mirror of
https://salsa.debian.org/freeipa-team/freeipa.git
synced 2025-01-11 16:51:55 -06:00
45ceef14f9
Instead of manually encoding controls, use an actual asn1 compiler. The file asn1/asn1c/ipa.asn1 will contain ipa modules. The generated code is committed to the tree and built into a static library that is linked to the code that uses it. The first module implements the GetKeytabControl control. Related: https://fedorahosted.org/freeipa/ticket/4718 https://fedorahosted.org/freeipa/ticket/4728 Reviewed-By: Alexander Bokovoy <abokovoy@redhat.com> Reviewed-By: Nathaniel McCallum <npmccallum@redhat.com>
943 lines
23 KiB
C
943 lines
23 KiB
C
/*-
|
|
* Copyright (c) 2003, 2004, 2005 Lev Walkin <vlm@lionet.info>.
|
|
* All rights reserved.
|
|
* Redistribution and modifications are permitted subject to BSD license.
|
|
*/
|
|
#include <asn_internal.h>
|
|
#include <constr_SET_OF.h>
|
|
#include <asn_SET_OF.h>
|
|
|
|
/*
|
|
* Number of bytes left for this structure.
|
|
* (ctx->left) indicates the number of bytes _transferred_ for the structure.
|
|
* (size) contains the number of bytes in the buffer passed.
|
|
*/
|
|
#define LEFT ((size<(size_t)ctx->left)?size:(size_t)ctx->left)
|
|
|
|
/*
|
|
* If the subprocessor function returns with an indication that it wants
|
|
* more data, it may well be a fatal decoding problem, because the
|
|
* size is constrained by the <TLV>'s L, even if the buffer size allows
|
|
* reading more data.
|
|
* For example, consider the buffer containing the following TLVs:
|
|
* <T:5><L:1><V> <T:6>...
|
|
* The TLV length clearly indicates that one byte is expected in V, but
|
|
* if the V processor returns with "want more data" even if the buffer
|
|
* contains way more data than the V processor have seen.
|
|
*/
|
|
#define SIZE_VIOLATION (ctx->left >= 0 && (size_t)ctx->left <= size)
|
|
|
|
/*
|
|
* This macro "eats" the part of the buffer which is definitely "consumed",
|
|
* i.e. was correctly converted into local representation or rightfully skipped.
|
|
*/
|
|
#undef ADVANCE
|
|
#define ADVANCE(num_bytes) do { \
|
|
size_t num = num_bytes; \
|
|
ptr = ((const char *)ptr) + num;\
|
|
size -= num; \
|
|
if(ctx->left >= 0) \
|
|
ctx->left -= num; \
|
|
consumed_myself += num; \
|
|
} while(0)
|
|
|
|
/*
|
|
* Switch to the next phase of parsing.
|
|
*/
|
|
#undef NEXT_PHASE
|
|
#undef PHASE_OUT
|
|
#define NEXT_PHASE(ctx) do { \
|
|
ctx->phase++; \
|
|
ctx->step = 0; \
|
|
} while(0)
|
|
#define PHASE_OUT(ctx) do { ctx->phase = 10; } while(0)
|
|
|
|
/*
|
|
* Return a standardized complex structure.
|
|
*/
|
|
#undef RETURN
|
|
#define RETURN(_code) do { \
|
|
rval.code = _code; \
|
|
rval.consumed = consumed_myself;\
|
|
return rval; \
|
|
} while(0)
|
|
|
|
/*
|
|
* The decoder of the SET OF type.
|
|
*/
|
|
asn_dec_rval_t
|
|
SET_OF_decode_ber(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
|
|
void **struct_ptr, const void *ptr, size_t size, int tag_mode) {
|
|
/*
|
|
* Bring closer parts of structure description.
|
|
*/
|
|
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
|
|
asn_TYPE_member_t *elm = td->elements; /* Single one */
|
|
|
|
/*
|
|
* Parts of the structure being constructed.
|
|
*/
|
|
void *st = *struct_ptr; /* Target structure. */
|
|
asn_struct_ctx_t *ctx; /* Decoder context */
|
|
|
|
ber_tlv_tag_t tlv_tag; /* T from TLV */
|
|
asn_dec_rval_t rval; /* Return code from subparsers */
|
|
|
|
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
|
|
|
|
ASN_DEBUG("Decoding %s as SET OF", td->name);
|
|
|
|
/*
|
|
* Create the target structure if it is not present already.
|
|
*/
|
|
if(st == 0) {
|
|
st = *struct_ptr = CALLOC(1, specs->struct_size);
|
|
if(st == 0) {
|
|
RETURN(RC_FAIL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restore parsing context.
