2019-02-08 10:20:31 -06:00
|
|
|
package azuremonitor
|
|
|
|
|
|
|
|
import (
|
2019-02-08 11:15:17 -06:00
|
|
|
"encoding/json"
|
2019-02-08 10:20:31 -06:00
|
|
|
"fmt"
|
2019-02-08 11:15:17 -06:00
|
|
|
"io/ioutil"
|
2019-02-09 14:52:44 -06:00
|
|
|
"net/url"
|
2020-04-27 10:43:02 -05:00
|
|
|
"path/filepath"
|
2019-02-08 10:20:31 -06:00
|
|
|
"testing"
|
|
|
|
"time"
|
|
|
|
|
2020-06-01 11:37:39 -05:00
|
|
|
"github.com/google/go-cmp/cmp"
|
|
|
|
"github.com/google/go-cmp/cmp/cmpopts"
|
|
|
|
"github.com/grafana/grafana-plugin-sdk-go/data"
|
2019-02-08 10:20:31 -06:00
|
|
|
"github.com/grafana/grafana/pkg/components/simplejson"
|
2019-05-21 05:28:30 -05:00
|
|
|
"github.com/grafana/grafana/pkg/models"
|
2019-02-08 10:20:31 -06:00
|
|
|
"github.com/grafana/grafana/pkg/tsdb"
|
2020-06-01 11:37:39 -05:00
|
|
|
"github.com/stretchr/testify/require"
|
2019-02-08 10:20:31 -06:00
|
|
|
)
|
|
|
|
|
2020-06-01 11:37:39 -05:00
|
|
|
func TestAzureMonitorBuildQueries(t *testing.T) {
|
|
|
|
datasource := &AzureMonitorDatasource{}
|
|
|
|
fromStart := time.Date(2018, 3, 15, 13, 0, 0, 0, time.UTC).In(time.Local)
|
|
|
|
|
|
|
|
tests := []struct {
|
|
|
|
name string
|
|
|
|
azureMonitorVariedProperties map[string]interface{}
|
|
|
|
azureMonitorQueryTarget string
|
|
|
|
expectedInterval string
|
|
|
|
queryIntervalMS int64
|
|
|
|
}{
|
|
|
|
{
|
|
|
|
name: "Parse queries from frontend and build AzureMonitor API queries",
|
|
|
|
azureMonitorVariedProperties: map[string]interface{}{
|
|
|
|
"timeGrain": "PT1M",
|
|
|
|
"top": "10",
|
|
|
|
},
|
|
|
|
expectedInterval: "PT1M",
|
|
|
|
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines×pan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: "time grain set to auto",
|
|
|
|
azureMonitorVariedProperties: map[string]interface{}{
|
|
|
|
"timeGrain": "auto",
|
|
|
|
"top": "10",
|
|
|
|
},
|
|
|
|
queryIntervalMS: 400000,
|
|
|
|
expectedInterval: "PT15M",
|
|
|
|
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT15M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines×pan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: "time grain set to auto",
|
|
|
|
azureMonitorVariedProperties: map[string]interface{}{
|
|
|
|
"timeGrain": "auto",
|
|
|
|
"allowedTimeGrainsMs": []int64{60000, 300000},
|
|
|
|
"top": "10",
|
|
|
|
},
|
|
|
|
queryIntervalMS: 400000,
|
|
|
|
expectedInterval: "PT5M",
|
|
|
|
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT5M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines×pan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: "has a dimension filter",
|
|
|
|
azureMonitorVariedProperties: map[string]interface{}{
|
|
|
|
"timeGrain": "PT1M",
|
|
|
|
"dimension": "blob",
|
|
|
|
