AzureMonitor: Alerting for Azure Application Insights (#19381)

* Convert Azure Application Insights datasource to Go

Allows for alerting of Application Insights data source

Closes: #15153

* Fix timeGrainReset

* Default time interval for querys for alerts

* Fix a few rename related bugs

* Update readme to indicate App Insights alerting

* Fix typo and add tests to ensure migration is happening

* Address code review feedback (mostly typos and unintended changes)
This commit is contained in:
Chad Nedzlek 2019-10-07 05:18:14 -07:00 committed by Daniel Lee
parent 92765a6c6f
commit 20faef8de5
30 changed files with 1806 additions and 500 deletions

View File

@ -216,7 +216,9 @@ Examples:
### Application Insights Alerting
Not implemented yet.
Grafana alerting is supported for Application Insights. This is not Azure Alerts support. Read more about how alerting in Grafana works [here]({{< relref "alerting/rules.md" >}}).
{{< docs-imagebox img="/img/docs/v60/azuremonitor-alerting.png" class="docs-image--no-shadow" caption="Azure Monitor Alerting" >}}
## Querying the Azure Log Analytics Service

View File

@ -0,0 +1,592 @@
package azuremonitor
import (
"context"
"encoding/json"
"errors"
"fmt"
"github.com/grafana/grafana/pkg/api/pluginproxy"
"github.com/grafana/grafana/pkg/components/null"
"github.com/grafana/grafana/pkg/components/simplejson"
"github.com/grafana/grafana/pkg/models"
"github.com/grafana/grafana/pkg/plugins"
"github.com/grafana/grafana/pkg/setting"
"github.com/grafana/grafana/pkg/tsdb"
"github.com/opentracing/opentracing-go"
"golang.org/x/net/context/ctxhttp"
"io/ioutil"
"net/http"
"net/url"
"path"
"strings"
"time"
)
// ApplicationInsightsDatasource calls the application insights query API's
type ApplicationInsightsDatasource struct {
httpClient *http.Client
dsInfo *models.DataSource
}
type ApplicationInsightsQuery struct {
RefID string
IsRaw bool
// Text based raw query options
ApiURL string
Params url.Values
Alias string
Target string
TimeColumnName string
ValueColumnName string
SegmentColumnName string
}
func (e *ApplicationInsightsDatasource) executeTimeSeriesQuery(ctx context.Context, originalQueries []*tsdb.Query, timeRange *tsdb.TimeRange) (*tsdb.Response, error) {
result := &tsdb.Response{
Results: map[string]*tsdb.QueryResult{},
}
queries, err := e.buildQueries(originalQueries, timeRange)
if err != nil {
return nil, err
}
for _, query := range queries {
queryRes, err := e.executeQuery(ctx, query)
if err != nil {
return nil, err
}
result.Results[query.RefID] = queryRes
}
return result, nil
}
func (e *ApplicationInsightsDatasource) buildQueries(queries []*tsdb.Query, timeRange *tsdb.TimeRange) ([]*ApplicationInsightsQuery, error) {
applicationInsightsQueries := []*ApplicationInsightsQuery{}
startTime, err := timeRange.ParseFrom()
if err != nil {
return nil, err
}
endTime, err := timeRange.ParseTo()
if err != nil {
return nil, err
}
for _, query := range queries {
applicationInsightsTarget := query.Model.Get("appInsights").MustMap()
azlog.Debug("Application Insights", "target", applicationInsightsTarget)
rawQuery := false
if asInterface, ok := applicationInsightsTarget["rawQuery"]; ok {
if asBool, ok := asInterface.(bool); ok {
rawQuery = asBool
} else {
return nil, errors.New("'rawQuery' should be a boolean")
}
} else {
return nil, errors.New("missing 'rawQuery' property")
}
if rawQuery {
var rawQueryString string
if asInterface, ok := applicationInsightsTarget["rawQueryString"]; ok {
if asString, ok := asInterface.(string); ok {
rawQueryString = asString
}
}
if rawQueryString == "" {
return nil, errors.New("rawQuery requires rawQueryString")
}
rawQueryString, err := KqlInterpolate(query, timeRange, fmt.Sprintf("%v", rawQueryString))
if err != nil {
return nil, err
}
params := url.Values{}
params.Add("query", rawQueryString)
applicationInsightsQueries = append(applicationInsightsQueries, &ApplicationInsightsQuery{
RefID: query.RefId,
IsRaw: true,
ApiURL: "query",
Params: params,
TimeColumnName: fmt.Sprintf("%v", applicationInsightsTarget["timeColumn"]),
ValueColumnName: fmt.Sprintf("%v", applicationInsightsTarget["valueColumn"]),
SegmentColumnName: fmt.Sprintf("%v", applicationInsightsTarget["segmentColumn"]),