|
|
*/
|
|
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
|
|
|
|
/*
|
|
* Start to parse where left previously
|
|
*/
|
|
switch(ctx->phase) {
|
|
case 0:
|
|
/*
|
|
* PHASE 0.
|
|
* Check that the set of tags associated with given structure
|
|
* perfectly fits our expectations.
|
|
*/
|
|
|
|
rval = ber_check_tags(opt_codec_ctx, td, ctx, ptr, size,
|
|
tag_mode, 1, &ctx->left, 0);
|
|
if(rval.code != RC_OK) {
|
|
ASN_DEBUG("%s tagging check failed: %d",
|
|
td->name, rval.code);
|
|
return rval;
|
|
}
|
|
|
|
if(ctx->left >= 0)
|
|
ctx->left += rval.consumed; /* ?Substracted below! */
|
|
ADVANCE(rval.consumed);
|
|
|
|
ASN_DEBUG("Structure consumes %ld bytes, "
|
|
"buffer %ld", (long)ctx->left, (long)size);
|
|
|
|
NEXT_PHASE(ctx);
|
|
/* Fall through */
|
|
case 1:
|
|
/*
|
|
* PHASE 1.
|
|
* From the place where we've left it previously,
|
|
* try to decode the next item.
|
|
*/
|
|
for(;; ctx->step = 0) {
|
|
ssize_t tag_len; /* Length of TLV's T */
|
|
|
|
if(ctx->step & 1)
|
|
goto microphase2;
|
|
|
|
/*
|
|
* MICROPHASE 1: Synchronize decoding.
|
|
*/
|
|
|
|
if(ctx->left == 0) {
|
|
ASN_DEBUG("End of SET OF %s", td->name);
|
|
/*
|
|
* No more things to decode.
|
|
* Exit out of here.
|
|
*/
|
|
PHASE_OUT(ctx);
|
|
RETURN(RC_OK);
|
|
}
|
|
|
|
/*
|
|
* Fetch the T from TLV.
|
|
*/
|
|
tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag);
|
|
switch(tag_len) {
|
|
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
|
|
/* Fall through */
|
|
case -1: RETURN(RC_FAIL);
|
|
}
|
|
|
|
if(ctx->left < 0 && ((const uint8_t *)ptr)[0] == 0) {
|
|
if(LEFT < 2) {
|
|
if(SIZE_VIOLATION)
|
|
RETURN(RC_FAIL);
|
|
else
|
|
RETURN(RC_WMORE);
|
|
} else if(((const uint8_t *)ptr)[1] == 0) {
|
|
/*
|
|
* Found the terminator of the
|
|
* indefinite length structure.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Outmost tag may be unknown and cannot be fetched/compared */
|
|
if(elm->tag != (ber_tlv_tag_t)-1) {
|
|
if(BER_TAGS_EQUAL(tlv_tag, elm->tag)) {
|
|
/*
|
|
* The new list member of expected type has arrived.
|
|
*/
|
|
} else {
|
|
ASN_DEBUG("Unexpected tag %s fixed SET OF %s",
|
|
ber_tlv_tag_string(tlv_tag), td->name);
|
|
ASN_DEBUG("%s SET OF has tag %s",
|
|
td->name, ber_tlv_tag_string(elm->tag));
|
|
RETURN(RC_FAIL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* MICROPHASE 2: Invoke the member-specific decoder.
|
|
*/
|
|
ctx->step |= 1; /* Confirm entering next microphase */
|
|
microphase2:
|
|
|
|
/*
|
|
* Invoke the member fetch routine according to member's type
|
|
*/
|
|
rval = elm->type->ber_decoder(opt_codec_ctx,
|
|
elm->type, &ctx->ptr, ptr, LEFT, 0);
|
|
ASN_DEBUG("In %s SET OF %s code %d consumed %d",
|
|
td->name, elm->type->name,
|
|
rval.code, (int)rval.consumed);
|
|
switch(rval.code) {
|
|
case RC_OK:
|
|
{
|
|
asn_anonymous_set_ *list = _A_SET_FROM_VOID(st);
|
|
if(ASN_SET_ADD(list, ctx->ptr) != 0)
|
|
RETURN(RC_FAIL);
|
|
else
|
|
ctx->ptr = 0;
|
|
}
|
|
break;
|
|
case RC_WMORE: /* More data expected */
|
|
if(!SIZE_VIOLATION) {
|
|
ADVANCE(rval.consumed);
|
|
RETURN(RC_WMORE);
|
|
}
|
|
/* Fall through */
|
|
case RC_FAIL: /* Fatal error */
|
|
RETURN(RC_FAIL);
|
|
} /* switch(rval) */
|
|
|
|
ADVANCE(rval.consumed);
|
|
} /* for(all list members) */
|
|
|
|
NEXT_PHASE(ctx);
|
|
case 2:
|
|
/*
|
|
* Read in all "end of content" TLVs.