"dimensionFilter": "*",
|
|
|
|
"top": "30",
|
|
|
|
},
|
|
|
|
queryIntervalMS: 400000,
|
|
|
|
expectedInterval: "PT1M",
|
|
|
|
azureMonitorQueryTarget: "%24filter=blob+eq+%27%2A%27&aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines×pan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z&top=30",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: "has a dimension filter",
|
|
|
|
azureMonitorVariedProperties: map[string]interface{}{
|
|
|
|
"timeGrain": "PT1M",
|
|
|
|
"dimension": "None",
|
|
|
|
"dimensionFilter": "*",
|
|
|
|
"top": "10",
|
|
|
|
},
|
|
|
|
queryIntervalMS: 400000,
|
|
|
|
expectedInterval: "PT1M",
|
|
|
|
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines×pan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
commonAzureModelProps := map[string]interface{}{
|
|
|
|
"aggregation": "Average",
|
|
|
|
"resourceGroup": "grafanastaging",
|
|
|
|
"resourceName": "grafana",
|
|
|
|
"metricDefinition": "Microsoft.Compute/virtualMachines",
|
|
|
|
"metricNamespace": "Microsoft.Compute-virtualMachines",
|
|
|
|
"metricName": "Percentage CPU",
|
2019-02-08 10:20:31 -06:00
|
|
|
|
2020-06-01 11:37:39 -05:00
|
|
|
"alias": "testalias",
|
|
|
|
"queryType": "Azure Monitor",
|
|
|
|
}
|
|
|
|
|
|
|
|
for _, tt := range tests {
|
|
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
|
|
for k, v := range commonAzureModelProps {
|
|
|
|
tt.azureMonitorVariedProperties[k] = v
|
|
|
|
}
|
2019-02-08 10:20:31 -06:00
|
|
|
tsdbQuery := &tsdb.TsdbQuery{
|
|
|
|
TimeRange: &tsdb.TimeRange{
|
|
|
|
From: fmt.Sprintf("%v", fromStart.Unix()*1000),
|
|
|
|
To: fmt.Sprintf("%v", fromStart.Add(34*time.Minute).Unix()*1000),
|
|
|
|
},
|
|
|
|
Queries: []*tsdb.Query{
|
|
|
|
{
|
2019-05-21 05:28:30 -05:00
|
|
|
DataSource: &models.DataSource{
|
|
|
|
JsonData: simplejson.NewFromAny(map[string]interface{}{
|
|
|
|
"subscriptionId": "default-subscription",
|
|
|
|
}),
|
|
|
|
},
|
2019-02-08 10:20:31 -06:00
|
|
|
Model: simplejson.NewFromAny(map[string]interface{}{
|
2019-05-21 05:28:30 -05:00
|
|
|
"subscription": "12345678-aaaa-bbbb-cccc-123456789abc",
|
2020-06-01 11:37:39 -05:00
|
|
|
"azureMonitor": tt.azureMonitorVariedProperties,
|
|
|
|
},
|
|
|
|
),
|
|
|
|
RefId: "A",
|
|
|
|
IntervalMs: tt.queryIntervalMS,
|
2019-02-08 10:20:31 -06:00
|
|
|
},
|
|
|
|
},
|
|
|
|
}
|
2019-02-09 18:47:38 -06:00
|
|
|
|
2020-06-01 11:37:39 -05:00
|
|
|
azureMonitorQuery := &AzureMonitorQuery{
|
|
|
|
URL: "12345678-aaaa-bbbb-cccc-123456789abc/resourceGroups/grafanastaging/providers/Microsoft.Compute/virtualMachines/grafana/providers/microsoft.insights/metrics",
|
|
|
|
UrlComponents: map[string]string{
|
|
|
|
"metricDefinition": "Microsoft.Compute/virtualMachines",
|
|
|
|
