd', 'install', 'krb5kdc', 'ntpd',
'named', 'ipa_memcached']
class BadHostError(Exception):
pass
class HostLookupError(BadHostError):
pass
class HostForwardLookupError(HostLookupError):
pass
class HostReverseLookupError(HostLookupError):
pass
class HostnameLocalhost(HostLookupError):
pass
class UpgradeVersionError(Exception):
pass
class UpgradePlatformError(UpgradeVersionError):
pass
class UpgradeDataOlderVersionError(UpgradeVersionError):
pass
class UpgradeDataNewerVersionError(UpgradeVersionError):
pass
class UpgradeMissingVersionError(UpgradeVersionError):
pass
class ReplicaConfig(object):
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
def __init__(self, top_dir=None):
self.realm_name = ""
self.domain_name = ""
self.master_host_name = ""
self.dirman_password = ""
self.host_name = ""
self.dir = ""
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
self.subject_base = None
self.setup_ca = False
self.version = 0
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
self.top_dir = top_dir
Use DN objects instead of strings * Convert every string specifying a DN into a DN object * Every place a dn was manipulated in some fashion it was replaced by the use of DN operators * Add new DNParam parameter type for parameters which are DN's * DN objects are used 100% of the time throughout the entire data pipeline whenever something is logically a dn. * Many classes now enforce DN usage for their attributes which are dn's. This is implmented via ipautil.dn_attribute_property(). The only permitted types for a class attribute specified to be a DN are either None or a DN object. * Require that every place a dn is used it must be a DN object. This translates into lot of:: assert isinstance(dn, DN) sprinkled through out the code. Maintaining these asserts is valuable to preserve DN type enforcement. The asserts can be disabled in production. The goal of 100% DN usage 100% of the time has been realized, these asserts are meant to preserve that. The asserts also proved valuable in detecting functions which did not obey their function signatures, such as the baseldap pre and post callbacks. * Moved ipalib.dn to ipapython.dn because DN class is shared with all components, not just the server which uses ipalib. * All API's now accept DN's natively, no need to convert to str (or unicode). * Removed ipalib.encoder and encode/decode decorators. Type conversion is now explicitly performed in each IPASimpleLDAPObject method which emulates a ldap.SimpleLDAPObject method. * Entity & Entry classes now utilize DN's * Removed __getattr__ in Entity & Entity clases. There were two problems with it. It presented synthetic Python object attributes based on the current LDAP data it contained. There is no way to validate synthetic attributes using code checkers, you can't search the code to find LDAP attribute accesses (because synthetic attriutes look like Python attributes instead of LDAP data) and error handling is circumscribed. Secondly __getattr__ was hiding Python internal methods which broke class semantics. * Replace use of methods inherited from ldap.SimpleLDAPObject via IPAdmin class with IPAdmin methods. Directly using inherited methods was causing us to bypass IPA logic. Mostly this meant replacing the use of search_s() with getEntry() or getList(). Similarly direct access of the LDAP data in classes using IPAdmin were replaced with calls to getValue() or getValues(). * Objects returned by ldap2.find_entries() are now compatible with either the python-ldap access methodology or the Entity/Entry access methodology. * All ldap operations now funnel through the common IPASimpleLDAPObject giving us a single location where we interface to python-ldap and perform conversions. * The above 4 modifications means we've greatly reduced the proliferation of multiple inconsistent ways to perform LDAP operations. We are well on the way to having a single API in IPA for doing LDAP (a long range goal). * All certificate subject bases are now DN's * DN objects were enhanced thusly: - find, rfind, index, rindex, replace and insert methods were added - AVA, RDN and DN classes were refactored in immutable and mutable variants, the mutable variants are EditableAVA, EditableRDN and EditableDN. By default we use the immutable variants preserving important semantics. To edit a DN cast it to an EditableDN and cast it back to DN when done editing. These issues are fully described in other documentation. - first_key_match was removed - DN equalty comparison permits comparison to a basestring * Fixed ldapupdate to work with DN's. This work included: - Enhance test_updates.py to do more checking after applying update. Add test for update_from_dict(). Convert code to use unittest classes. - Consolidated duplicate code. - Moved code which should have been in the class into the class. - Fix the handling of the 'deleteentry' update action. It's no longer necessary to supply fake attributes to make it work. Detect case where subsequent update applies a change to entry previously marked for deletetion. General clean-up and simplification of the 'deleteentry' logic. - Rewrote a couple of functions to be clearer and more Pythonic. - Added documentation on the data structure being used. - Simplfy the use of update_from_dict() * Removed all usage of get_schema() which was being called prior to accessing the .schema attribute of an object. If a class is using internal lazy loading as an optimization it's not right to require users of the interface to be aware of internal optimization's. schema is now a property and when the schema property is accessed it calls a private internal method to perform the lazy loading. * Added SchemaCache class to cache the schema's from individual servers. This was done because of the observation we talk to different LDAP servers, each of which may have it's own schema. Previously we globally cached the schema from the first server we connected to and returned that schema in all contexts. The cache includes controls to invalidate it thus forcing a schema refresh. * Schema caching is now senstive to the run time context. During install and upgrade the schema can change leading to errors due to out-of-date cached schema. The schema cache is refreshed in these contexts. * We are aware of the LDAP syntax of all LDAP attributes. Every attribute returned from an LDAP operation is passed through a central table look-up based on it's LDAP syntax. The table key is the LDAP syntax it's value is a Python callable that returns a Python object matching the LDAP syntax. There are a handful of LDAP attributes whose syntax is historically incorrect (e.g. DistguishedNames that are defined as DirectoryStrings). The table driven conversion mechanism is augmented with a table of hard coded exceptions. Currently only the following conversions occur via the table: - dn's are converted to DN objects - binary objects are converted to Python str objects (IPA convention). - everything else is converted to unicode using UTF-8 decoding (IPA convention). However, now that the table driven conversion mechanism is in place it would be trivial to do things such as converting attributes which have LDAP integer syntax into a Python integer, etc. * Expected values in the unit tests which are a DN no longer need to use lambda expressions to promote the returned value to a DN for equality comparison. The return value is automatically promoted to a DN. The lambda expressions have been removed making the code much simpler and easier to read. * Add class level logging to a number of classes which did not support logging, less need for use of root_logger. * Remove ipaserver/conn.py, it was unused. * Consolidated duplicate code wherever it was found. * Fixed many places that used string concatenation to form a new string rather than string formatting operators. This is necessary because string formatting converts it's arguments to a string prior to building the result string. You can't concatenate a string and a non-string. * Simplify logic in rename_managed plugin. Use DN operators to edit dn's. * The live version of ipa-ldap-updater did not generate a log file. The offline version did, now both do. https://fedorahosted.org/freeipa/ticket/1670 https://fedorahosted.org/freeipa/ticket/1671 https://fedorahosted.org/freeipa/ticket/1672 https://fedorahosted.org/freeipa/ticket/1673 https://fedorahosted.org/freeipa/ticket/1674 https://fedorahosted.org/freeipa/ticket/1392 https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
subject_base = ipautil.dn_attribute_property('_subject_base')
def get_fqdn():
fqdn = ""
try:
fqdn = socket.getfqdn()
except Exception:
try:
fqdn = socket.gethostname()
except Exception:
fqdn = ""
return fqdn
def verify_fqdn(host_name, no_host_dns=False, local_hostname=True):
"""
Run fqdn checks for given host:
- test hostname format
- test that hostname is fully qualified
- test forward and reverse hostname DNS lookup
Raises `BadHostError` or derived Exceptions if there is an error
:param host_name: The host name to verify.