|
|
*/
|
|
while(ctx->left < 0) {
|
|
if(LEFT < 2) {
|
|
if(LEFT > 0 && ((const char *)ptr)[0] != 0) {
|
|
/* Unexpected tag */
|
|
RETURN(RC_FAIL);
|
|
} else {
|
|
RETURN(RC_WMORE);
|
|
}
|
|
}
|
|
if(((const char *)ptr)[0] == 0
|
|
&& ((const char *)ptr)[1] == 0) {
|
|
ADVANCE(2);
|
|
ctx->left++;
|
|
} else {
|
|
RETURN(RC_FAIL);
|
|
}
|
|
}
|
|
|
|
PHASE_OUT(ctx);
|
|
}
|
|
|
|
RETURN(RC_OK);
|
|
}
|
|
|
|
/*
|
|
* Internally visible buffer holding a single encoded element.
|
|
*/
|
|
struct _el_buffer {
|
|
uint8_t *buf;
|
|
size_t length;
|
|
size_t size;
|
|
};
|
|
/* Append bytes to the above structure */
|
|
static int _el_addbytes(const void *buffer, size_t size, void *el_buf_ptr) {
|
|
struct _el_buffer *el_buf = (struct _el_buffer *)el_buf_ptr;
|
|
|
|
if(el_buf->length + size > el_buf->size)
|
|
return -1;
|
|
|
|
memcpy(el_buf->buf + el_buf->length, buffer, size);
|
|
|
|
el_buf->length += size;
|
|
return 0;
|
|
}
|
|
static int _el_buf_cmp(const void *ap, const void *bp) {
|
|
const struct _el_buffer *a = (const struct _el_buffer *)ap;
|
|
const struct _el_buffer *b = (const struct _el_buffer *)bp;
|
|
int ret;
|
|
size_t common_len;
|
|
|
|
if(a->length < b->length)
|
|
common_len = a->length;
|
|
else
|
|
common_len = b->length;
|
|
|
|
ret = memcmp(a->buf, b->buf, common_len);
|
|
if(ret == 0) {
|
|
if(a->length < b->length)
|
|
ret = -1;
|
|
else if(a->length > b->length)
|
|
ret = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The DER encoder of the SET OF type.
|
|
*/
|
|
asn_enc_rval_t
|
|
SET_OF_encode_der(asn_TYPE_descriptor_t *td, void *ptr,
|
|
int tag_mode, ber_tlv_tag_t tag,
|
|
asn_app_consume_bytes_f *cb, void *app_key) {
|
|
asn_TYPE_member_t *elm = td->elements;
|
|
asn_TYPE_descriptor_t *elm_type = elm->type;
|
|
der_type_encoder_f *der_encoder = elm_type->der_encoder;
|
|
asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr);
|
|
size_t computed_size = 0;
|
|
ssize_t encoding_size = 0;
|
|
struct _el_buffer *encoded_els;
|
|
ssize_t eels_count = 0;
|
|
size_t max_encoded_len = 1;
|
|
asn_enc_rval_t erval;
|
|
int ret;
|
|
int edx;
|
|
|
|
ASN_DEBUG("Estimating size for SET OF %s", td->name);
|
|
|
|
/*
|
|
* Gather the length of the underlying members sequence.
|
|
*/
|
|
for(edx = 0; edx < list->count; edx++) {
|
|
void *memb_ptr = list->array[edx];
|
|
if(!memb_ptr) continue;
|
|
erval = der_encoder(elm_type, memb_ptr, 0, elm->tag, 0, 0);
|
|
if(erval.encoded == -1)
|
|
return erval;
|
|
computed_size += erval.encoded;
|
|
|
|
/* Compute maximum encoding's size */
|
|
if(max_encoded_len < (size_t)erval.encoded)
|
|
max_encoded_len = erval.encoded;
|
|
}
|
|
|
|
/*
|
|
* Encode the TLV for the sequence itself.
