freeipa/ipalib/frontend.py

1175 lines
40 KiB
Python

# Authors:
# Jason Gerard DeRose <jderose@redhat.com>
#
# Copyright (C) 2008 Red Hat
# see file 'COPYING' for use and warranty information
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; version 2 only
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
"""
Base classes for all front-end plugins.
"""
import re
import inspect
from base import lock, check_name, NameSpace
from plugable import Plugin
from parameters import create_param, parse_param_spec, Param, Str, Flag, Password
from util import make_repr
from output import Output, Entry, ListOfEntries
from text import _, ngettext
from errors import ZeroArgumentError, MaxArgumentError, OverlapError, RequiresRoot
from errors import InvocationError
from constants import TYPE_ERROR
RULE_FLAG = 'validation_rule'
def rule(obj):
assert not hasattr(obj, RULE_FLAG)
setattr(obj, RULE_FLAG, True)
return obj
def is_rule(obj):
return callable(obj) and getattr(obj, RULE_FLAG, False) is True
class HasParam(Plugin):
"""
Base class for plugins that have `Param` `NameSpace` attributes.
Subclasses of `HasParam` will on one or more attributes store `NameSpace`
instances containing zero or more `Param` instances. These parameters might
describe, for example, the arguments and options a command takes, or the
attributes an LDAP entry can include, or whatever else the subclass sees
fit.
Although the interface a subclass must implement is very simple, it must
conform to a specific naming convention: if you want a namespace
``SubClass.foo``, you must define a ``Subclass.takes_foo`` attribute and a
``SubCLass.get_foo()`` method, and you may optionally define a
``SubClass.check_foo()`` method.
A quick big-picture example
===========================
Say you want the ``options`` instance attribute on your subclass to be a
`Param` `NameSpace`... then according to the enforced naming convention,
your subclass must define a ``takes_options`` attribute and a
``get_options()`` method. For example:
>>> from ipalib import Str, Int
>>> class Example(HasParam):
...
... options = None # This will be replaced with your namespace
...
... takes_options = (Str('one'), Int('two'))
...
... def get_options(self):
... return self._get_param_iterable('options')
...
>>> eg = Example()
The ``Example.takes_options`` attribute is a ``tuple`` defining the
parameters you want your ``Example.options`` namespace to contain. Your
``Example.takes_options`` attribute will be accessed via
`HasParam._get_param_iterable()`, which, among other things, enforces the
``('takes_' + name)`` naming convention. For example:
>>> eg._get_param_iterable('options')
(Str('one'), Int('two'))
The ``Example.get_options()`` method simply returns
``Example.takes_options`` by calling `HasParam._get_param_iterable()`. Your
``Example.get_options()`` method will be called via
`HasParam._filter_param_by_context()`, which, among other things, enforces
the ``('get_' + name)`` naming convention. For example:
>>> list(eg._filter_param_by_context('options'))
[Str('one'), Int('two')]
At this point, the ``eg.options`` instance attribute is still ``None``:
>>> eg.options is None
True
`HasParam._create_param_namespace()` will create the ``eg.options``
namespace from the parameters yielded by
`HasParam._filter_param_by_context()`. For example:
>>> eg._create_param_namespace('options')
>>> eg.options
NameSpace(<2 members>, sort=False)
>>> list(eg.options) # Like dict.__iter__()
['one', 'two']
Your subclass can optionally define a ``check_options()`` method to perform
sanity checks. If it exists, the ``check_options()`` method is called by
`HasParam._create_param_namespace()` with a single value, the `NameSpace`
instance it created. For example:
>>> class Example2(Example):
...
... def check_options(self, namespace):
... for param in namespace(): # Like dict.itervalues()
... if param.name == 'three':
... raise ValueError("I dislike the param 'three'")
... print ' ** Looks good! **' # Note output below
...
>>> eg = Example2()
>>> eg._create_param_namespace('options')
** Looks good! **
>>> eg.options
NameSpace(<2 members>, sort=False)
However, if we subclass again and add a `Param` named ``'three'``:
>>> class Example3(Example2):
...