Target: params.Encode(),
})
} else {
alias := ""
if val, ok := applicationInsightsTarget["alias"]; ok {
alias = fmt.Sprintf("%v", val)
}
azureURL := fmt.Sprintf("metrics/%s", fmt.Sprintf("%v", applicationInsightsTarget["metricName"]))
timeGrain := fmt.Sprintf("%v", applicationInsightsTarget["timeGrain"])
timeGrains := applicationInsightsTarget["allowedTimeGrainsMs"]
if timeGrain == "auto" {
timeGrain, err = setAutoTimeGrain(query.IntervalMs, timeGrains)
if err != nil {
return nil, err
}
}
params := url.Values{}
params.Add("timespan", fmt.Sprintf("%v/%v", startTime.UTC().Format(time.RFC3339), endTime.UTC().Format(time.RFC3339)))
if timeGrain != "none" {
params.Add("interval", timeGrain)
}
params.Add("aggregation", fmt.Sprintf("%v", applicationInsightsTarget["aggregation"]))
dimension := strings.TrimSpace(fmt.Sprintf("%v", applicationInsightsTarget["dimension"]))
if applicationInsightsTarget["dimension"] != nil && len(dimension) > 0 && !strings.EqualFold(dimension, "none") {
params.Add("segment", dimension)
}
dimensionFilter := strings.TrimSpace(fmt.Sprintf("%v", applicationInsightsTarget["dimensionFilter"]))
if applicationInsightsTarget["dimensionFilter"] != nil && len(dimensionFilter) > 0 {
params.Add("filter", fmt.Sprintf("%v", dimensionFilter))
}
applicationInsightsQueries = append(applicationInsightsQueries, &ApplicationInsightsQuery{
RefID: query.RefId,
IsRaw: false,
ApiURL: azureURL,
Params: params,
Alias: alias,
Target: params.Encode(),
})
}
}
return applicationInsightsQueries, nil
}
func (e *ApplicationInsightsDatasource) executeQuery(ctx context.Context, query *ApplicationInsightsQuery) (*tsdb.QueryResult, error) {
queryResult := &tsdb.QueryResult{Meta: simplejson.New(), RefId: query.RefID}
req, err := e.createRequest(ctx, e.dsInfo)
if err != nil {
queryResult.Error = err
return queryResult, nil
}
req.URL.Path = path.Join(req.URL.Path, query.ApiURL)
req.URL.RawQuery = query.Params.Encode()
span, ctx := opentracing.StartSpanFromContext(ctx, "application insights query")
span.SetTag("target", query.Target)
span.SetTag("datasource_id", e.dsInfo.Id)
span.SetTag("org_id", e.dsInfo.OrgId)
defer span.Finish()
err = opentracing.GlobalTracer().Inject(
span.Context(),
opentracing.HTTPHeaders,
opentracing.HTTPHeadersCarrier(req.Header))
if err != nil {
azlog.Warn("failed to inject global tracer")
}
azlog.Debug("ApplicationInsights", "Request URL", req.URL.String())
res, err := ctxhttp.Do(ctx, e.httpClient, req)
if err != nil {
queryResult.Error = err
return queryResult, nil
}
body, err := ioutil.ReadAll(res.Body)
defer res.Body.Close()
if err != nil {
return nil, err
}
if res.StatusCode/100 != 2 {
azlog.Error("Request failed", "status", res.Status, "body", string(body))
return nil, fmt.Errorf(string(body))
}
if query.IsRaw {
queryResult.Series, queryResult.Meta, err = e.parseTimeSeriesFromQuery(body, query)
if err != nil {
queryResult.Error = err
return queryResult, nil
}
} else {
queryResult.Series, err = e.parseTimeSeriesFromMetrics(body, query)
if err != nil {
queryResult.Error = err
return queryResult, nil
}
}
return queryResult, nil
}
func (e *ApplicationInsightsDatasource) createRequest(ctx context.Context, dsInfo *models.DataSource) (*http.Request, error) {
// find plugin
plugin, ok := plugins.DataSources[dsInfo.Type]
if !ok {
return nil, errors.New("Unable to find datasource plugin Azure Application Insights")
}
var appInsightsRoute *plugins.AppPluginRoute
for _, route := range plugin.Routes {
if route.Path == "appinsights" {
appInsightsRoute = route
break
}
}
appInsightsAppId := dsInfo.JsonData.Get("appInsightsAppId").MustString()
proxyPass := fmt.Sprintf("appinsights/v1/apps/%s", appInsightsAppId)
u, _ := url.Parse(dsInfo.Url)
u.Path = path.Join(u.Path, fmt.Sprintf("/v1/apps/%s", appInsightsAppId))
req, err := http.NewRequest(http.MethodGet, u.String(), nil)
if err != nil {
azlog.Error("Failed to create request", "error", err)
return nil, fmt.Errorf("Failed to create request. error: %v", err)
}
req.Header.Set("User-Agent", fmt.Sprintf("Grafana/%s", setting.BuildVersion))
pluginproxy.ApplyRoute(ctx, req, proxyPass, appInsightsRoute, dsInfo)
return req, nil
}