|
|
*/
|
|
encoding_size = der_write_tags(td, computed_size, tag_mode, 1, tag,
|
|
cb, app_key);
|
|
if(encoding_size == -1) {
|
|
erval.encoded = -1;
|
|
erval.failed_type = td;
|
|
erval.structure_ptr = ptr;
|
|
return erval;
|
|
}
|
|
computed_size += encoding_size;
|
|
|
|
if(!cb || list->count == 0) {
|
|
erval.encoded = computed_size;
|
|
_ASN_ENCODED_OK(erval);
|
|
}
|
|
|
|
/*
|
|
* DER mandates dynamic sorting of the SET OF elements
|
|
* according to their encodings. Build an array of the
|
|
* encoded elements.
|
|
*/
|
|
encoded_els = (struct _el_buffer *)MALLOC(
|
|
list->count * sizeof(encoded_els[0]));
|
|
if(encoded_els == NULL) {
|
|
erval.encoded = -1;
|
|
erval.failed_type = td;
|
|
erval.structure_ptr = ptr;
|
|
return erval;
|
|
}
|
|
|
|
ASN_DEBUG("Encoding members of %s SET OF", td->name);
|
|
|
|
/*
|
|
* Encode all members.
|
|
*/
|
|
for(edx = 0; edx < list->count; edx++) {
|
|
void *memb_ptr = list->array[edx];
|
|
struct _el_buffer *encoded_el = &encoded_els[eels_count];
|
|
|
|
if(!memb_ptr) continue;
|
|
|
|
/*
|
|
* Prepare space for encoding.
|
|
*/
|
|
encoded_el->buf = (uint8_t *)MALLOC(max_encoded_len);
|
|
if(encoded_el->buf) {
|
|
encoded_el->length = 0;
|
|
encoded_el->size = max_encoded_len;
|
|
} else {
|
|
for(edx--; edx >= 0; edx--)
|
|
FREEMEM(encoded_els[edx].buf);
|
|
FREEMEM(encoded_els);
|
|
erval.encoded = -1;
|
|
erval.failed_type = td;
|
|
erval.structure_ptr = ptr;
|
|
return erval;
|
|
}
|
|
|
|
/*
|
|
* Encode the member into the prepared space.
|
|
*/
|
|
erval = der_encoder(elm_type, memb_ptr, 0, elm->tag,
|
|
_el_addbytes, encoded_el);
|
|
if(erval.encoded == -1) {
|
|
for(; edx >= 0; edx--)
|
|
FREEMEM(encoded_els[edx].buf);
|
|
FREEMEM(encoded_els);
|
|
return erval;
|
|
}
|
|
encoding_size += erval.encoded;
|
|
eels_count++;
|
|
}
|
|
|
|
/*
|
|
* Sort the encoded elements according to their encoding.
|
|
*/
|
|
qsort(encoded_els, eels_count, sizeof(encoded_els[0]), _el_buf_cmp);
|
|
|
|
/*
|
|
* Report encoded elements to the application.
|
|
* Dispose of temporary sorted members table.
|
|
*/
|
|
ret = 0;
|
|
for(edx = 0; edx < eels_count; edx++) {
|
|
struct _el_buffer *encoded_el = &encoded_els[edx];
|
|
/* Report encoded chunks to the application */
|
|
if(ret == 0
|
|
&& cb(encoded_el->buf, encoded_el->length, app_key) < 0)
|
|
ret = -1;
|
|
FREEMEM(encoded_el->buf);
|
|
}
|
|
FREEMEM(encoded_els);
|
|
|
|
if(ret || computed_size != (size_t)encoding_size) {
|
|
/*
|
|
* Standard callback failed, or
|
|
* encoded size is not equal to the computed size.
|
|
*/
|
|
erval.encoded = -1;
|
|
erval.failed_type = td;
|
|
erval.structure_ptr = ptr;
|
|
} else {
|
|
erval.encoded = computed_size;
|
|
}
|
|
|
|
_ASN_ENCODED_OK(erval);
|
|
}
|
|
|
|
#undef XER_ADVANCE
|
|
#define XER_ADVANCE(num_bytes) do { \
|
|
size_t num = num_bytes; \
|
|
buf_ptr = ((const char *)buf_ptr) + num;\
|
|
size -= num; \
|
|
consumed_myself += num; \
|
|
} while(0)
|
|
|
|
/*
|
|
* Decode the XER (XML) data.
|
|
*/
|
|
asn_dec_rval_t
|
|
SET_OF_decode_xer(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
|
|
void **struct_ptr, const char *opt_mname,
|
|
const void *buf_ptr, size_t size) {
|
|
/*
|
|
* Bring closer parts of structure description.
|
|
*/
|
|
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
|
|
asn_TYPE_member_t *element = td->elements;
|
|
const char *elm_tag;
|
|
const char *xml_tag = opt_mname ? opt_mname : td->xml_tag;
|
|
|
|
/*
|
|
* ... and parts of the structure being constructed.