... takes_options = (Str('one'), Int('two'), Str('three'))
...
>>> eg = Example3()
>>> eg._create_param_namespace('options')
Traceback (most recent call last):
...
ValueError: I dislike the param 'three'
>>> eg.options is None # eg.options was not set
True
The Devil and the details
=========================
In the above example, ``takes_options`` is a ``tuple``, but it can also be
a param spec (see `create_param()`), or a callable that returns an iterable
containing one or more param spec. Regardless of how ``takes_options`` is
defined, `HasParam._get_param_iterable()` will return a uniform iterable,
conveniently hiding the details.
The above example uses the simplest ``get_options()`` method possible, but
you could instead implement a ``get_options()`` method that would, for
example, produce (or withhold) certain parameters based on the whether
certain plugins are loaded.
Think of ``takes_options`` as declarative, a simple definition of *what*
parameters should be included in the namespace. You should only implement
a ``takes_options()`` method if a `Param` must reference attributes on your
plugin instance (for example, for validation rules); you should not use a
``takes_options()`` method to filter the parameters or add any other
procedural behaviour.
On the other hand, think of the ``get_options()`` method as imperative, a
procedure for *how* the parameters should be created and filtered. In the
example above the *how* just returns the *what* unchanged, but arbitrary
logic can be implemented in the ``get_options()`` method. For example, you
might filter certain parameters from ``takes_options`` base on some
criteria, or you might insert additional parameters provided by other
plugins.
The typical use case for using ``get_options()`` this way is to procedurally
generate the arguments and options for all the CRUD commands operating on a
specific LDAP object: the `Object` plugin defines the possible LDAP entry
attributes (as `Param`), and then the CRUD commands intelligently build
their ``args`` and ``options`` namespaces based on which attribute is the
primary key. In this way new LDAP attributes (aka parameters) can be added
to the single point of definition (the `Object` plugin), and all the
corresponding CRUD commands pick up these new parameters without requiring
modification. For an example of how this is done, see the
`ipalib.crud.Create` base class.
However, there is one type of filtering you should not implement in your
``get_options()`` method, because it's already provided at a higher level:
you should not filter parameters based on the value of ``api.env.context``
nor (preferably) on any values in ``api.env``.
`HasParam._filter_param_by_context()` already does this by calling
`Param.use_in_context()` for each parameter. Although the base
`Param.use_in_context()` implementation makes a decision solely on the value
of ``api.env.context``, subclasses can override this with implementations
that consider arbitrary ``api.env`` values.
"""
def _get_param_iterable(self, name, verb='takes'):
"""
Return an iterable of params defined by the attribute named ``name``.
A sequence of params can be defined one of three ways: as a ``tuple``;
as a callable that returns an iterable; or as a param spec (a `Param` or
``str`` instance). This method returns a uniform iterable regardless of
how the param sequence was defined.
For example, when defined with a tuple:
>>> class ByTuple(HasParam):
... takes_args = (Param('foo'), Param('bar'))
...
>>> by_tuple = ByTuple()
>>> list(by_tuple._get_param_iterable('args'))
[Param('foo'), Param('bar')]
Or you can define your param sequence with a callable when you need to
reference attributes on your plugin instance (for validation rules,
etc.). For example:
>>> class ByCallable(HasParam):
... def takes_args(self):
... yield Param('foo', self.validate_foo)
... yield Param('bar', self.validate_bar)
...
... def validate_foo(self, _, value, **kw):
... if value != 'Foo':
... return _("must be 'Foo'")
...
... def validate_bar(self, _, value, **kw):
... if value != 'Bar':
... return _("must be 'Bar'")
...