func (e *ApplicationInsightsDatasource) parseTimeSeriesFromQuery(body []byte, query *ApplicationInsightsQuery) (tsdb.TimeSeriesSlice, *simplejson.Json, error) {
var data ApplicationInsightsQueryResponse
err := json.Unmarshal(body, &data)
if err != nil {
azlog.Error("Failed to unmarshal Application Insights response", "error", err, "body", string(body))
return nil, nil, err
}
type Metadata struct {
Columns []string `json:"columns"`
}
meta := Metadata{}
for _, t := range data.Tables {
if t.Name == "PrimaryResult" {
timeIndex, valueIndex, segmentIndex := -1, -1, -1
meta.Columns = make([]string, 0)
for i, v := range t.Columns {
meta.Columns = append(meta.Columns, v.Name)
switch v.Name {
case query.TimeColumnName:
timeIndex = i
case query.ValueColumnName:
valueIndex = i
case query.SegmentColumnName:
segmentIndex = i
}
}
if timeIndex == -1 {
azlog.Info("no time column specified, returning existing columns, no data")
return nil, simplejson.NewFromAny(meta), nil
}
if valueIndex == -1 {
azlog.Info("no value column specified, returning existing columns, no data")
return nil, simplejson.NewFromAny(meta), nil
}
var getPoints func([]interface{}) *tsdb.TimeSeriesPoints
slice := tsdb.TimeSeriesSlice{}
if segmentIndex == -1 {
legend := formatApplicationInsightsLegendKey(query.Alias, query.ValueColumnName, "", "")
series := tsdb.NewTimeSeries(legend, []tsdb.TimePoint{})
slice = append(slice, series)
getPoints = func(row []interface{}) *tsdb.TimeSeriesPoints {
return &series.Points
}
} else {
mapping := map[string]*tsdb.TimeSeriesPoints{}
getPoints = func(row []interface{}) *tsdb.TimeSeriesPoints {
segment := fmt.Sprintf("%v", row[segmentIndex])
if points, ok := mapping[segment]; ok {
return points
}
legend := formatApplicationInsightsLegendKey(query.Alias, query.ValueColumnName, query.SegmentColumnName, segment)
series := tsdb.NewTimeSeries(legend, []tsdb.TimePoint{})
slice = append(slice, series)
mapping[segment] = &series.Points
return &series.Points
}
}
for _, r := range t.Rows {
timeStr, ok := r[timeIndex].(string)
if !ok {
return nil, simplejson.NewFromAny(meta), errors.New("invalid time value")
}
timeValue, err := time.Parse(time.RFC3339Nano, timeStr)
if err != nil {
return nil, simplejson.NewFromAny(meta), err
}
var value float64
if value, err = getFloat(r[valueIndex]); err != nil {
return nil, simplejson.NewFromAny(meta), err
}
points := getPoints(r)
*points = append(*points, tsdb.NewTimePoint(null.FloatFrom(value), float64(timeValue.Unix()*1000)))
}
return slice, simplejson.NewFromAny(meta), nil
}
}
return nil, nil, errors.New("could not find table")
}
func (e *ApplicationInsightsDatasource) parseTimeSeriesFromMetrics(body []byte, query *ApplicationInsightsQuery) (tsdb.TimeSeriesSlice, error) {
doc, err := simplejson.NewJson(body)
if err != nil {
return nil, err
}
value := doc.Get("value").MustMap()
if value == nil {
return nil, errors.New("could not find value element")
}
endStr, ok := value["end"].(string)
if !ok {
return nil, errors.New("missing 'end' value in response")
}
endTime, err := time.Parse(time.RFC3339Nano, endStr)
if err != nil {
return nil, fmt.Errorf("bad 'end' value: %v", err)
}
for k, v := range value {
switch k {
case "start":
case "end":
case "interval":
case "segments":
// we have segments!
return parseSegmentedValueTimeSeries(query, endTime, v)
default:
return parseSingleValueTimeSeries(query, k, endTime, v)
}
}
azlog.Error("Bad response from application insights/metrics", "body", string(body))
return nil, errors.New("could not find expected values in response")
}
func parseSegmentedValueTimeSeries(query *ApplicationInsightsQuery, endTime time.Time, segmentsJson interface{}) (tsdb.TimeSeriesSlice, error) {
segments, ok := segmentsJson.([]interface{})
if !ok {
return nil, errors.New("bad segments value")
}
slice := tsdb.TimeSeriesSlice{}
seriesMap := map[string]*tsdb.TimeSeriesPoints{}
for _, segment := range segments {
segmentMap, ok := segment.(map[string]interface{})
if !ok {
return nil, errors.New("bad segments value")
}
err := processSegment(&slice, segmentMap, query, endTime, seriesMap)
if err != nil {
return nil, err
}
}
return slice, nil
}
func processSegment(slice *tsdb.TimeSeriesSlice, segment map[string]interface{}, query *ApplicationInsightsQuery, endTime time.Time, pointMap map[string]*tsdb.TimeSeriesPoints) error {