|
|
*/
|
|
void *st = *struct_ptr; /* Target structure. */
|
|
asn_struct_ctx_t *ctx; /* Decoder context */
|
|
|
|
asn_dec_rval_t rval; /* Return value from a decoder */
|
|
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
|
|
|
|
/*
|
|
* Create the target structure if it is not present already.
|
|
*/
|
|
if(st == 0) {
|
|
st = *struct_ptr = CALLOC(1, specs->struct_size);
|
|
if(st == 0) RETURN(RC_FAIL);
|
|
}
|
|
|
|
/* Which tag is expected for the downstream */
|
|
if(specs->as_XMLValueList) {
|
|
elm_tag = (specs->as_XMLValueList == 1) ? 0 : "";
|
|
} else {
|
|
elm_tag = (*element->name)
|
|
? element->name : element->type->xml_tag;
|
|
}
|
|
|
|
/*
|
|
* Restore parsing context.
|
|
*/
|
|
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
|
|
|
|
/*
|
|
* Phases of XER/XML processing:
|
|
* Phase 0: Check that the opening tag matches our expectations.
|
|
* Phase 1: Processing body and reacting on closing tag.
|
|
* Phase 2: Processing inner type.
|
|
*/
|
|
for(; ctx->phase <= 2;) {
|
|
pxer_chunk_type_e ch_type; /* XER chunk type */
|
|
ssize_t ch_size; /* Chunk size */
|
|
xer_check_tag_e tcv; /* Tag check value */
|
|
|
|
/*
|
|
* Go inside the inner member of a set.
|
|
*/
|
|
if(ctx->phase == 2) {
|
|
asn_dec_rval_t tmprval;
|
|
|
|
/* Invoke the inner type decoder, m.b. multiple times */
|
|
ASN_DEBUG("XER/SET OF element [%s]", elm_tag);
|
|
tmprval = element->type->xer_decoder(opt_codec_ctx,
|
|
element->type, &ctx->ptr, elm_tag,
|
|
buf_ptr, size);
|
|
if(tmprval.code == RC_OK) {
|
|
asn_anonymous_set_ *list = _A_SET_FROM_VOID(st);
|
|
if(ASN_SET_ADD(list, ctx->ptr) != 0)
|
|
RETURN(RC_FAIL);
|
|
ctx->ptr = 0;
|
|
XER_ADVANCE(tmprval.consumed);
|
|
} else {
|
|
XER_ADVANCE(tmprval.consumed);
|
|
RETURN(tmprval.code);
|
|
}
|
|
ctx->phase = 1; /* Back to body processing */
|
|
ASN_DEBUG("XER/SET OF phase => %d", ctx->phase);
|
|
/* Fall through */
|
|
}
|
|
|
|
/*
|
|
* Get the next part of the XML stream.
|
|
*/
|
|
ch_size = xer_next_token(&ctx->context,
|
|
buf_ptr, size, &ch_type);
|
|
switch(ch_size) {
|
|
case -1: RETURN(RC_FAIL);
|
|
case 0: RETURN(RC_WMORE);
|
|
default:
|
|
switch(ch_type) {
|
|
case PXER_COMMENT: /* Got XML comment */
|
|
case PXER_TEXT: /* Ignore free-standing text */
|
|
XER_ADVANCE(ch_size); /* Skip silently */
|
|
continue;
|
|
case PXER_TAG:
|
|
break; /* Check the rest down there */
|
|
}
|
|
}
|
|
|
|
tcv = xer_check_tag(buf_ptr, ch_size, xml_tag);
|
|
ASN_DEBUG("XER/SET OF: tcv = %d, ph=%d t=%s",
|
|
tcv, ctx->phase, xml_tag);
|
|
switch(tcv) {
|
|
case XCT_CLOSING:
|
|
if(ctx->phase == 0) break;
|
|
ctx->phase = 0;
|
|
/* Fall through */
|
|
case XCT_BOTH:
|
|
if(ctx->phase == 0) {
|
|
/* No more things to decode */
|
|
XER_ADVANCE(ch_size);
|
|
ctx->phase = 3; /* Phase out */
|
|
RETURN(RC_OK);
|
|
}
|
|
/* Fall through */
|
|
case XCT_OPENING:
|
|
if(ctx->phase == 0) {
|
|
XER_ADVANCE(ch_size);
|
|
ctx->phase = 1; /* Processing body phase */
|
|
continue;
|
|
}
|
|
/* Fall through */
|
|
case XCT_UNKNOWN_OP:
|
|
case XCT_UNKNOWN_BO:
|
|
|
|
ASN_DEBUG("XER/SET OF: tcv=%d, ph=%d", tcv, ctx->phase);
|
|
if(ctx->phase == 1) {
|
|
/*
|
|
* Process a single possible member.