:param no_host_dns: If true, skip DNS resolution tests of the host name.
:param local_hostname: If true, run additional checks for local hostnames
"""
if len(host_name.split(".")) < 2 or host_name == "localhost.localdomain":
raise BadHostError("Invalid hostname '%s', must be fully-qualified." % host_name)
if host_name != host_name.lower():
raise BadHostError("Invalid hostname '%s', must be lower-case." % host_name)
if ipautil.valid_ip(host_name):
raise BadHostError("IP address not allowed as a hostname")
try:
# make sure that the host name meets the requirements in ipalib
validate_hostname(host_name)
except ValueError as e:
raise BadHostError("Invalid hostname '%s', %s" % (host_name, unicode(e)))
if local_hostname:
try:
root_logger.debug('Check if %s is a primary hostname for localhost', host_name)
ex_name = socket.gethostbyaddr(host_name)
root_logger.debug('Primary hostname for localhost: %s', ex_name[0])
if host_name != ex_name[0]:
raise HostLookupError("The host name %s does not match the primary host name %s. "\
"Please check /etc/hosts or DNS name resolution" % (host_name, ex_name[0]))
except socket.gaierror:
pass
except socket.error as e:
root_logger.debug(
'socket.gethostbyaddr() error: %d: %s',
e.errno, e.strerror) # pylint: disable=no-member
if no_host_dns:
print("Warning: skipping DNS resolution of host", host_name)
return
try:
root_logger.debug('Search DNS for %s', host_name)
hostaddr = socket.getaddrinfo(host_name, None)
except Exception as e:
root_logger.debug('Search failed: %s', e)
raise HostForwardLookupError("Unable to resolve host name, check /etc/hosts or DNS name resolution")
if len(hostaddr) == 0:
raise HostForwardLookupError("Unable to resolve host name, check /etc/hosts or DNS name resolution")
# Verify this is NOT a CNAME
try:
root_logger.debug('Check if %s is not a CNAME', host_name)
resolver.query(host_name, rdatatype.CNAME)
raise HostReverseLookupError("The IPA Server Hostname cannot be a CNAME, only A and AAAA names are allowed.")
except DNSException:
pass
# list of verified addresses to prevent multiple searches for the same address
verified = set()
for a in hostaddr:
address = a[4][0]
if address in verified:
continue
if address == '127.0.0.1' or address == '::1':
raise HostForwardLookupError("The IPA Server hostname must not resolve to localhost (%s). A routable IP address must be used. Check /etc/hosts to see if %s is an alias for %s" % (address, host_name, address))
try:
root_logger.debug('Check reverse address of %s', address)
revname = socket.gethostbyaddr(address)[0]
except Exception as e:
root_logger.debug('Check failed: %s', e)
root_logger.error(
"Unable to resolve the IP address %s to a host name, "
"check /etc/hosts and DNS name resolution", address)
else:
root_logger.debug('Found reverse name: %s', revname)
if revname != host_name:
root_logger.error(
"The host name %s does not match the value %s obtained "
"by reverse lookup on IP address %s", host_name, revname,
address)
verified.add(address)
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
def record_in_hosts(ip, host_name=None, conf_file=paths.HOSTS):
"""
Search record in /etc/hosts - static table lookup for hostnames
In case of match, returns a tuple of ip address and a list of
hostname aliases
When no record is matched, None is returned
:param ip: IP address
:param host_name: Optional hostname to search
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
:param conf_file: Optional path to the lookup table
"""
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
hosts = open(conf_file, 'r').readlines()
for line in hosts:
2011-02-15 10:51:18 -06:00
line = line.rstrip('\n')
fields = line.partition('#')[0].split()
if len(fields) == 0:
continue
2011-02-15 10:51:18 -06:00
try:
hosts_ip = fields[0]
names = fields[1:]
if hosts_ip != ip:
continue
if host_name is not None:
if host_name in names:
return (hosts_ip, names)
else:
return None
return (hosts_ip, names)
2011-02-15 10:51:18 -06:00
except IndexError:
print("Warning: Erroneous line '%s' in %s" % (line, conf_file))
2011-02-15 10:51:18 -06:00
continue
return None
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
def add_record_to_hosts(ip, host_name, conf_file=paths.HOSTS):
hosts_fd = open(conf_file, 'r+')
hosts_fd.seek(0, 2)
hosts_fd.write(ip+'\t'+host_name+' '+host_name.split('.')[0]+'\n')
hosts_fd.close()
def read_ip_addresses():
ips = []
print("Enter the IP address to use, or press Enter to finish.")