var segmentName string
var segmentValue string
var childSegments []interface{}
hasChildren := false
var value float64
var valueName string
var ok bool
var err error
for k, v := range segment {
switch k {
case "start":
case "end":
endStr, ok := v.(string)
if !ok {
return errors.New("missing 'end' value in response")
}
endTime, err = time.Parse(time.RFC3339Nano, endStr)
if err != nil {
return fmt.Errorf("bad 'end' value: %v", err)
}
case "segments":
childSegments, ok = v.([]interface{})
if !ok {
return errors.New("invalid format segments")
}
hasChildren = true
default:
mapping, hasValues := v.(map[string]interface{})
if hasValues {
valueName = k
value, err = getAggregatedValue(mapping, valueName)
if err != nil {
return err
}
} else {
segmentValue, ok = v.(string)
if !ok {
return fmt.Errorf("invalid mapping for key %v", k)
}
segmentName = k
}
}
}
if hasChildren {
for _, s := range childSegments {
segmentMap, ok := s.(map[string]interface{})
if !ok {
return errors.New("invalid format segments")
}
if err := processSegment(slice, segmentMap, query, endTime, pointMap); err != nil {
return err
}
}
} else {
aliased := formatApplicationInsightsLegendKey(query.Alias, valueName, segmentName, segmentValue)
if segmentValue == "" {
segmentValue = valueName
}
points, ok := pointMap[segmentValue]
if !ok {
series := tsdb.NewTimeSeries(aliased, tsdb.TimeSeriesPoints{})
points = &series.Points
*slice = append(*slice, series)
pointMap[segmentValue] = points
}
*points = append(*points, tsdb.NewTimePoint(null.FloatFrom(value), float64(endTime.Unix()*1000)))
}
return nil
}
func parseSingleValueTimeSeries(query *ApplicationInsightsQuery, metricName string, endTime time.Time, valueJson interface{}) (tsdb.TimeSeriesSlice, error) {
legend := formatApplicationInsightsLegendKey(query.Alias, metricName, "", "")
valueMap, ok := valueJson.(map[string]interface{})
if !ok {
return nil, errors.New("bad value aggregation")
}
metricValue, err := getAggregatedValue(valueMap, metricName)
if err != nil {
return nil, err
}
return []*tsdb.TimeSeries{
tsdb.NewTimeSeries(
legend,
tsdb.TimeSeriesPoints{
tsdb.NewTimePoint(
null.FloatFrom(metricValue),
float64(endTime.Unix()*1000)),
},
),
}, nil
}
func getAggregatedValue(valueMap map[string]interface{}, valueName string) (float64, error) {
aggValue := ""
var metricValue float64
var err error
for k, v := range valueMap {
if aggValue != "" {
return 0, fmt.Errorf("found multiple aggregations, %v, %v", aggValue, k)
}
if k == "" {
return 0, errors.New("found no aggregation name")
}
aggValue = k
metricValue, err = getFloat(v)
if err != nil {
return 0, fmt.Errorf("bad value: %v", err)
}
}
if aggValue == "" {
return 0, fmt.Errorf("no aggregation value found for %v", valueName)
}
return metricValue, nil
}
func getFloat(in interface{}) (float64, error) {
if out, ok := in.(float32); ok {
return float64(out), nil
} else if out, ok := in.(int32); ok {
return float64(out), nil
} else if out, ok := in.(json.Number); ok {
return out.Float64()
} else if out, ok := in.(int64); ok {
return float64(out), nil
} else if out, ok := in.(float64); ok {
return out, nil
}
return 0, fmt.Errorf("cannot convert '%v' to float32", in)
}
// formatApplicationInsightsLegendKey builds the legend key or timeseries name
// Alias patterns like {{resourcename}} are replaced with the appropriate data values.
func formatApplicationInsightsLegendKey(alias string, metricName string, dimensionName string, dimensionValue string) string {
if alias == "" {
if len(dimensionName) > 0 {
return fmt.Sprintf("{%s=%s}.%s", dimensionName, dimensionValue, metricName)
}
return metricName
}
result := legendKeyFormat.ReplaceAllFunc([]byte(alias), func(in []byte) []byte {
metaPartName := strings.Replace(string(in), "{{", "", 1)
metaPartName = strings.Replace(metaPartName, "}}", "", 1)
metaPartName = strings.ToLower(strings.TrimSpace(metaPartName))
switch metaPartName {
case "metric":
return []byte(metricName)
case "dimensionname", "groupbyname":
return []byte(dimensionName)
case "dimensionvalue", "groupbyvalue":
return []byte(dimensionValue)
}
return in
})
return string(result)
}