|
|
*/
|
|
ctx->phase = 2;
|
|
continue;
|
|
}
|
|
/* Fall through */
|
|
default:
|
|
break;
|
|
}
|
|
|
|
ASN_DEBUG("Unexpected XML tag in SET OF");
|
|
break;
|
|
}
|
|
|
|
ctx->phase = 3; /* "Phase out" on hard failure */
|
|
RETURN(RC_FAIL);
|
|
}
|
|
|
|
|
|
|
|
typedef struct xer_tmp_enc_s {
|
|
void *buffer;
|
|
size_t offset;
|
|
size_t size;
|
|
} xer_tmp_enc_t;
|
|
static int
|
|
SET_OF_encode_xer_callback(const void *buffer, size_t size, void *key) {
|
|
xer_tmp_enc_t *t = (xer_tmp_enc_t *)key;
|
|
if(t->offset + size >= t->size) {
|
|
size_t newsize = (t->size << 2) + size;
|
|
void *p = REALLOC(t->buffer, newsize);
|
|
if(!p) return -1;
|
|
t->buffer = p;
|
|
t->size = newsize;
|
|
}
|
|
memcpy((char *)t->buffer + t->offset, buffer, size);
|
|
t->offset += size;
|
|
return 0;
|
|
}
|
|
static int
|
|
SET_OF_xer_order(const void *aptr, const void *bptr) {
|
|
const xer_tmp_enc_t *a = (const xer_tmp_enc_t *)aptr;
|
|
const xer_tmp_enc_t *b = (const xer_tmp_enc_t *)bptr;
|
|
size_t minlen = a->offset;
|
|
int ret;
|
|
if(b->offset < minlen) minlen = b->offset;
|
|
/* Well-formed UTF-8 has this nice lexicographical property... */
|
|
ret = memcmp(a->buffer, b->buffer, minlen);
|
|
if(ret != 0) return ret;
|
|
if(a->offset == b->offset)
|
|
return 0;
|
|
if(a->offset == minlen)
|
|
return -1;
|
|
return 1;
|
|
}
|
|
|
|
|
|
asn_enc_rval_t
|
|
SET_OF_encode_xer(asn_TYPE_descriptor_t *td, void *sptr,
|
|
int ilevel, enum xer_encoder_flags_e flags,
|
|
asn_app_consume_bytes_f *cb, void *app_key) {
|
|
asn_enc_rval_t er;
|
|
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
|
|
asn_TYPE_member_t *elm = td->elements;
|
|
asn_anonymous_set_ *list = _A_SET_FROM_VOID(sptr);
|
|
const char *mname = specs->as_XMLValueList
|
|
? 0 : ((*elm->name) ? elm->name : elm->type->xml_tag);
|
|
size_t mlen = mname ? strlen(mname) : 0;
|
|
int xcan = (flags & XER_F_CANONICAL);
|
|
xer_tmp_enc_t *encs = 0;
|
|
size_t encs_count = 0;
|
|
void *original_app_key = app_key;
|
|
asn_app_consume_bytes_f *original_cb = cb;
|
|
int i;
|
|
|
|
if(!sptr) _ASN_ENCODE_FAILED;
|
|
|
|
if(xcan) {
|
|
encs = (xer_tmp_enc_t *)MALLOC(list->count * sizeof(encs[0]));
|
|
if(!encs) _ASN_ENCODE_FAILED;
|
|
cb = SET_OF_encode_xer_callback;
|
|
}
|
|
|
|
er.encoded = 0;
|
|
|
|
for(i = 0; i < list->count; i++) {
|
|
asn_enc_rval_t tmper;
|
|
|
|
void *memb_ptr = list->array[i];
|
|
if(!memb_ptr) continue;
|
|
|
|
if(encs) {
|
|
memset(&encs[encs_count], 0, sizeof(encs[0]));
|
|
app_key = &encs[encs_count];
|
|
encs_count++;
|
|
}
|
|
|
|
if(mname) {
|
|
if(!xcan) _i_ASN_TEXT_INDENT(1, ilevel);
|
|
_ASN_CALLBACK3("<", 1, mname, mlen, ">", 1);
|
|
}
|
|
|
|
if(!xcan && specs->as_XMLValueList == 1)
|
|
_i_ASN_TEXT_INDENT(1, ilevel + 1);
|
|
tmper = elm->type->xer_encoder(elm->type, memb_ptr,
|
|
ilevel + (specs->as_XMLValueList != 2),
|
|
flags, cb, app_key);
|
|
if(tmper.encoded == -1) {
|
|
td = tmper.failed_type;
|
|
sptr = tmper.structure_ptr;
|
|
goto cb_failed;
|
|
}
|
|
if(tmper.encoded == 0 && specs->as_XMLValueList) {
|
|
const char *name = elm->type->xml_tag;