>>> by_callable = ByCallable()
>>> list(by_callable._get_param_iterable('args'))
[Param('foo', validate_foo), Param('bar', validate_bar)]
Lastly, as a convenience for when a param sequence contains a single
param, your defining attribute may a param spec (either a `Param`
or an ``str`` instance). For example:
>>> class BySpec(HasParam):
... takes_args = Param('foo')
... takes_options = 'bar?'
...
>>> by_spec = BySpec()
>>> list(by_spec._get_param_iterable('args'))
[Param('foo')]
>>> list(by_spec._get_param_iterable('options'))
['bar?']
For information on how an ``str`` param spec is interpreted, see the
`create_param()` and `parse_param_spec()` functions in the
`ipalib.parameters` module.
Also see `HasParam._filter_param_by_context()`.
"""
src_name = verb + '_' + name
src = getattr(self, src_name, None)
if type(src) is tuple:
return src
if isinstance(src, (Param, str)):
return (src,)
if callable(src):
return src()
if src is None:
return tuple()
raise TypeError(
'%s.%s must be a tuple, callable, or spec; got %r' % (
self.name, src_name, src
)
)
def _filter_param_by_context(self, name, env=None):
"""
Filter params on attribute named ``name`` by environment ``env``.
For example:
>>> from ipalib.config import Env
>>> class Example(HasParam):
...
... takes_args = (
... Str('foo_only', include=['foo']),
... Str('not_bar', exclude=['bar']),
... 'both',
... )
...
... def get_args(self):
... return self._get_param_iterable('args')
...
...
>>> eg = Example()
>>> foo = Env(context='foo')
>>> bar = Env(context='bar')
>>> another = Env(context='another')
>>> (foo.context, bar.context, another.context)
('foo', 'bar', 'another')
>>> list(eg._filter_param_by_context('args', foo))
[Str('foo_only', include=['foo']), Str('not_bar', exclude=['bar']), Str('both')]
>>> list(eg._filter_param_by_context('args', bar))
[Str('both')]
>>> list(eg._filter_param_by_context('args', another))
[Str('not_bar', exclude=['bar']), Str('both')]
"""
env = getattr(self, 'env', env)
get_name = 'get_' + name
if not hasattr(self, get_name):
raise NotImplementedError(
'%s.%s()' % (self.name, get_name)
)
get = getattr(self, get_name)
if not callable(get):
raise TypeError(
'%s.%s must be a callable; got %r' % (self.name, get_name, get)
)
for spec in get():
param = create_param(spec)
if env is None or param.use_in_context(env):
yield param
def _create_param_namespace(self, name, env=None):
namespace = NameSpace(
self._filter_param_by_context(name, env),
sort=False
)
check = getattr(self, 'check_' + name, None)
if callable(check):
check(namespace)
setattr(self, name, namespace)
class Command(HasParam):
"""
A public IPA atomic operation.
All plugins that subclass from `Command` will be automatically available
as a CLI command and as an XML-RPC method.
Plugins that subclass from Command are registered in the ``api.Command``
namespace. For example:
>>> from ipalib import create_api
>>> api = create_api()
>>> class my_command(Command):
... pass
...
>>> api.register(my_command)
>>> api.finalize()
>>> list(api.Command)
['my_command']
>>> api.Command.my_command # doctest:+ELLIPSIS
ipalib.frontend.my_command()
"""
takes_options = tuple()
takes_args = tuple()
args = None
options = None
params = None
output_for_cli = None
obj = None
use_output_validation = True
output = None
has_output = ('result',)
output_params = None
has_output_params = tuple()
msg_summary = None
msg_truncated = _('Results are truncated, try a more specific search')
def __call__(self, *args, **options):
"""
Perform validation and then execute the command.
If not in a server context, the call will be forwarded over
XML-RPC and the executed an the nearest IPA server.