View File

@ -0,0 +1,316 @@
package azuremonitor
import (
"encoding/json"
"fmt"
"io/ioutil"
"testing"
"time"
"github.com/grafana/grafana/pkg/components/simplejson"
"github.com/grafana/grafana/pkg/models"
"github.com/grafana/grafana/pkg/tsdb"
. "github.com/smartystreets/goconvey/convey"
)
func TestApplicationInsightsDatasource(t *testing.T) {
Convey("ApplicationInsightsDatasource", t, func() {
datasource := &ApplicationInsightsDatasource{}
Convey("Parse queries from frontend and build AzureMonitor API queries", func() {
fromStart := time.Date(2018, 3, 15, 13, 0, 0, 0, time.UTC).In(time.Local)
tsdbQuery := &tsdb.TsdbQuery{
TimeRange: &tsdb.TimeRange{
From: fmt.Sprintf("%v", fromStart.Unix()*1000),
To: fmt.Sprintf("%v", fromStart.Add(34*time.Minute).Unix()*1000),
},
Queries: []*tsdb.Query{
{
DataSource: &models.DataSource{
JsonData: simplejson.NewFromAny(map[string]interface{}{}),
},
Model: simplejson.NewFromAny(map[string]interface{}{
"appInsights": map[string]interface{}{
"rawQuery": false,
"timeGrain": "PT1M",
"aggregation": "Average",
"metricName": "server/exceptions",
"alias": "testalias",
"queryType": "Application Insights",
},
}),
RefId: "A",
IntervalMs: 1234,
},
},
}
Convey("and is a normal query", func() {
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(len(queries), ShouldEqual, 1)
So(queries[0].RefID, ShouldEqual, "A")
So(queries[0].ApiURL, ShouldEqual, "metrics/server/exceptions")
So(queries[0].Target, ShouldEqual, "aggregation=Average&interval=PT1M&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z")
So(len(queries[0].Params), ShouldEqual, 3)
So(queries[0].Params["timespan"][0], ShouldEqual, "2018-03-15T13:00:00Z/2018-03-15T13:34:00Z")
So(queries[0].Params["aggregation"][0], ShouldEqual, "Average")
So(queries[0].Params["interval"][0], ShouldEqual, "PT1M")
So(queries[0].Alias, ShouldEqual, "testalias")
})
Convey("and has a time grain set to auto", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"appInsights": map[string]interface{}{
"rawQuery": false,
"timeGrain": "auto",
"aggregation": "Average",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Application Insights",
},
})
tsdbQuery.Queries[0].IntervalMs = 400000
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Params["interval"][0], ShouldEqual, "PT15M")
})
Convey("and has a time grain set to auto and the metric has a limited list of allowed time grains", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"appInsights": map[string]interface{}{
"rawQuery": false,
"timeGrain": "auto",
"aggregation": "Average",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Application Insights",
"allowedTimeGrainsMs": []interface{}{"auto", json.Number("60000"), json.Number("300000")},
},
})
tsdbQuery.Queries[0].IntervalMs = 400000
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Params["interval"][0], ShouldEqual, "PT5M")
})
Convey("and has a dimension filter", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"appInsights": map[string]interface{}{
"rawQuery": false,
"timeGrain": "PT1M",
"aggregation": "Average",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Application Insights",
"dimension": "blob",
"dimensionFilter": "blob eq '*'",
},
})
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Target, ShouldEqual, "aggregation=Average&filter=blob+eq+%27%2A%27&interval=PT1M&segment=blob&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z")