|
|
size_t len = strlen(name);
|
|
_ASN_CALLBACK3("<", 1, name, len, "/>", 2);
|
|
}
|
|
|
|
if(mname) {
|
|
_ASN_CALLBACK3("</", 2, mname, mlen, ">", 1);
|
|
er.encoded += 5;
|
|
}
|
|
|
|
er.encoded += (2 * mlen) + tmper.encoded;
|
|
}
|
|
|
|
if(!xcan) _i_ASN_TEXT_INDENT(1, ilevel - 1);
|
|
|
|
if(encs) {
|
|
xer_tmp_enc_t *enc = encs;
|
|
xer_tmp_enc_t *end = encs + encs_count;
|
|
ssize_t control_size = 0;
|
|
|
|
cb = original_cb;
|
|
app_key = original_app_key;
|
|
qsort(encs, encs_count, sizeof(encs[0]), SET_OF_xer_order);
|
|
|
|
for(; enc < end; enc++) {
|
|
_ASN_CALLBACK(enc->buffer, enc->offset);
|
|
FREEMEM(enc->buffer);
|
|
enc->buffer = 0;
|
|
control_size += enc->offset;
|
|
}
|
|
assert(control_size == er.encoded);
|
|
}
|
|
|
|
goto cleanup;
|
|
cb_failed:
|
|
er.encoded = -1;
|
|
er.failed_type = td;
|
|
er.structure_ptr = sptr;
|
|
cleanup:
|
|
if(encs) {
|
|
while(encs_count-- > 0) {
|
|
if(encs[encs_count].buffer)
|
|
FREEMEM(encs[encs_count].buffer);
|
|
}
|
|
FREEMEM(encs);
|
|
}
|
|
_ASN_ENCODED_OK(er);
|
|
}
|
|
|
|
int
|
|
SET_OF_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
|
|
asn_app_consume_bytes_f *cb, void *app_key) {
|
|
asn_TYPE_member_t *elm = td->elements;
|
|
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
|
|
int ret;
|
|
int i;
|
|
|
|
if(!sptr) return (cb("<absent>", 8, app_key) < 0) ? -1 : 0;
|
|
|
|
/* Dump preamble */
|
|
if(cb(td->name, strlen(td->name), app_key) < 0
|
|
|| cb(" ::= {", 6, app_key) < 0)
|
|
return -1;
|
|
|
|
for(i = 0; i < list->count; i++) {
|
|
const void *memb_ptr = list->array[i];
|
|
if(!memb_ptr) continue;
|
|
|
|
_i_INDENT(1);
|
|
|
|
ret = elm->type->print_struct(elm->type, memb_ptr,
|
|
ilevel + 1, cb, app_key);
|
|
if(ret) return ret;
|
|
}
|
|
|
|
ilevel--;
|
|
_i_INDENT(1);
|
|
|
|
return (cb("}", 1, app_key) < 0) ? -1 : 0;
|
|
}
|
|
|
|
void
|
|
SET_OF_free(asn_TYPE_descriptor_t *td, void *ptr, int contents_only) {
|
|
if(td && ptr) {
|
|
asn_TYPE_member_t *elm = td->elements;
|
|
asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr);
|
|
int i;
|
|
|
|
/*
|
|
* Could not use set_of_empty() because of (*free)
|
|
* incompatibility.
|
|
*/
|
|
for(i = 0; i < list->count; i++) {
|
|
void *memb_ptr = list->array[i];
|
|
if(memb_ptr)
|
|
ASN_STRUCT_FREE(*elm->type, memb_ptr);
|
|
}
|
|
list->count = 0; /* No meaningful elements left */
|
|
|
|
asn_set_empty(list); /* Remove (list->array) */
|
|
|
|
if(!contents_only) {
|
|
FREEMEM(ptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
SET_OF_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
|
|
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
|
|
asn_TYPE_member_t *elm = td->elements;
|
|
asn_constr_check_f *constr;
|
|
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
|
|
int i;
|
|
|
|
if(!sptr) {
|
|
_ASN_CTFAIL(app_key, td,
|
|
"%s: value not given (%s:%d)",
|
|
td->name, __FILE__, __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
constr = elm->memb_constraints;
|
|
if(!constr) constr = elm->type->check_constraints;
|
|
|
|
/*
|
|
* Iterate over the members of an array.