"""
params = self.args_options_2_params(*args, **options)
self.debug(
'raw: %s(%s)', self.name, ', '.join(self._repr_iter(**params))
)
params = self.normalize(**params)
params = self.convert(**params)
params.update(self.get_default(**params))
self.info(
'%s(%s)', self.name, ', '.join(self._repr_iter(**params))
)
self.validate(**params)
(args, options) = self.params_2_args_options(**params)
ret = self.run(*args, **options)
if (
isinstance(ret, dict)
and 'summary' in self.output
and 'summary' not in ret
):
if self.msg_summary:
ret['summary'] = self.msg_summary % ret
else:
ret['summary'] = None
if self.use_output_validation and (self.output or ret is not None):
self.validate_output(ret)
return ret
def soft_validate(self, values):
errors = dict()
for p in self.params():
try:
value = values.get(p.name)
values[p.name] = p(value, **values)
except InvocationError, e:
errors[p.name] = str(e)
return dict(
values=values,
errors=errors,
)
def _repr_iter(self, **params):
"""
Iterate through ``repr()`` of *safe* values of args and options.
This method uses `parameters.Param.safe_value()` to mask passwords when
logging. Logging the exact call is extremely useful, but we obviously
don't want to log the cleartext password.
For example:
>>> class my_cmd(Command):
... takes_args = ('login',)
... takes_options=(Password('passwd'),)
...
>>> c = my_cmd()
>>> c.finalize()
>>> list(c._repr_iter(login=u'Okay.', passwd=u'Private!'))
["u'Okay.'", "passwd=u'********'"]
"""
for arg in self.args():
value = params.get(arg.name, None)
yield repr(arg.safe_value(value))
for option in self.options():
if option.name not in params:
continue
value = params[option.name]
yield '%s=%r' % (option.name, option.safe_value(value))
def args_options_2_params(self, *args, **options):
"""
Merge (args, options) into params.
"""
if self.max_args is not None and len(args) > self.max_args:
if self.max_args == 0:
raise ZeroArgumentError(name=self.name)
raise MaxArgumentError(name=self.name, count=self.max_args)
params = dict(self.__options_2_params(options))
if len(args) > 0:
arg_kw = dict(self.__args_2_params(args))
intersection = set(arg_kw).intersection(params)
if len(intersection) > 0:
raise OverlapError(names=sorted(intersection))
params.update(arg_kw)
return params
def __args_2_params(self, values):
multivalue = False
for (i, arg) in enumerate(self.args()):
assert not multivalue
if len(values) > i:
if arg.multivalue:
multivalue = True
if len(values) == i + 1 and type(values[i]) in (list, tuple):
yield (arg.name, values[i])
else:
yield (arg.name, values[i:])
else:
yield (arg.name, values[i])
else:
break
def __options_2_params(self, options):
for name in self.params:
if name in options:
yield (name, options[name])
def args_options_2_entry(self, *args, **options):
"""
Creates a LDAP entry from attributes in args and options.
"""
kw = self.args_options_2_params(*args, **options)
return dict(self.__attributes_2_entry(kw))
def __convert_2_dict(self, attrs, append=True):
"""
Convert a string in the form of name/value pairs into
a dictionary. The incoming attribute may be a string or
a list.
Any attribute found that is also a param is silently dropped.
append controls whether this returns a list of values or a single
value.
"""
newdict = {}
if not type(attrs) in (list, tuple):
attrs = [attrs]
for a in attrs:
m = re.match("\s*(.*?)\s*=\s*(.*?)\s*$", a)
attr = str(m.group(1)).lower()
value = m.group(2)
if len(value) == 0:
# None means "delete this attribute"
value = None
if attr not in self.params:
if append and attr in newdict:
newdict[attr].append(value)
else:
newdict[attr] = [value]
return newdict
def __attributes_2_entry(self, kw):
for name in self.params:
if self.params[name].attribute and name in kw:
value = kw[name]
if isinstance(value, tuple):
yield (name, [v for v in value])
else:
yield (name, kw[name])
adddict = {}
if kw.get('setattr'):
adddict = self.__convert_2_dict(kw['setattr'], append=False)
if kw.get('addattr'):
adddict.update(self.__convert_2_dict(kw['addattr']))
for name in adddict:
value = adddict[name]
if isinstance(value, list):
if len(value) == 1:
yield (name, value[0])
else:
yield (name, [v for v in value])
else:
yield (name, value)
def params_2_args_options(self, **params):
"""
Split params into (args, options).