So(queries[0].Params["filter"][0], ShouldEqual, "blob eq '*'")
})
Convey("and has a dimension filter set to None", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"appInsights": map[string]interface{}{
"rawQuery": false,
"timeGrain": "PT1M",
"aggregation": "Average",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Application Insights",
"dimension": "None",
},
})
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Target, ShouldEqual, "aggregation=Average&interval=PT1M&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z")
})
Convey("id a raw query", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"appInsights": map[string]interface{}{
"rawQuery": true,
"rawQueryString": "exceptions | where $__timeFilter(timestamp) | summarize count=count() by bin(timestamp, $__interval)",
"timeColumn": "timestamp",
"valueColumn": "count",
},
})
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Params["query"][0], ShouldEqual, "exceptions | where ['timestamp'] >= datetime('2018-03-15T13:00:00Z') and ['timestamp'] <= datetime('2018-03-15T13:34:00Z') | summarize count=count() by bin(timestamp, 1234ms)")
So(queries[0].Target, ShouldEqual, "query=exceptions+%7C+where+%5B%27timestamp%27%5D+%3E%3D+datetime%28%272018-03-15T13%3A00%3A00Z%27%29+and+%5B%27timestamp%27%5D+%3C%3D+datetime%28%272018-03-15T13%3A34%3A00Z%27%29+%7C+summarize+count%3Dcount%28%29+by+bin%28timestamp%2C+1234ms%29")
})
})
Convey("Parse Application Insights query API response in the time series format", func() {
Convey("no segments", func() {
data, err := ioutil.ReadFile("./test-data/applicationinsights/1-application-insights-response-raw-query.json")
So(err, ShouldBeNil)
query := &ApplicationInsightsQuery{
IsRaw: true,
TimeColumnName: "timestamp",
ValueColumnName: "value",
}
series, _, err := datasource.parseTimeSeriesFromQuery(data, query)
So(err, ShouldBeNil)
So(len(series), ShouldEqual, 1)
So(series[0].Name, ShouldEqual, "value")
So(len(series[0].Points), ShouldEqual, 2)
So(series[0].Points[0][0].Float64, ShouldEqual, 1)
So(series[0].Points[0][1].Float64, ShouldEqual, int64(1568336523000))
So(series[0].Points[1][0].Float64, ShouldEqual, 2)
So(series[0].Points[1][1].Float64, ShouldEqual, int64(1568340123000))
})
Convey("with segments", func() {
data, err := ioutil.ReadFile("./test-data/applicationinsights/2-application-insights-response-raw-query-segmented.json")
So(err, ShouldBeNil)
query := &ApplicationInsightsQuery{
IsRaw: true,
TimeColumnName: "timestamp",
ValueColumnName: "value",
SegmentColumnName: "segment",
}
series, _, err := datasource.parseTimeSeriesFromQuery(data, query)
So(err, ShouldBeNil)
So(len(series), ShouldEqual, 2)
So(series[0].Name, ShouldEqual, "{segment=a}.value")
So(len(series[0].Points), ShouldEqual, 2)
So(series[0].Points[0][0].Float64, ShouldEqual, 1)
So(series[0].Points[0][1].Float64, ShouldEqual, int64(1568336523000))
So(series[0].Points[1][0].Float64, ShouldEqual, 3)
So(series[0].Points[1][1].Float64, ShouldEqual, int64(1568426523000))
So(series[1].Name, ShouldEqual, "{segment=b}.value")
So(series[1].Points[0][0].Float64, ShouldEqual, 2)
So(series[1].Points[0][1].Float64, ShouldEqual, int64(1568336523000))
So(series[1].Points[1][0].Float64, ShouldEqual, 4)
So(series[1].Points[1][1].Float64, ShouldEqual, int64(1568426523000))
Convey("with alias", func() {