while True:
ip = ipautil.user_input("Please provide the IP address to be used for this host name", allow_empty = True)
if not ip:
break
try:
ip_parsed = ipautil.CheckedIPAddress(ip, match_local=True)
except Exception as e:
print("Error: Invalid IP Address %s: %s" % (ip, e))
continue
ips.append(ip_parsed)
return ips
def read_dns_forwarders():
addrs = []
if ipautil.user_input("Do you want to configure DNS forwarders?", True):
print("Following DNS servers are configured in /etc/resolv.conf: %s" %
", ".join(resolver.get_default_resolver().nameservers))
if ipautil.user_input("Do you want to configure these servers as DNS "
"forwarders?", True):
addrs = resolver.default_resolver.nameservers[:]
print("All DNS servers from /etc/resolv.conf were added. You can "
"enter additional addresses now:")
while True:
ip = ipautil.user_input("Enter an IP address for a DNS forwarder, "
"or press Enter to skip", allow_empty=True)
if not ip:
break
try:
ip_parsed = ipautil.CheckedIPAddress(ip, parse_netmask=False)
except Exception as e:
print("Error: Invalid IP Address %s: %s" % (ip, e))
print("DNS forwarder %s not added." % ip)
continue
print("DNS forwarder %s added. You may add another." % ip)
addrs.append(str(ip_parsed))
if not addrs:
print("No DNS forwarders configured")
return addrs
def get_password(prompt):
if os.isatty(sys.stdin.fileno()):
return getpass.getpass(prompt)
else:
sys.stdout.write(prompt)
sys.stdout.flush()
line = sys.stdin.readline()
if not line:
raise EOFError()
return line.rstrip()
def _read_password_default_validator(password):
if len(password) < 8:
raise ValueError("Password must be at least 8 characters long")
def read_password(user, confirm=True, validate=True, retry=True, validator=_read_password_default_validator):
correct = False
pwd = None
try:
while not correct:
if not retry:
correct = True
pwd = get_password(user + " password: ")
if not pwd:
continue
if validate:
try:
validator(pwd)
except ValueError as e:
print(str(e))
pwd = None
continue
if not confirm:
correct = True
continue
pwd_confirm = get_password("Password (confirm): ")
if pwd != pwd_confirm:
print("Password mismatch!")
print("")
pwd = None
else:
correct = True
except EOFError:
return None
finally:
print("")
return pwd
0000-12-31 18:09:24 -05:50
def update_file(filename, orig, subst):
if os.path.exists(filename):
st = os.stat(filename)
0000-12-31 18:09:24 -05:50
pattern = "%s" % re.escape(orig)
p = re.compile(pattern)
for line in fileinput.input(filename, inplace=1):
if not p.search(line):
sys.stdout.write(line)
else:
sys.stdout.write(p.sub(subst, line))
fileinput.close()
os.chown(filename, st.st_uid, st.st_gid) # reset perms
0000-12-31 18:09:24 -05:50
return 0
else:
print("File %s doesn't exist." % filename)
0000-12-31 18:09:24 -05:50
return 1
def set_directive(filename, directive, value, quotes=True, separator=' ',
quote_char='\"'):
"""Set a name/value pair directive in a configuration file.
A value of None means to drop the directive.
This has only been tested with nss.conf
:param directive: directive name
:param value: value of the directive
:param quotes: whether to quote `value` in `quote_char`. If true, then
the `quote_char` are first escaped to avoid unparseable directives
:param quote_char: the character used for quoting `value`
"""
def format_directive(directive, value, separator, quotes, quote_char):
directive_sep = "{directive}{separator}".format(directive=directive,
separator=separator)
transformed_value = value
if quotes:
transformed_value = "{quote}{value}{quote}".format(
quote=quote_char,
value="".join(ipautil.escape_seq(quote_char, value))
)
return "{directive_sep}{value}\n".format(
directive_sep=directive_sep, value=transformed_value)
valueset = False
st = os.stat(filename)
fd = open(filename)
newfile = []
for line in fd:
if line.lstrip().startswith(directive):
valueset = True
if value is not None:
newfile.append(
format_directive(
directive, value, separator, quotes, quote_char))
else:
newfile.append(line)
fd.close()
if not valueset:
if value is not None:
newfile.append(
format_directive(
directive, value, separator, quotes, quote_char))
fd = open(filename, "w")
fd.write("".join(newfile))
fd.close()
os.chown(filename, st.st_uid, st.st_gid) # reset perms
def get_directive(filename, directive, separator=' '):
"""
A rather inefficient way to get a configuration directive.
"""
fd = open(filename, "r")
for line in fd:
if line.lstrip().startswith(directive):
line = line.strip()
result = line.split(separator, 1)[1]
result = result.strip('"')
result = result.strip(' ')
fd.close()
return result
fd.close()
return None
def kadmin(command):
ipautil.run(["kadmin.local", "-q", command,
"-x", "ipa-setup-override-restrictions"])
def kadmin_addprinc(principal):
kadmin("addprinc -randkey " + principal)
def kadmin_modprinc(principal, options):
kadmin("modprinc " + options + " " + principal)
def create_keytab(path, principal):
try:
if ipautil.file_exists(path):
os.remove(path)
except os.error:
root_logger.critical("Failed to remove %s." % path)
kadmin("ktadd -k " + path + " " + principal)
def resolve_ip_addresses_nss(fqdn):
"""Get list of IP addresses for given host (using NSS/getaddrinfo).