"""
args = tuple(params.get(name, None) for name in self.args)
options = dict(self.__params_2_options(params))
return (args, options)
def __params_2_options(self, params):
for name in self.options:
if name in params:
yield(name, params[name])
def normalize(self, **kw):
"""
Return a dictionary of normalized values.
For example:
>>> class my_command(Command):
... takes_options = (
... Param('first', normalizer=lambda value: value.lower()),
... Param('last'),
... )
...
>>> c = my_command()
>>> c.finalize()
>>> c.normalize(first=u'JOHN', last=u'DOE')
{'last': u'DOE', 'first': u'john'}
"""
return dict(
(k, self.params[k].normalize(v)) for (k, v) in kw.iteritems()
)
def convert(self, **kw):
"""
Return a dictionary of values converted to correct type.
>>> from ipalib import Int
>>> class my_command(Command):
... takes_args = (
... Int('one'),
... 'two',
... )
...
>>> c = my_command()
>>> c.finalize()
>>> c.convert(one=1, two=2)
{'two': u'2', 'one': 1}
"""
return dict(
(k, self.params[k].convert(v)) for (k, v) in kw.iteritems()
)
def __convert_iter(self, kw):
for param in self.params():
if kw.get(param.name, None) is None:
continue
def get_default(self, **kw):
"""
Return a dictionary of defaults for all missing required values.
For example:
>>> from ipalib import Str
>>> class my_command(Command):
... takes_args = Str('color', default=u'Red')
...
>>> c = my_command()
>>> c.finalize()
>>> c.get_default()
{'color': u'Red'}
>>> c.get_default(color=u'Yellow')
{}
"""
return dict(self.__get_default_iter(kw))
def __get_default_iter(self, kw):
"""
Generator method used by `Command.get_default`.
"""
for param in self.params():
if param.name in kw:
continue
if param.required or param.autofill:
default = param.get_default(**kw)
if default is not None:
yield (param.name, default)
def validate(self, **kw):
"""
Validate all values.
If any value fails the validation, `ipalib.errors.ValidationError`
(or a subclass thereof) will be raised.
"""
for param in self.params():
value = kw.get(param.name, None)
param.validate(value)
def run(self, *args, **options):
"""
Dispatch to `Command.execute` or `Command.forward`.
If running in a server context, `Command.execute` is called and the
actually work this command performs is executed locally.
If running in a non-server context, `Command.forward` is called,
which forwards this call over XML-RPC to the exact same command
on the nearest IPA server and the actual work this command
performs is executed remotely.
"""
if self.api.env.in_server:
return self.execute(*args, **options)
return self.forward(*args, **options)
def execute(self, *args, **kw):
"""
Perform the actual work this command does.
This method should be implemented only against functionality
in self.api.Backend. For example, a hypothetical
user_add.execute() might be implemented like this:
>>> class user_add(Command):
... def execute(self, **kw):
... return self.api.Backend.ldap.add(**kw)
...
"""
raise NotImplementedError('%s.execute()' % self.name)
def forward(self, *args, **kw):
"""
Forward call over XML-RPC to this same command on server.
"""
return self.Backend.xmlclient.forward(self.name, *args, **kw)
def finalize(self):
"""
Finalize plugin initialization.
This method creates the ``args``, ``options``, and ``params``
namespaces. This is not done in `Command.__init__` because
subclasses (like `crud.Add`) might need to access other plugins
loaded in self.api to determine what their custom `Command.get_args`
and `Command.get_options` methods should yield.