data, err := ioutil.ReadFile("./test-data/applicationinsights/2-application-insights-response-raw-query-segmented.json")
So(err, ShouldBeNil)
query := &ApplicationInsightsQuery{
IsRaw: true,
TimeColumnName: "timestamp",
ValueColumnName: "value",
SegmentColumnName: "segment",
Alias: "{{metric}} {{dimensionname}} {{dimensionvalue}}",
}
series, _, err := datasource.parseTimeSeriesFromQuery(data, query)
So(err, ShouldBeNil)
So(len(series), ShouldEqual, 2)
So(series[0].Name, ShouldEqual, "value segment a")
So(series[1].Name, ShouldEqual, "value segment b")
})
})
})
Convey("Parse Application Insights metrics API", func() {
Convey("single value", func() {
data, err := ioutil.ReadFile("./test-data/applicationinsights/3-application-insights-response-metrics-single-value.json")
So(err, ShouldBeNil)
query := &ApplicationInsightsQuery{
IsRaw: false,
}
series, err := datasource.parseTimeSeriesFromMetrics(data, query)
So(err, ShouldBeNil)
So(len(series), ShouldEqual, 1)
So(series[0].Name, ShouldEqual, "value")
So(len(series[0].Points), ShouldEqual, 1)
So(series[0].Points[0][0].Float64, ShouldEqual, 1.2)
So(series[0].Points[0][1].Float64, ShouldEqual, int64(1568340123000))
})
Convey("1H separation", func() {
data, err := ioutil.ReadFile("./test-data/applicationinsights/4-application-insights-response-metrics-no-segment.json")
So(err, ShouldBeNil)
query := &ApplicationInsightsQuery{
IsRaw: false,
}
series, err := datasource.parseTimeSeriesFromMetrics(data, query)
So(err, ShouldBeNil)
So(len(series), ShouldEqual, 1)
So(series[0].Name, ShouldEqual, "value")
So(len(series[0].Points), ShouldEqual, 2)
So(series[0].Points[0][0].Float64, ShouldEqual, 1)
So(series[0].Points[0][1].Float64, ShouldEqual, int64(1568340123000))
So(series[0].Points[1][0].Float64, ShouldEqual, 2)
So(series[0].Points[1][1].Float64, ShouldEqual, int64(1568343723000))
Convey("with segmentation", func() {
data, err := ioutil.ReadFile("./test-data/applicationinsights/4-application-insights-response-metrics-segmented.json")
So(err, ShouldBeNil)
query := &ApplicationInsightsQuery{
IsRaw: false,
}
series, err := datasource.parseTimeSeriesFromMetrics(data, query)
So(err, ShouldBeNil)
So(len(series), ShouldEqual, 2)
So(series[0].Name, ShouldEqual, "{blob=a}.value")
So(len(series[0].Points), ShouldEqual, 2)
So(series[0].Points[0][0].Float64, ShouldEqual, 1)
So(series[0].Points[0][1].Float64, ShouldEqual, int64(1568340123000))
So(series[0].Points[1][0].Float64, ShouldEqual, 2)
So(series[0].Points[1][1].Float64, ShouldEqual, int64(1568343723000))
So(series[1].Name, ShouldEqual, "{blob=b}.value")
So(len(series[1].Points), ShouldEqual, 2)
So(series[1].Points[0][0].Float64, ShouldEqual, 3)
So(series[1].Points[0][1].Float64, ShouldEqual, int64(1568340123000))
So(series[1].Points[1][0].Float64, ShouldEqual, 4)
So(series[1].Points[1][1].Float64, ShouldEqual, int64(1568343723000))
Convey("with alias", func() {
data, err := ioutil.ReadFile("./test-data/applicationinsights/4-application-insights-response-metrics-segmented.json")
So(err, ShouldBeNil)
query := &ApplicationInsightsQuery{
IsRaw: false,
Alias: "{{metric}} {{dimensionname}} {{dimensionvalue}}",
}
series, err := datasource.parseTimeSeriesFromMetrics(data, query)
So(err, ShouldBeNil)
So(len(series), ShouldEqual, 2)
So(series[0].Name, ShouldEqual, "value blob a")
So(series[1].Name, ShouldEqual, "value blob b")
})
})
})
})
})
}