"resourceGroup": "grafanastaging",
|
|
|
|
"resourceName": "grafana",
|
|
|
|
"subscription": "12345678-aaaa-bbbb-cccc-123456789abc",
|
|
|
|
},
|
|
|
|
Target: tt.azureMonitorQueryTarget,
|
|
|
|
RefID: "A",
|
|
|
|
Alias: "testalias",
|
|
|
|
}
|
2019-07-04 15:47:24 -05:00
|
|
|
|
2020-06-01 11:37:39 -05:00
|
|
|
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
}
|
|
|
|
if diff := cmp.Diff(azureMonitorQuery, queries[0], cmpopts.IgnoreUnexported(simplejson.Json{}), cmpopts.IgnoreFields(AzureMonitorQuery{}, "Params")); diff != "" {
|
|
|
|
t.Errorf("Result mismatch (-want +got):\n%s", diff)
|
|
|
|
}
|
2019-02-08 10:20:31 -06:00
|
|
|
})
|
2020-06-01 11:37:39 -05:00
|
|
|
}
|
|
|
|
}
|
2019-02-08 11:15:17 -06:00
|
|
|
|
2020-06-01 11:37:39 -05:00
|
|
|
func makeDates(startDate time.Time, count int, interval time.Duration) (times []time.Time) {
|
|
|
|
for i := 0; i < count; i++ {
|
|
|
|
times = append(times, startDate.Add(interval*time.Duration(i)))
|
|
|
|
}
|
|
|
|
return
|
|
|
|
}
|
2019-07-04 15:47:24 -05:00
|
|
|
|
2020-06-01 11:37:39 -05:00
|
|
|
func TestAzureMonitorParseResponse(t *testing.T) {
|
|
|
|
tests := []struct {
|
|
|
|
name string
|
|
|
|
responseFile string
|
|
|
|
mockQuery *AzureMonitorQuery
|
|
|
|
expectedFrames data.Frames
|
|
|
|
queryIntervalMS int64
|
|
|
|
}{
|
|
|
|
{
|
|
|
|
name: "average aggregate time series response",
|
|
|
|
responseFile: "1-azure-monitor-response-avg.json",
|
|
|
|
mockQuery: &AzureMonitorQuery{
|
|
|
|
UrlComponents: map[string]string{
|
|
|
|
"resourceName": "grafana",
|
|
|
|
},
|
|
|
|
Params: url.Values{
|
|
|
|
"aggregation": {"Average"},
|
|
|
|
},
|
|
|
|
},
|
|
|
|
expectedFrames: data.Frames{
|
|
|
|
data.NewFrame("",
|
|
|
|
data.NewField("", nil,
|
|
|
|
makeDates(time.Date(2019, 2, 8, 10, 13, 0, 0, time.UTC), 5, time.Minute)),
|
|
|
|
data.NewField("grafana.Percentage CPU", nil, []float64{
|
|
|
|
2.0875, 2.1525, 2.155, 3.6925, 2.44,
|
|
|
|
}).SetConfig(&data.FieldConfig{Unit: "Percent"})),
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: "total aggregate time series response",
|
|
|
|
responseFile: "2-azure-monitor-response-total.json",
|
|
|
|
mockQuery: &AzureMonitorQuery{
|
|
|
|
UrlComponents: map[string]string{
|
|
|
|
"resourceName": "grafana",
|
|
|
|
},
|
|
|
|
Params: url.Values{
|
|
|
|
"aggregation": {"Total"},
|
|
|
|
},
|
|
|
|
},
|
|
|
|
expectedFrames: data.Frames{
|
|
|
|
data.NewFrame("",
|
|
|
|
data.NewField("", nil,
|
|
|
|
makeDates(time.Date(2019, 2, 9, 13, 29, 0, 0, time.UTC), 5, time.Minute)),
|
|
|
|
data.NewField("grafana.Percentage CPU", nil, []float64{
|
|
|
|
8.26, 8.7, 14.82, 10.07, 8.52,
|
|
|
|
}).SetConfig(&data.FieldConfig{Unit: "Percent"})),