:returns:
list of IP addresses as UnsafeIPAddress objects
"""
# make sure the name is fully qualified
# so search path from resolv.conf does not apply
fqdn = str(dnsutil.DNSName(fqdn).make_absolute())
try:
addrinfos = socket.getaddrinfo(fqdn, None,
socket.AF_UNSPEC, socket.SOCK_STREAM)
except socket.error as ex:
if ex.errno == socket.EAI_NODATA or ex.errno == socket.EAI_NONAME:
root_logger.debug('Name %s does not have any address: %s',
fqdn, ex)
return set()
else:
raise
# accept whatever we got from NSS
ip_addresses = set()
for ai in addrinfos:
try:
ip = ipautil.UnsafeIPAddress(ai[4][0])
except ValueError as ex:
# getaddinfo may return link-local address other similar oddities
# which are not accepted by CheckedIPAddress - skip these
root_logger.warning('Name %s resolved to an unacceptable IP '
'address %s: %s', fqdn, ai[4][0], ex)
else:
ip_addresses.add(ip)
root_logger.debug('Name %s resolved to %s', fqdn, ip_addresses)
return ip_addresses
def get_host_name(no_host_dns):
"""
Get the current FQDN from the socket and verify that it is valid.
no_host_dns is a boolean that determines whether we enforce that the
hostname is resolvable.
Will raise a RuntimeError on error, returns hostname on success
"""
hostname = get_fqdn()
verify_fqdn(hostname, no_host_dns)
return hostname
def get_server_ip_address(host_name, unattended, setup_dns, ip_addresses):
hostaddr = resolve_ip_addresses_nss(host_name)
if hostaddr.intersection(
{ipautil.UnsafeIPAddress(ip) for ip in ['127.0.0.1', '::1']}):
print("The hostname resolves to the localhost address (127.0.0.1/::1)", file=sys.stderr)
print("Please change your /etc/hosts file so that the hostname", file=sys.stderr)
print("resolves to the ip address of your network interface.", file=sys.stderr)
print("The KDC service does not listen on localhost", file=sys.stderr)
print("", file=sys.stderr)
print("Please fix your /etc/hosts file and restart the setup program", file=sys.stderr)
raise ScriptError()
ips = []
if len(hostaddr):
for ha in hostaddr:
try:
ips.append(ipautil.CheckedIPAddress(ha, match_local=True))
except ValueError as e:
root_logger.warning("Invalid IP address %s for %s: %s", ha, host_name, unicode(e))
if not ips and not ip_addresses:
if not unattended:
ip_addresses = read_ip_addresses()
if ip_addresses:
if setup_dns:
ips = ip_addresses
else:
# all specified addresses was resolved for this host
if set(ip_addresses) <= set(ips):
ips = ip_addresses
else:
print("Error: the hostname resolves to IP address(es) that are different", file=sys.stderr)
print("from those provided on the command line. Please fix your DNS", file=sys.stderr)
print("or /etc/hosts file and restart the installation.", file=sys.stderr)
print("Provided but not resolved address(es): %s" % \
", ".join(str(ip) for ip in (set(ip_addresses) - set(ips))), file=sys.stderr)
raise ScriptError()
if not ips:
print("No usable IP address provided nor resolved.", file=sys.stderr)
raise ScriptError()
for ip_address in ips:
# check /etc/hosts sanity
hosts_record = record_in_hosts(str(ip_address))
if hosts_record is not None:
primary_host = hosts_record[1][0]
if primary_host != host_name:
print("Error: there is already a record in /etc/hosts for IP address %s:" \
% ip_address, file=sys.stderr)
print(hosts_record[0], " ".join(hosts_record[1]), file=sys.stderr)
print("Chosen hostname %s does not match configured canonical hostname %s" \
% (host_name, primary_host), file=sys.stderr)
print("Please fix your /etc/hosts file and restart the installation.", file=sys.stderr)
raise ScriptError()
return ips
def update_hosts_file(ip_addresses, host_name, fstore):
"""
Update hosts with specified addresses
:param ip_addresses: list of IP addresses
:return:
"""
if not fstore.has_file(paths.HOSTS):
fstore.backup_file(paths.HOSTS)
for ip_address in ip_addresses:
if record_in_hosts(str(ip_address)):
continue
print("Adding [{address!s} {name}] to your /etc/hosts file".format(
address=ip_address, name=host_name))
add_record_to_hosts(str(ip_address), host_name)
def expand_replica_info(filename, password):
"""
Decrypt and expand a replica installation file into a temporary
location. The caller is responsible to remove this directory.
"""
top_dir = tempfile.mkdtemp("ipa")
tarfile = top_dir+"/files.tar"
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
dir_path = top_dir + "/realm_info"
ipautil.decrypt_file(filename, tarfile, password, top_dir)
ipautil.run(["tar", "xf", tarfile, "-C", top_dir])
os.remove(tarfile)
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
return top_dir, dir_path
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
def read_replica_info(dir_path, rconfig):
"""
Read the contents of a replica installation file.
rconfig is a ReplicaConfig object
"""
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
filename = dir_path + "/realm_info"
fd = open(filename)
config = SafeConfigParser()
config.readfp(fd)
rconfig.realm_name = config.get("realm", "realm_name")
rconfig.master_host_name = config.get("realm", "master_host_name")
rconfig.domain_name = config.get("realm", "domain_name")
rconfig.host_name = config.get("realm", "destination_host")
rconfig.subject_base = config.get("realm", "subject_base")
try:
rconfig.version = int(config.get("realm", "version"))
except NoOptionError:
pass
def read_replica_info_dogtag_port(config_dir):
portfile = config_dir + "/dogtag_directory_port.txt"
default_port = 7389
if not ipautil.file_exists(portfile):
dogtag_master_ds_port = default_port
else:
with open(portfile) as fd:
try:
dogtag_master_ds_port = int(fd.read())
except (ValueError, IOError) as e:
root_logger.debug('Cannot parse dogtag DS port: %s', e)
root_logger.debug('Default to %d', default_port)
dogtag_master_ds_port = default_port
return dogtag_master_ds_port
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
def create_replica_config(dirman_password, filename, options):
top_dir = None
try:
top_dir, dir = expand_replica_info(filename, dirman_password)
except Exception as e:
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
root_logger.error("Failed to decrypt or open the replica file.")
raise ScriptError(
"ERROR: Failed to decrypt or open the replica file.\n"
"Verify you entered the correct Directory Manager password.")