"""
self._create_param_namespace('args')
if len(self.args) == 0 or not self.args[-1].multivalue:
self.max_args = len(self.args)
else:
self.max_args = None
self._create_param_namespace('options')
def get_key(p):
if p.required:
if p.default_from is None:
return 0
return 1
return 2
self.params = NameSpace(
sorted(tuple(self.args()) + tuple(self.options()), key=get_key),
sort=False
)
self.output = NameSpace(self._iter_output(), sort=False)
self._create_param_namespace('output_params')
super(Command, self).finalize()
def _iter_output(self):
if type(self.has_output) is not tuple:
raise TypeError('%s.has_output: need a %r; got a %r: %r' % (
self.name, tuple, type(self.has_output), self.has_output)
)
for (i, o) in enumerate(self.has_output):
if isinstance(o, str):
o = Output(o)
if not isinstance(o, Output):
raise TypeError('%s.has_output[%d]: need a %r; got a %r: %r' % (
self.name, i, (str, Output), type(o), o)
)
yield o
def get_args(self):
"""
Iterate through parameters for ``Command.args`` namespace.
This method gets called by `HasParam._create_param_namespace()`.
Subclasses can override this to customize how the arguments are
determined. For an example of why this can be useful, see the
`ipalib.crud.Create` subclass.
"""
for arg in self._get_param_iterable('args'):
yield arg
def check_args(self, args):
"""
Sanity test for args namespace.
This method gets called by `HasParam._create_param_namespace()`.
"""
optional = False
multivalue = False
for arg in args():
if optional and arg.required:
raise ValueError(
'%s: required argument after optional' % arg.name
)
if multivalue:
raise ValueError(
'%s: only final argument can be multivalue' % arg.name
)
if not arg.required:
optional = True
if arg.multivalue:
multivalue = True
def get_options(self):
"""
Iterate through parameters for ``Command.options`` namespace.
This method gets called by `HasParam._create_param_namespace()`.
Subclasses can override this to customize how the arguments are
determined. For an example of why this can be useful, see the
`ipalib.crud.Create` subclass.
"""
for option in self._get_param_iterable('options'):
yield option
for o in self.has_output:
if isinstance(o, (Entry, ListOfEntries)):
yield Flag('all',
cli_name='all',
doc='retrieve all attributes',
exclude='webui',
)
yield Flag('raw',
cli_name='raw',
doc='print entries as stored on the server',
exclude='webui',
)
return
def validate_output(self, output):
"""
Validate the return value to make sure it meets the interface contract.
"""
nice = '%s.validate_output()' % self.name
if not isinstance(output, dict):
raise TypeError('%s: need a %r; got a %r: %r' % (
nice, dict, type(output), output)
)
if len(output) < len(self.output):
missing = sorted(set(self.output).difference(output))
raise ValueError('%s: missing keys %r in %r' % (
nice, missing, output)
)
if len(output) > len(self.output):
extra = sorted(set(output).difference(self.output))
raise ValueError('%s: unexpected keys %r in %r' % (
nice, extra, output)
)
for o in self.output():
value = output[o.name]
if not (o.type is None or isinstance(value, o.type)):
raise TypeError('%s:\n output[%r]: need %r; got %r: %r' % (
nice, o.name, o.type, type(value), value)
)
if callable(o.validate):
o.validate(self, value)
def get_output_params(self):
for param in self._get_param_iterable('output_params', verb='has'):
yield param
if self.params is None:
return
for param in self.params():
if 'no_output' in param.flags:
continue
yield param
def output_for_cli(self, textui, output, *args, **options):
if not isinstance(output, dict):
return
order = [p.name for p in self.output_params()]
if options.get('all', False):
order.insert(0, 'dn')
print_all = True
else:
print_all = False
if options.get('raw', False):
labels = None
else:
labels = dict((p.name, p.label) for p in self.output_params())
for o in self.output:
if 'no_display' in self.output[o].flags:
continue
result = output[o]
if isinstance(result, (tuple, list)):
textui.print_entries(result, order, labels, print_all)
elif isinstance(result, dict):
textui.print_entry(result, order, labels, print_all)
elif isinstance(result, unicode):
if o == 'summary':
textui.print_summary(result)
else:
textui.print_indented(result)
elif isinstance(result, bool):
# the Delete commands return a boolean indicating
# success or failure. Ignore these.
pass
elif isinstance(result, int):
textui.print_count(result, '%s %%d' % self.output[o].doc)
class LocalOrRemote(Command):
"""
A command that is explicitly executed locally or remotely.