|
|
* Validate each in turn, until one fails.
|
|
*/
|
|
for(i = 0; i < list->count; i++) {
|
|
const void *memb_ptr = list->array[i];
|
|
int ret;
|
|
|
|
if(!memb_ptr) continue;
|
|
|
|
ret = constr(elm->type, memb_ptr, ctfailcb, app_key);
|
|
if(ret) return ret;
|
|
}
|
|
|
|
/*
|
|
* Cannot inherit it eralier:
|
|
* need to make sure we get the updated version.
|
|
*/
|
|
if(!elm->memb_constraints)
|
|
elm->memb_constraints = elm->type->check_constraints;
|
|
|
|
return 0;
|
|
}
|
|
|
|
asn_dec_rval_t
|
|
SET_OF_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
|
|
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
|
|
asn_dec_rval_t rv;
|
|
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
|
|
asn_TYPE_member_t *elm = td->elements; /* Single one */
|
|
void *st = *sptr;
|
|
asn_anonymous_set_ *list;
|
|
asn_per_constraint_t *ct;
|
|
int repeat = 0;
|
|
ssize_t nelems;
|
|
|
|
if(_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx))
|
|
_ASN_DECODE_FAILED;
|
|
|
|
/*
|
|
* Create the target structure if it is not present already.
|
|
*/
|
|
if(!st) {
|
|
st = *sptr = CALLOC(1, specs->struct_size);
|
|
if(!st) _ASN_DECODE_FAILED;
|
|
}
|
|
list = _A_SET_FROM_VOID(st);
|
|
|
|
/* Figure out which constraints to use */
|
|
if(constraints) ct = &constraints->size;
|
|
else if(td->per_constraints) ct = &td->per_constraints->size;
|
|
else ct = 0;
|
|
|
|
if(ct && ct->flags & APC_EXTENSIBLE) {
|
|
int value = per_get_few_bits(pd, 1);
|
|
if(value < 0) _ASN_DECODE_STARVED;
|
|
if(value) ct = 0; /* Not restricted! */
|
|
}
|
|
|
|
if(ct && ct->effective_bits >= 0) {
|
|
/* X.691, #19.5: No length determinant */
|
|
nelems = per_get_few_bits(pd, ct->effective_bits);
|
|
ASN_DEBUG("Preparing to fetch %ld+%ld elements from %s",
|
|
(long)nelems, ct->lower_bound, td->name);
|
|
if(nelems < 0) _ASN_DECODE_STARVED;
|
|
nelems += ct->lower_bound;
|
|
} else {
|
|
nelems = -1;
|
|
}
|
|
|
|
do {
|
|
int i;
|
|
if(nelems < 0) {
|
|
nelems = uper_get_length(pd,
|
|
ct ? ct->effective_bits : -1, &repeat);
|
|
ASN_DEBUG("Got to decode %d elements (eff %d)",
|
|
(int)nelems, (int)ct ? ct->effective_bits : -1);
|
|
if(nelems < 0) _ASN_DECODE_STARVED;
|
|
}
|
|
|
|
for(i = 0; i < nelems; i++) {
|
|
void *ptr = 0;
|
|
ASN_DEBUG("SET OF %s decoding", elm->type->name);
|
|
rv = elm->type->uper_decoder(opt_codec_ctx, elm->type,
|
|
elm->per_constraints, &ptr, pd);
|
|
ASN_DEBUG("%s SET OF %s decoded %d, %p",
|
|
td->name, elm->type->name, rv.code, ptr);
|
|
if(rv.code == RC_OK) {
|
|
if(ASN_SET_ADD(list, ptr) == 0)
|
|
continue;
|
|
ASN_DEBUG("Failed to add element into %s",
|
|
td->name);
|
|
/* Fall through */
|
|
rv.code == RC_FAIL;
|
|
} else {
|
|
ASN_DEBUG("Failed decoding %s of %s (SET OF)",
|
|
elm->type->name, td->name);
|
|
}
|
|
if(ptr) ASN_STRUCT_FREE(*elm->type, ptr);
|
|
return rv;
|
|
}
|
|
|
|
nelems = -1; /* Allow uper_get_length() */
|
|
} while(repeat);
|
|
|
|
ASN_DEBUG("Decoded %s as SET OF", td->name);
|
|
|
|
rv.code = RC_OK;
|
|
rv.consumed = 0;
|
|
return rv;
|
|
}
|
|
|