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
config = ReplicaConfig(top_dir)
read_replica_info(dir, config)
root_logger.debug(
'Installing replica file with version %d (0 means no version in prepared file).',
config.version)
if config.version and config.version > version.NUM_VERSION:
root_logger.error(
'A replica file from a newer release (%d) cannot be installed on an older version (%d)',
config.version, version.NUM_VERSION)
raise ScriptError()
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
config.dirman_password = dirman_password
try:
host = get_host_name(options.no_host_dns)
except BadHostError as e:
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
root_logger.error(str(e))
raise ScriptError()
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
if config.host_name != host:
try:
print("This replica was created for '%s' but this machine is named '%s'" % (config.host_name, host))
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
if not ipautil.user_input("This may cause problems. Continue?", False):
root_logger.debug(
"Replica was created for %s but machine is named %s "
"User chose to exit",
config.host_name, host)
sys.exit(0)
config.host_name = host
print("")
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
except KeyboardInterrupt:
root_logger.debug("Keyboard Interrupt")
raise ScriptError(rval=0)
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
config.dir = dir
config.ca_ds_port = read_replica_info_dogtag_port(config.dir)
return config
def check_server_configuration():
"""
Check if IPA server is configured on the system.
This is done by checking if there are system restore (uninstall) files
present on the system. Note that this check can only be run with root
privileges.
When IPA is not configured, this function raises a RuntimeError exception.
Most convenient use case for the function is in install tools that require
configured IPA for its function.
"""
server_fstore = sysrestore.FileStore(paths.SYSRESTORE)
if not server_fstore.has_files():
raise RuntimeError("IPA is not configured on this system.")
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
def remove_file(filename):
"""
Remove a file and log any exceptions raised.
"""
try:
if os.path.lexists(filename):
os.unlink(filename)
except Exception as e:
root_logger.error('Error removing %s: %s' % (filename, str(e)))
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
def rmtree(path):
"""
Remove a directory structure and log any exceptions raised.
"""
try:
if os.path.exists(path):
shutil.rmtree(path)
except Exception as e:
root_logger.error('Error removing %s: %s' % (path, str(e)))
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
def is_ipa_configured():
"""
Using the state and index install files determine if IPA is already
configured.
"""
installed = False
sstore = sysrestore.StateFile(paths.SYSRESTORE)
fstore = sysrestore.FileStore(paths.SYSRESTORE)
for module in IPA_MODULES:
if sstore.has_state(module):
root_logger.debug('%s is configured' % module)
installed = True
else:
root_logger.debug('%s is not configured' % module)
if fstore.has_files():
root_logger.debug('filestore has files')
installed = True
else:
root_logger.debug('filestore is tracking no files')
return installed
def run_script(main_function, operation_name, log_file_name=None,
fail_message=None):
"""Run the given function as a command-line utility
This function:
- Runs the given function
- Formats any errors
- Exits with the appropriate code
:param main_function: Function to call
:param log_file_name: Name of the log file (displayed on unexpected errors)
:param operation_name: Name of the script
:param fail_message: Optional message displayed on failure
"""
root_logger.info('Starting script: %s', operation_name)
try:
try:
return_value = main_function()
except BaseException as e:
if (
isinstance(e, SystemExit) and
(e.code is None or e.code == 0) # pylint: disable=no-member
):
# Not an error after all
root_logger.info('The %s command was successful',
operation_name)
else:
# Log at the DEBUG level, which is not output to the console
# (unless in debug/verbose mode), but is written to a logfile
# if one is open.
tb = sys.exc_info()[2]
root_logger.debug('\n'.join(traceback.format_tb(tb)))
root_logger.debug('The %s command failed, exception: %s: %s',
operation_name, type(e).__name__, e)
if fail_message and not isinstance(e, SystemExit):
print(fail_message)
raise
else:
if return_value:
root_logger.info('The %s command failed, return value %s',
operation_name, return_value)
else:
root_logger.info('The %s command was successful',
operation_name)
sys.exit(return_value)
except BaseException as error:
message, exitcode = handle_error(error, log_file_name)
if message:
print(message, file=sys.stderr)
sys.exit(exitcode)
def handle_error(error, log_file_name=None):
"""Handle specific errors. Returns a message and return code"""
if isinstance(error, SystemExit):
if isinstance(error.code, int):
return None, error.code
elif error.code is None:
return None, 0
else:
return str(error), 1
if isinstance(error, RuntimeError):
return str(error), 1
if isinstance(error, KeyboardInterrupt):
return "Cancelled.", 1
if isinstance(error, admintool.ScriptError):
return error.msg, error.rval
if isinstance(error, socket.error):
return error, 1
if isinstance(error, errors.ACIError):
return error.message, 1
if isinstance(error, ldap.INVALID_CREDENTIALS):
return "Invalid password", 1
if isinstance(error, ldap.INSUFFICIENT_ACCESS):
return "Insufficient access", 1
if isinstance(error, ldap.LOCAL_ERROR):
return error.args[0].get('info', ''), 1
if isinstance(error, ldap.SERVER_DOWN):
return error.args[0]['desc'], 1
if isinstance(error, ldap.LDAPError):
message = 'LDAP error: %s\n%s\n%s' % (
type(error).__name__,
error.args[0]['desc'].strip(),
error.args[0].get('info', '').strip()
)
return message, 1
if isinstance(error, config.IPAConfigError):
message = "An IPA server to update cannot be found. Has one been configured yet?"
message += "\nThe error was: %s" % error
return message, 1
if isinstance(error, errors.LDAPError):
return "An error occurred while performing operations: %s" % error, 1
if isinstance(error, HostnameLocalhost):
message = textwrap.dedent("""
The hostname resolves to the localhost address (127.0.0.1/::1)
Please change your /etc/hosts file so that the hostname
resolves to the ip address of your network interface.