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: "maximum aggregate time series response",
|
|
|
|
responseFile: "3-azure-monitor-response-maximum.json",
|
|
|
|
mockQuery: &AzureMonitorQuery{
|
|
|
|
UrlComponents: map[string]string{
|
|
|
|
"resourceName": "grafana",
|
|
|
|
},
|
|
|
|
Params: url.Values{
|
|
|
|
"aggregation": {"Maximum"},
|
|
|
|
},
|
|
|
|
},
|
|
|
|
expectedFrames: data.Frames{
|
|
|
|
data.NewFrame("",
|
|
|
|
data.NewField("", nil,
|
|
|
|
makeDates(time.Date(2019, 2, 9, 14, 26, 0, 0, time.UTC), 5, time.Minute)),
|
|
|
|
data.NewField("grafana.Percentage CPU", nil, []float64{
|
|
|
|
3.07, 2.92, 2.87, 2.27, 2.52,
|
|
|
|
}).SetConfig(&data.FieldConfig{Unit: "Percent"})),
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: "minimum aggregate time series response",
|
|
|
|
responseFile: "4-azure-monitor-response-minimum.json",
|
|
|
|
mockQuery: &AzureMonitorQuery{
|
|
|
|
UrlComponents: map[string]string{
|
|
|
|
"resourceName": "grafana",
|
|
|
|
},
|
|
|
|
Params: url.Values{
|
|
|
|
"aggregation": {"Minimum"},
|
|
|
|
},
|
|
|
|
},
|
|
|
|
expectedFrames: data.Frames{
|
|
|
|
data.NewFrame("",
|
|
|
|
data.NewField("", nil,
|
|
|
|
makeDates(time.Date(2019, 2, 9, 14, 43, 0, 0, time.UTC), 5, time.Minute)),
|
|
|
|
data.NewField("grafana.Percentage CPU", nil, []float64{
|
|
|
|
1.51, 2.38, 1.69, 2.27, 1.96,
|
|
|
|
}).SetConfig(&data.FieldConfig{Unit: "Percent"})),
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: "count aggregate time series response",
|
|
|
|
responseFile: "5-azure-monitor-response-count.json",
|
|
|
|
mockQuery: &AzureMonitorQuery{
|
|
|
|
UrlComponents: map[string]string{
|
|
|
|
"resourceName": "grafana",
|
|
|
|
},
|
|
|
|
Params: url.Values{
|
|
|
|
"aggregation": {"Count"},
|
|
|
|
},
|
|
|
|
},
|
|
|
|
expectedFrames: data.Frames{
|
|
|
|
data.NewFrame("",
|
|
|
|
data.NewField("", nil,
|
|
|
|
makeDates(time.Date(2019, 2, 9, 14, 44, 0, 0, time.UTC), 5, time.Minute)),
|
|
|
|
data.NewField("grafana.Percentage CPU", nil, []float64{
|
|
|
|
4, 4, 4, 4, 4,
|
|
|
|
}).SetConfig(&data.FieldConfig{Unit: "Percent"})),
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: "multi dimension time series response",
|
|
|
|
responseFile: "6-azure-monitor-response-multi-dimension.json",
|
|
|
|
mockQuery: &AzureMonitorQuery{
|
|
|
|
UrlComponents: map[string]string{
|
|
|
|
"resourceName": "grafana",
|
|
|
|
},
|
|
|
|
Params: url.Values{
|
|
|
|
"aggregation": {"Average"},
|
|
|
|
},
|
|
|
|
},
|
|
|
|
// Regarding multi-dimensional response:
|
|
|
|
// - It seems they all share the same time index, so maybe can be a wide frame.
|
|
|
|
// - Due to the type for the Azure monitor response, nulls currently become 0.
|
|
|
|
// - blogtype=X should maybe become labels.