This is for commands that makes sense to execute either locally or
remotely to return a perhaps different result. The best example of
this is the `ipalib.plugins.f_misc.env` plugin which returns the
key/value pairs describing the configuration state: it can be
"""
takes_options = (
Flag('server?',
doc='Forward to server instead of running locally',
),
)
def run(self, *args, **options):
"""
Dispatch to forward() or execute() based on ``server`` option.
When running in a client context, this command is executed remotely if
``options['server']`` is true; otherwise it is executed locally.
When running in a server context, this command is always executed
locally and the value of ``options['server']`` is ignored.
"""
if options['server'] and not self.env.in_server:
return self.forward(*args, **options)
return self.execute(*args, **options)
class Object(HasParam):
backend = None
methods = None
properties = None
params = None
primary_key = None
params_minus_pk = None
# Can override in subclasses:
backend_name = None
takes_params = tuple()
def set_api(self, api):
super(Object, self).set_api(api)
self.methods = NameSpace(
self.__get_attrs('Method'), sort=False, name_attr='attr_name'
)
self.properties = NameSpace(
self.__get_attrs('Property'), sort=False, name_attr='attr_name'
)
self._create_param_namespace('params')
pkeys = filter(lambda p: p.primary_key, self.params())
if len(pkeys) > 1:
raise ValueError(
'%s (Object) has multiple primary keys: %s' % (
self.name,
', '.join(p.name for p in pkeys),
)
)
if len(pkeys) == 1:
self.primary_key = pkeys[0]
self.params_minus_pk = NameSpace(
filter(lambda p: not p.primary_key, self.params()), sort=False
)
else:
self.params_minus_pk = self.params
if 'Backend' in self.api and self.backend_name in self.api.Backend:
self.backend = self.api.Backend[self.backend_name]
def params_minus(self, *names):
"""
Yield all Param whose name is not in ``names``.
"""
if len(names) == 1 and not isinstance(names[0], (Param, str)):
names = names[0]
minus = frozenset(names)
for param in self.params():
if param.name in minus or param in minus:
continue
yield param
def get_dn(self, *args, **kwargs):
"""
Construct an LDAP DN.
"""
raise NotImplementedError('%s.get_dn()' % self.name)
def __get_attrs(self, name):
if name not in self.api:
return
namespace = self.api[name]
assert type(namespace) is NameSpace
for plugin in namespace(): # Equivalent to dict.itervalues()
if plugin.obj_name == self.name:
yield plugin
def get_params(self):
"""
This method gets called by `HasParam._create_param_namespace()`.
"""
props = self.properties.__todict__()
for spec in self._get_param_iterable('params'):
if type(spec) is str:
key = spec.rstrip('?*+')
else:
assert isinstance(spec, Param)
key = spec.name
if key in props:
yield props.pop(key).param
else:
yield create_param(spec)
def get_key(p):
if p.param.required:
if p.param.default_from is None:
return 0
return 1
return 2
for prop in sorted(props.itervalues(), key=get_key):
yield prop.param
class Attribute(Plugin):
"""
Base class implementing the attribute-to-object association.
`Attribute` plugins are associated with an `Object` plugin to group
a common set of commands that operate on a common set of parameters.
The association between attribute and object is done using a simple
naming convention: the first part of the plugin class name (up to the
first underscore) is the object name, and rest is the attribute name,
as this table shows:
=============== =========== ==============
Class name Object name Attribute name
=============== =========== ==============
noun_verb noun verb
user_add user add
user_first_name user first_name
=============== =========== ==============
For example:
>>> class user_add(Attribute):
... pass
...