Please fix your /etc/hosts file and restart the setup program
""").strip()
return message, 1
if log_file_name:
message = "Unexpected error - see %s for details:" % log_file_name
else:
message = "Unexpected error"
message += '\n%s: %s' % (type(error).__name__, error)
return message, 1
def load_pkcs12(cert_files, key_password, key_nickname, ca_cert_files,
host_name):
"""
Load and verify server certificate and private key from multiple files
The files are accepted in PEM and DER certificate, PKCS#7 certificate
chain, PKCS#8 and raw private key and PKCS#12 formats.
:param cert_files: Names of server certificate and private key files to
import
:param key_password: Password to decrypt private keys
:param key_nickname: Nickname of the private key to import from PKCS#12
files
:param ca_cert_files: Names of CA certificate files to import
:param host_name: Host name of the server
:returns: Temporary PKCS#12 file with the server certificate, private key
and CA certificate chain, password to unlock the PKCS#12 file and
the CA certificate of the CA that issued the server certificate
"""
with certs.NSSDatabase() as nssdb:
db_password = ipautil.ipa_generate_password()
db_pwdfile = ipautil.write_tmp_file(db_password)
nssdb.create_db(db_pwdfile.name)
try:
nssdb.import_files(cert_files, db_pwdfile.name,
True, key_password, key_nickname)
except RuntimeError as e:
raise ScriptError(str(e))
if ca_cert_files:
try:
nssdb.import_files(ca_cert_files, db_pwdfile.name)
except RuntimeError as e:
raise ScriptError(str(e))
for nickname, trust_flags in nssdb.list_certs():
if 'u' in trust_flags:
key_nickname = nickname
continue
nssdb.trust_root_cert(nickname)
# Check we have the whole cert chain & the CA is in it
trust_chain = list(reversed(nssdb.get_trust_chain(key_nickname)))
ca_cert = None
for nickname in trust_chain[1:]:
cert = nssdb.get_cert(nickname)
if ca_cert is None:
ca_cert = cert
nss_cert = x509.load_certificate(cert, x509.DER)
subject = DN(str(nss_cert.subject))
issuer = DN(str(nss_cert.issuer))
del nss_cert
if subject == issuer:
break
else:
raise ScriptError(
"The full certificate chain is not present in %s" %
(", ".join(cert_files)))
for nickname in trust_chain[1:]:
try:
nssdb.verify_ca_cert_validity(nickname)
except ValueError as e:
raise ScriptError(
"CA certificate %s in %s is not valid: %s" %
(subject, ", ".join(cert_files), e))
# Check server validity
try:
nssdb.verify_server_cert_validity(key_nickname, host_name)
except ValueError as e:
raise ScriptError(
"The server certificate in %s is not valid: %s" %
(", ".join(cert_files), e))
out_file = tempfile.NamedTemporaryFile()
out_password = ipautil.ipa_generate_password()
out_pwdfile = ipautil.write_tmp_file(out_password)
args = [
paths.PK12UTIL,
'-o', out_file.name,
'-n', key_nickname,
'-d', nssdb.secdir,
'-k', db_pwdfile.name,
'-w', out_pwdfile.name,
]
ipautil.run(args)
return out_file, out_password, ca_cert
@contextmanager
def stopped_service(service, instance_name=""):
"""
Ensure that the specified service is stopped while the commands within
this context are executed.
Service is started at the end of the execution.
"""
if instance_name:
log_instance_name = "@{instance}".format(instance=instance_name)
else:
log_instance_name = ""
root_logger.debug('Ensuring that service %s%s is not running while '
'the next set of commands is being executed.', service,
log_instance_name)
service_obj = services.service(service)
# Figure out if the service is running, if not, yield
if not service_obj.is_running(instance_name):
root_logger.debug('Service %s%s is not running, continue.', service,
log_instance_name)
yield
else:
# Stop the service, do the required stuff and start it again
root_logger.debug('Stopping %s%s.', service, log_instance_name)
service_obj.stop(instance_name)
try:
yield
finally:
root_logger.debug('Starting %s%s.', service, log_instance_name)
service_obj.start(instance_name)
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
def check_entropy():
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
"""
Checks if the system has enough entropy, if not, displays warning message
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
"""
try:
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
with open(paths.ENTROPY_AVAIL, 'r') as efname:
if int(efname.read()) < 200:
emsg = 'WARNING: Your system is running out of entropy, ' \
'you may experience long delays'
service.print_msg(emsg)
root_logger.debug(emsg)
except IOError as e:
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
root_logger.debug(
"Could not open %s: %s", paths.ENTROPY_AVAIL, e)
except ValueError as e:
Add a KRA to IPA This patch adds the capability of installing a Dogtag KRA to an IPA instance. With this patch, a KRA is NOT configured by default when ipa-server-install is run. Rather, the command ipa-kra-install must be executed on an instance on which a Dogtag CA has already been configured. The KRA shares the same tomcat instance and DS instance as the Dogtag CA. Moreover, the same admin user/agent (and agent cert) can be used for both subsystems. Certmonger is also confgured to monitor the new subsystem certificates. To create a clone KRA, simply execute ipa-kra-install <replica_file> on a replica on which a Dogtag CA has already been replicated. ipa-kra-install will use the security domain to detect whether the system being installed is a replica, and will error out if a needed replica file is not provided. The install scripts have been refactored somewhat to minimize duplication of code. A new base class dogtagintance.py has been introduced containing code that is common to KRA and CA installs. This will become very useful when we add more PKI subsystems. The KRA will install its database as a subtree of o=ipaca, specifically o=ipakra,o=ipaca. This means that replication agreements created to replicate CA data will also replicate KRA data. No new replication agreements are required. Added dogtag plugin for KRA. This is an initial commit providing the basic vault functionality needed for vault. This plugin will likely be modified as we create the code to call some of these functions. Part of the work for: https://fedorahosted.org/freeipa/ticket/3872 The uninstallation option in ipa-kra-install is temporarily disabled. Reviewed-By: Rob Crittenden <rcritten@redhat.com> Reviewed-By: Petr Viktorin <pviktori@redhat.com>
2014-03-18 10:23:30 -05:00
root_logger.debug("Invalid value in %s %s", paths.ENTROPY_AVAIL, e)
def load_external_cert(files, subject_base):
"""
Load and verify external CA certificate chain from multiple files.