|
|
|
|
expectedFrames: data.Frames{
|
|
|
|
data.NewFrame("",
|
|
|
|
data.NewField("", nil,
|
|
|
|
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
|
|
|
|
data.NewField("grafana{blobtype=PageBlob}.Blob Count", nil, []float64{
|
|
|
|
3, 3, 3, 3, 3, 0,
|
|
|
|
}).SetConfig(&data.FieldConfig{Unit: "Count"})),
|
|
|
|
|
|
|
|
data.NewFrame("",
|
|
|
|
data.NewField("", nil,
|
|
|
|
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
|
|
|
|
data.NewField("grafana{blobtype=BlockBlob}.Blob Count", nil, []float64{
|
|
|
|
1, 1, 1, 1, 1, 0,
|
|
|
|
}).SetConfig(&data.FieldConfig{Unit: "Count"})),
|
|
|
|
|
|
|
|
data.NewFrame("",
|
|
|
|
data.NewField("", nil,
|
|
|
|
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
|
|
|
|
data.NewField("grafana{blobtype=Azure Data Lake Storage}.Blob Count", nil, []float64{
|
|
|
|
0, 0, 0, 0, 0, 0,
|
|
|
|
}).SetConfig(&data.FieldConfig{Unit: "Count"})),
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: "with alias patterns in the query",
|
|
|
|
responseFile: "2-azure-monitor-response-total.json",
|
|
|
|
mockQuery: &AzureMonitorQuery{
|
|
|
|
Alias: "custom {{resourcegroup}} {{namespace}} {{resourceName}} {{metric}}",
|
|
|
|
UrlComponents: map[string]string{
|
|
|
|
"resourceName": "grafana",
|
|
|
|
},
|
|
|
|
Params: url.Values{
|
|
|
|
"aggregation": {"Total"},
|
|
|
|
},
|
|
|
|
},
|
|
|
|
expectedFrames: data.Frames{
|
|
|
|
data.NewFrame("",
|
|
|
|
data.NewField("", nil,
|
|
|
|
makeDates(time.Date(2019, 2, 9, 13, 29, 0, 0, time.UTC), 5, time.Minute)),
|
|
|
|
data.NewField("custom grafanastaging Microsoft.Compute/virtualMachines grafana Percentage CPU", nil, []float64{
|
|
|
|
8.26, 8.7, 14.82, 10.07, 8.52,
|
|
|
|
}).SetConfig(&data.FieldConfig{Unit: "Percent"})),
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: "multi dimension with alias",
|
|
|
|
responseFile: "6-azure-monitor-response-multi-dimension.json",
|
|
|
|
mockQuery: &AzureMonitorQuery{
|
|
|
|
Alias: "{{dimensionname}}={{DimensionValue}}",
|
|
|
|
UrlComponents: map[string]string{
|
|
|
|
"resourceName": "grafana",
|
|
|
|
},
|
|
|
|
Params: url.Values{
|
|
|
|
"aggregation": {"Average"},
|
|
|
|
},
|
|
|
|
},
|
|
|
|
expectedFrames: data.Frames{
|
|
|
|
data.NewFrame("",
|
|
|
|
data.NewField("", nil,
|
|
|
|
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
|
|
|
|
data.NewField("blobtype=PageBlob", nil, []float64{
|
|
|
|
3, 3, 3, 3, 3, 0,
|
|
|
|
}).SetConfig(&data.FieldConfig{Unit: "Count"})),
|
|
|
|
|
|
|
|
data.NewFrame("",
|
|
|
|
data.NewField("", nil,
|
|
|
|
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
|
|
|
|
data.NewField("blobtype=BlockBlob", nil, []float64{
|
|
|
|
1, 1, 1, 1, 1, 0,
|
|
|
|
}).SetConfig(&data.FieldConfig{Unit: "Count"})),
|
|
|
|
|
|
|
|
data.NewFrame("",
|
|
|
|
data.NewField("", nil,
|
|
|
|
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
|
|
|
|
data.NewField("blobtype=Azure Data Lake Storage", nil, []float64{
|
|
|
|
0, 0, 0, 0, 0, 0,
|
|
|
|
}).SetConfig(&data.FieldConfig{Unit: "Count"})),
|
|
|
|
},
|
|
|
|
},
|
|
|
|
}
|
2019-07-04 15:47:24 -05:00
|
|
|
|
2020-06-01 11:37:39 -05:00
|
|
|
datasource := &AzureMonitorDatasource{}
|
2019-07-04 15:47:24 -05:00
|