>>> instance = user_add()
>>> instance.obj_name
'user'
>>> instance.attr_name
'add'
In practice the `Attribute` class is not used directly, but rather is
only the base class for the `Method` and `Property` classes. Also see
the `Object` class.
"""
__obj = None
def __init__(self):
m = re.match(
'^([a-z][a-z0-9]+)_([a-z][a-z0-9]+(?:_[a-z][a-z0-9]+)*)$',
self.__class__.__name__
)
assert m
self.__obj_name = m.group(1)
self.__attr_name = m.group(2)
super(Attribute, self).__init__()
def __get_obj_name(self):
return self.__obj_name
obj_name = property(__get_obj_name)
def __get_attr_name(self):
return self.__attr_name
attr_name = property(__get_attr_name)
def __get_obj(self):
"""
Returns the obj instance this attribute is associated with, or None
if no association has been set.
"""
return self.__obj
obj = property(__get_obj)
def set_api(self, api):
self.__obj = api.Object[self.obj_name]
super(Attribute, self).set_api(api)
class Method(Attribute, Command):
"""
A command with an associated object.
A `Method` plugin must have a corresponding `Object` plugin. The
association between object and method is done through a simple naming
convention: the first part of the method name (up to the first under
score) is the object name, as the examples in this table show:
============= =========== ==============
Method name Object name Attribute name
============= =========== ==============
user_add user add
noun_verb noun verb
door_open_now door open_now
============= =========== ==============
There are three different places a method can be accessed. For example,
say you created a `Method` plugin and its corresponding `Object` plugin
like this:
>>> from ipalib import create_api
>>> api = create_api()
>>> class user_add(Method):
... def run(self):
... return dict(result='Added the user!')
...
>>> class user(Object):
... pass
...
>>> api.register(user_add)
>>> api.register(user)
>>> api.finalize()
First, the ``user_add`` plugin can be accessed through the ``api.Method``
namespace:
>>> list(api.Method)
['user_add']
>>> api.Method.user_add() # Will call user_add.run()
{'result': 'Added the user!'}
Second, because `Method` is a subclass of `Command`, the ``user_add``
plugin can also be accessed through the ``api.Command`` namespace:
>>> list(api.Command)
['user_add']
>>> api.Command.user_add() # Will call user_add.run()
{'result': 'Added the user!'}
And third, ``user_add`` can be accessed as an attribute on the ``user``
`Object`:
>>> list(api.Object)
['user']
>>> list(api.Object.user.methods)
['add']
>>> api.Object.user.methods.add() # Will call user_add.run()
{'result': 'Added the user!'}
The `Attribute` base class implements the naming convention for the
attribute-to-object association. Also see the `Object` and the
`Property` classes.
"""
extra_options_first = False
extra_args_first = False
def __init__(self):
super(Method, self).__init__()
def get_output_params(self):
for param in self.obj.params():
yield param
class Property(Attribute):
klass = Str
default = None
default_from = None
normalizer = None
def __init__(self):
super(Property, self).__init__()
# FIXME: This is a hack till Param.label is updated to require a
# LazyText instance:
self.label = None
self.rules = tuple(
sorted(self.__rules_iter(), key=lambda f: getattr(f, '__name__'))
)
self.kwargs = tuple(
sorted(self.__kw_iter(), key=lambda keyvalue: keyvalue[0])
)
kw = dict(self.kwargs)
self.param = self.klass(self.attr_name, *self.rules, **kw)
def __kw_iter(self):
for (key, kind, default) in self.klass.kwargs:
if getattr(self, key, None) is not None:
yield (key, getattr(self, key))
def __rules_iter(self):
"""
Iterates through the attributes in this instance to retrieve the
methods implementing validation rules.
"""
for name in dir(self.__class__):
if name.startswith('_'):
continue
base_attr = getattr(self.__class__, name)
if is_rule(base_attr):
attr = getattr(self, name)
if is_rule(attr):
yield attr