The files are accepted in PEM and DER certificate and PKCS#7 certificate
chain formats.
:param files: Names of files to import
:param subject_base: Subject name base for IPA certificates
:returns: Temporary file with the IPA CA certificate and temporary file
with the external CA certificate chain
"""
with certs.NSSDatabase() as nssdb:
db_password = ipautil.ipa_generate_password()
db_pwdfile = ipautil.write_tmp_file(db_password)
nssdb.create_db(db_pwdfile.name)
try:
nssdb.import_files(files, db_pwdfile.name)
except RuntimeError as e:
raise ScriptError(str(e))
ca_subject = DN(('CN', 'Certificate Authority'), subject_base)
ca_nickname = None
cache = {}
for nickname, _trust_flags in nssdb.list_certs():
cert = nssdb.get_cert(nickname, pem=True)
nss_cert = x509.load_certificate(cert)
subject = DN(str(nss_cert.subject))
issuer = DN(str(nss_cert.issuer))
del nss_cert
cache[nickname] = (cert, subject, issuer)
if subject == ca_subject:
ca_nickname = nickname
nssdb.trust_root_cert(nickname)
if ca_nickname is None:
raise ScriptError(
"IPA CA certificate not found in %s" % (", ".join(files)))
trust_chain = list(reversed(nssdb.get_trust_chain(ca_nickname)))
ca_cert_chain = []
for nickname in trust_chain:
cert, subject, issuer = cache[nickname]
ca_cert_chain.append(cert)
if subject == issuer:
break
else:
raise ScriptError(
"CA certificate chain in %s is incomplete: "
"missing certificate with subject '%s'" %
(", ".join(files), issuer))
for nickname in trust_chain:
try:
nssdb.verify_ca_cert_validity(nickname)
except ValueError as e:
raise ScriptError(
"CA certificate %s in %s is not valid: %s" %
(subject, ", ".join(files), e))
cert_file = tempfile.NamedTemporaryFile()
cert_file.write(ca_cert_chain[0] + '\n')
cert_file.flush()
ca_file = tempfile.NamedTemporaryFile()
ca_file.write('\n'.join(ca_cert_chain[1:]) + '\n')
ca_file.flush()
return cert_file, ca_file
def store_version():
"""Store current data version and platform. This is required for check if
upgrade is required.
"""
sysupgrade.set_upgrade_state('ipa', 'data_version',
version.VENDOR_VERSION)
sysupgrade.set_upgrade_state('ipa', 'platform', ipaplatform.NAME)
def check_version():
"""
:raise UpgradePlatformError: if platform is not the same
:raise UpgradeDataOlderVersionError: if data needs to be upgraded
:raise UpgradeDataNewerVersionError: older version of IPA was detected than data
:raise UpgradeMissingVersionError: if platform or version is missing
"""
platform = sysupgrade.get_upgrade_state('ipa', 'platform')
if platform is not None:
if platform != ipaplatform.NAME:
raise UpgradePlatformError(
"platform mismatch (expected '%s', current '%s')" % (
platform, ipaplatform.NAME)
)
else:
raise UpgradeMissingVersionError("no platform stored")
data_version = sysupgrade.get_upgrade_state('ipa', 'data_version')
if data_version is not None:
parsed_data_ver = tasks.parse_ipa_version(data_version)
parsed_ipa_ver = tasks.parse_ipa_version(version.VENDOR_VERSION)
if parsed_data_ver < parsed_ipa_ver:
raise UpgradeDataOlderVersionError(
"data needs to be upgraded (expected version '%s', current "
"version '%s')" % (version.VENDOR_VERSION, data_version)
)
elif parsed_data_ver > parsed_ipa_ver:
raise UpgradeDataNewerVersionError(
"data are in newer version than IPA (data version '%s', IPA "
"version '%s')" % (data_version, version.VENDOR_VERSION)
)
else:
raise UpgradeMissingVersionError("no data_version stored")
def realm_to_serverid(realm_name):
return "-".join(realm_name.split("."))
def realm_to_ldapi_uri(realm_name):
serverid = realm_to_serverid(realm_name)
socketname = paths.SLAPD_INSTANCE_SOCKET_TEMPLATE % (serverid,)
return 'ldapi://' + ldapurl.ldapUrlEscape(socketname)
def install_service_keytab(api, principal, server, path,
force_service_add=False):
try:
api.Command.service_add(principal, force=force_service_add)
except errors.DuplicateEntry:
pass
args = [paths.IPA_GETKEYTAB, '-k', path, '-p', principal, '-s', server]
ipautil.run(args)
def check_creds(options, realm_name):
# Check if ccache is available
default_cred = None
try:
root_logger.debug('KRB5CCNAME set to %s' %
os.environ.get('KRB5CCNAME', None))
# get default creds, will raise if none found
default_cred = gssapi.creds.Credentials()
principal = str(default_cred.name)
except gssapi.raw.misc.GSSError as e:
root_logger.debug('Failed to find default ccache: %s' % e)
principal = None
# Check if the principal matches the requested one (if any)
if principal is not None and options.principal is not None:
op = options.principal
if op.find('@') == -1:
op = '%s@%s' % (op, realm_name)
if principal != op:
root_logger.debug('Specified principal %s does not match '
'available credentials (%s)' %
(options.principal, principal))
principal = None
if principal is None:
(ccache_fd, ccache_name) = tempfile.mkstemp()
os.close(ccache_fd)
options.created_ccache_file = ccache_name
if options.principal is not None:
principal = options.principal
else:
principal = 'admin'
stdin = None
if principal.find('@') == -1:
principal = '%s@%s' % (principal, realm_name)
if options.admin_password is not None:
stdin = options.admin_password
else:
if not options.unattended:
try:
stdin = getpass.getpass("Password for %s: " % principal)
except EOFError:
stdin = None
if not stdin:
root_logger.error(
"Password must be provided for %s.", principal)
raise ScriptError("Missing password for %s" % principal)
else:
if sys.stdin.isatty():
root_logger.error("Password must be provided in " +
"non-interactive mode.")