|
|
|
2020-06-01 11:37:39 -05:00
|
|
|
for _, tt := range tests {
|
|
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
|
|
azData, err := loadTestFile("azuremonitor/" + tt.responseFile)
|
|
|
|
require.NoError(t, err)
|
|
|
|
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
|
|
|
|
err = datasource.parseResponse(res, azData, tt.mockQuery)
|
|
|
|
require.NoError(t, err)
|
2019-02-10 18:17:37 -06:00
|
|
|
|
2020-06-01 11:37:39 -05:00
|
|
|
frames, err := data.UnmarshalArrowFrames(res.Dataframes)
|
|
|
|
require.NoError(t, err)
|
|
|
|
if diff := cmp.Diff(tt.expectedFrames, frames, data.FrameTestCompareOptions()...); diff != "" {
|
|
|
|
t.Errorf("Result mismatch (-want +got):\n%s", diff)
|
2019-02-10 18:17:37 -06:00
|
|
|
}
|
2020-06-01 11:37:39 -05:00
|
|
|
})
|
|
|
|
}
|
|
|
|
}
|
2019-02-10 18:17:37 -06:00
|
|
|
|
2020-06-01 11:37:39 -05:00
|
|
|
func TestFindClosestAllowIntervalMS(t *testing.T) {
|
|
|
|
humanIntervalToMS := map[string]int64{
|
|
|
|
"3m": 180000,
|
|
|
|
"5m": 300000,
|
|
|
|
"10m": 600000,
|
|
|
|
"15m": 900000,
|
|
|
|
"1d": 86400000,
|
|
|
|
"2d": 172800000,
|
|
|
|
}
|
|
|
|
tests := []struct {
|
|
|
|
name string
|
|
|
|
allowedTimeGrains []int64 // Note: Uses defaults when empty list
|
|
|
|
inputInterval int64
|
|
|
|
expectedInterval int64
|
|
|
|
}{
|
|
|
|
{
|
|
|
|
name: "closest to 3m is 5m",
|
|
|
|
allowedTimeGrains: []int64{},
|
|
|
|
inputInterval: humanIntervalToMS["3m"],
|
|
|
|
expectedInterval: humanIntervalToMS["5m"],
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: "closest to 10m is 15m",
|
|
|
|
allowedTimeGrains: []int64{},
|
|
|
|
inputInterval: humanIntervalToMS["10m"],
|
|
|
|
expectedInterval: humanIntervalToMS["15m"],
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: "closest to 2d is 1d",
|
|
|
|
allowedTimeGrains: []int64{},
|
|
|
|
inputInterval: humanIntervalToMS["2d"],
|
|
|
|
expectedInterval: humanIntervalToMS["1d"],
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: "closest to 3m is 1d when 1d is only allowed interval",
|
|
|
|
allowedTimeGrains: []int64{humanIntervalToMS["1d"]},
|
|
|
|
inputInterval: humanIntervalToMS["2d"],
|
|
|
|
expectedInterval: humanIntervalToMS["1d"],
|
|
|
|
},
|
|
|
|
}
|
|
|
|
for _, tt := range tests {
|
|
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
|
|
interval := findClosestAllowedIntervalMS(tt.inputInterval, tt.allowedTimeGrains)
|
|
|
|
require.Equal(t, tt.expectedInterval, interval)
|
2019-02-10 18:17:37 -06:00
|
|
|
})
|
2020-06-01 11:37:39 -05:00
|
|
|
}
|
2019-02-08 10:20:31 -06:00
|
|
|
}
|
2019-02-08 11:15:17 -06:00
|
|
|
|
2020-04-27 10:43:02 -05:00
|
|
|
func loadTestFile(name string) (AzureMonitorResponse, error) {
|
2020-06-01 11:37:39 -05:00
|
|
|
var azData AzureMonitorResponse
|
2019-02-08 11:15:17 -06:00
|
|
|
|
2020-04-27 10:43:02 -05:00
|
|
|
path := filepath.Join("testdata", name)
|
2019-02-08 11:15:17 -06:00
|
|
|
jsonBody, err := ioutil.ReadFile(path)
|
|
|
|
if err != nil {
|
2020-06-01 11:37:39 -05:00
|
|
|
return azData, err
|
2019-02-08 11:15:17 -06:00
|
|
|
}
|
2020-06-01 11:37:39 -05:00
|
|
|
err = json.Unmarshal(jsonBody, &azData)
|
|
|
|
return azData, err
|
2019-02-08 11:15:17 -06:00
|
|
|
}
|