root_logger.info("This can be done via " +
"echo password | ipa-client-install " +
"... or with the -w option.")
raise ScriptError("Missing password for %s" % principal)
else:
stdin = sys.stdin.readline()
# set options.admin_password for future use
options.admin_password = stdin
try:
ipautil.kinit_password(principal, stdin, ccache_name)
except RuntimeError as e:
root_logger.error("Kerberos authentication failed: %s" % e)
raise ScriptError("Invalid credentials: %s" % e)
os.environ['KRB5CCNAME'] = ccache_name
class ModifyLDIF(ldif.LDIFParser):
"""
Allows to modify LDIF file.
Operations keep the order in which were specified per DN.
Warning: only modifications of existing DNs are supported
"""
def __init__(self, input_file, output_file):
"""
:param input_file: an LDIF
:param output_file: an LDIF file
"""
ldif.LDIFParser.__init__(self, input_file)
self.writer = ldif.LDIFWriter(output_file)
self.dn_updated = set()
self.modifications = {} # keep modify operations in original order
def add_value(self, dn, attr, values):
"""
Add value to LDIF.
:param dn: DN of entry (must exists)
:param attr: attribute name
:param value: value to be added
"""
assert isinstance(values, list)
self.modifications.setdefault(dn, []).append(
dict(
op="add",
attr=attr,
values=values,
)
)
def remove_value(self, dn, attr, values=None):
"""
Remove value from LDIF.
:param dn: DN of entry
:param attr: attribute name
:param value: value to be removed, if value is None, attribute will
be removed
"""
assert values is None or isinstance(values, list)
self.modifications.setdefault(dn, []).append(
dict(
op="del",
attr=attr,
values=values,
)
)
def replace_value(self, dn, attr, values):
"""
Replace values in LDIF with new value.
:param dn: DN of entry
:param attr: attribute name
:param value: new value for atribute
"""
assert isinstance(values, list)
self.remove_value(dn, attr)
self.add_value(dn, attr, values)
def modifications_from_ldif(self, ldif_file):
"""
Parse ldif file. Default operation is add, only changetypes "add"
and "modify" are supported.
:param ldif_file: an opened file for read
:raises: ValueError
"""
parser = ldif.LDIFRecordList(ldif_file)
parser.parse()
last_dn = None
for dn, entry in parser.all_records:
if dn is None:
# ldif parser return None, if records belong to previous DN
dn = last_dn
else:
last_dn = dn
if "replace" in entry:
for attr in entry["replace"]:
try:
self.replace_value(dn, attr, entry[attr])
except KeyError:
raise ValueError("replace: {dn}, {attr}: values are "
"missing".format(dn=dn, attr=attr))
elif "delete" in entry:
for attr in entry["delete"]:
self.remove_value(dn, attr, entry.get(attr, None))
elif "add" in entry:
for attr in entry["add"]:
try:
self.replace_value(dn, attr, entry[attr])
except KeyError:
raise ValueError("add: {dn}, {attr}: values are "
"missing".format(dn=dn, attr=attr))
else:
root_logger.error("Ignoring entry: %s : only modifications "
"are allowed (missing \"changetype: "
"modify\")", dn)
def handle(self, dn, entry):
if dn in self.modifications:
self.dn_updated.add(dn)
for mod in self.modifications.get(dn, []):
attr_name = mod["attr"]
values = mod["values"]
if mod["op"] == "del":
# delete
attribute = entry.setdefault(attr_name, [])
if values is None:
attribute = []
else:
attribute = [v for v in attribute if v not in values]
if not attribute: # empty
del entry[attr_name]
elif mod["op"] == "add":
# add
attribute = entry.setdefault(attr_name, [])
attribute.extend([v for v in values if v not in attribute])
else:
assert False, "Unknown operation: %r" % mod["op"]
self.writer.unparse(dn, entry)
def parse(self):
ldif.LDIFParser.parse(self)
# check if there are any remaining modifications
remaining_changes = set(self.modifications.keys()) - self.dn_updated
for dn in remaining_changes:
root_logger.error(
"DN: %s does not exists or haven't been updated", dn)
def remove_keytab(keytab_path):
"""
Remove Kerberos keytab and issue a warning if the procedure fails
:param keytab_path: path to the keytab file
"""
try:
root_logger.debug("Removing service keytab: {}".format(keytab_path))
os.remove(keytab_path)
except OSError as e:
if e.errno != errno.ENOENT:
root_logger.warning("Failed to remove Kerberos keytab '{}': "
"{}".format(keytab_path, e))
root_logger.warning("You may have to remove it manually")
def remove_ccache(ccache_path=None, run_as=None):
"""
remove Kerberos credential cache, essentially a wrapper around kdestroy.
:param ccache_path: path to the ccache file
:param run_as: run kdestroy as this user
"""
root_logger.debug("Removing service credentials cache")
kdestroy_cmd = [paths.KDESTROY]
if ccache_path is not None:
root_logger.debug("Ccache path: '{}'".format(ccache_path))
kdestroy_cmd.extend(['-c', ccache_path])
try:
ipautil.run(kdestroy_cmd, runas=run_as, env={})
except ipautil.CalledProcessError as e:
root_logger.warning(
"Failed to clear Kerberos credentials cache: {}".format(e))