View File

@ -107,7 +107,7 @@ func (e *AzureMonitorDatasource) buildQueries(queries []*tsdb.Query, timeRange *
timeGrain := fmt.Sprintf("%v", azureMonitorTarget["timeGrain"])
timeGrains := azureMonitorTarget["allowedTimeGrainsMs"]
if timeGrain == "auto" {
timeGrain, err = e.setAutoTimeGrain(query.IntervalMs, timeGrains)
timeGrain, err = setAutoTimeGrain(query.IntervalMs, timeGrains)
if err != nil {
return nil, err
}
@ -147,35 +147,6 @@ func (e *AzureMonitorDatasource) buildQueries(queries []*tsdb.Query, timeRange *
return azureMonitorQueries, nil
}
// setAutoTimeGrain tries to find the closest interval to the query's intervalMs value
// if the metric has a limited set of possible intervals/time grains then use those
// instead of the default list of intervals
func (e *AzureMonitorDatasource) setAutoTimeGrain(intervalMs int64, timeGrains interface{}) (string, error) {
// parses array of numbers from the timeGrains json field
allowedTimeGrains := []int64{}
tgs, ok := timeGrains.([]interface{})
if ok {
for _, v := range tgs {
jsonNumber, ok := v.(json.Number)
if ok {
tg, err := jsonNumber.Int64()
if err == nil {
allowedTimeGrains = append(allowedTimeGrains, tg)
}
}
}
}
autoInterval := e.findClosestAllowedIntervalMS(intervalMs, allowedTimeGrains)
tg := &TimeGrain{}
autoTimeGrain, err := tg.createISO8601DurationFromIntervalMS(autoInterval)
if err != nil {
return "", err
}
return autoTimeGrain, nil
}
func (e *AzureMonitorDatasource) executeQuery(ctx context.Context, query *AzureMonitorQuery, queries []*tsdb.Query, timeRange *tsdb.TimeRange) (*tsdb.QueryResult, AzureMonitorResponse, error) {
queryResult := &tsdb.QueryResult{Meta: simplejson.New(), RefId: query.RefID}
@ -203,7 +174,7 @@ func (e *AzureMonitorDatasource) executeQuery(ctx context.Context, query *AzureM
opentracing.HTTPHeaders,
opentracing.HTTPHeadersCarrier(req.Header))
azlog.Debug("AzureMonitor", "Request URL", req.URL.String())
azlog.Debug("AzureMonitor", "Request ApiURL", req.URL.String())
res, err := ctxhttp.Do(ctx, e.httpClient, req)
if err != nil {
queryResult.Error = err
@ -290,7 +261,7 @@ func (e *AzureMonitorDatasource) parseResponse(queryRes *tsdb.QueryResult, data
metadataName = series.Metadatavalues[0].Name.LocalizedValue
metadataValue = series.Metadatavalues[0].Value
}
metricName := formatLegendKey(query.Alias, query.UrlComponents["resourceName"], data.Value[0].Name.LocalizedValue, metadataName, metadataValue, data.Namespace, data.Value[0].ID)
metricName := formatAzureMonitorLegendKey(query.Alias, query.UrlComponents["resourceName"], data.Value[0].Name.LocalizedValue, metadataName, metadataValue, data.Namespace, data.Value[0].ID)
for _, point := range series.Data {
var value float64
@ -321,35 +292,9 @@ func (e *AzureMonitorDatasource) parseResponse(queryRes *tsdb.QueryResult, data
return nil
}
// findClosestAllowedIntervalMs is used for the auto time grain setting.
// It finds the closest time grain from the list of allowed time grains for Azure Monitor
// using the Grafana interval in milliseconds
// Some metrics only allow a limited list of time grains. The allowedTimeGrains parameter
// allows overriding the default list of allowed time grains.
func (e *AzureMonitorDatasource) findClosestAllowedIntervalMS(intervalMs int64, allowedTimeGrains []int64) int64 {
allowedIntervals := defaultAllowedIntervalsMS
if len(allowedTimeGrains) > 0 {
allowedIntervals = allowedTimeGrains
}
closest := allowedIntervals[0]
for i, allowed := range allowedIntervals {
if intervalMs > allowed {
if i+1 < len(allowedIntervals) {
closest = allowedIntervals[i+1]
} else {
closest = allowed
}
}
}
return closest
}
// formatLegendKey builds the legend key or timeseries name
// formatAzureMonitorLegendKey builds the legend key or timeseries name
// Alias patterns like {{resourcename}} are replaced with the appropriate data values.
func formatLegendKey(alias string, resourceName string, metricName string, metadataName string, metadataValue string, namespace string, seriesID string) string {
func formatAzureMonitorLegendKey(alias string, resourceName string, metricName string, metadataName string, metadataValue string, namespace string, seriesID string) string {
if alias == "" {
if len(metadataName) > 0 {
return fmt.Sprintf("%s{%s=%s}.%s", resourceName, metadataName, metadataValue, metricName)

View File

@ -167,7 +167,7 @@ func TestAzureMonitorDatasource(t *testing.T) {
Convey("Parse AzureMonitor API response in the time series format", func() {
Convey("when data from query aggregated as average to one time series", func() {
data, err := loadTestFile("./test-data/1-azure-monitor-response-avg.json")
data, err := loadTestFile("./test-data/azuremonitor/1-azure-monitor-response-avg.json")
So(err, ShouldBeNil)
So(data.Interval, ShouldEqual, "PT1M")
@ -204,7 +204,7 @@ func TestAzureMonitorDatasource(t *testing.T) {
})
Convey("when data from query aggregated as total to one time series", func() {
data, err := loadTestFile("./test-data/2-azure-monitor-response-total.json")
data, err := loadTestFile("./test-data/azuremonitor/2-azure-monitor-response-total.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
@ -224,7 +224,7 @@ func TestAzureMonitorDatasource(t *testing.T) {
})
Convey("when data from query aggregated as maximum to one time series", func() {
data, err := loadTestFile("./test-data/3-azure-monitor-response-maximum.json")
data, err := loadTestFile("./test-data/azuremonitor/3-azure-monitor-response-maximum.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
@ -244,7 +244,7 @@ func TestAzureMonitorDatasource(t *testing.T) {
})
Convey("when data from query aggregated as minimum to one time series", func() {
data, err := loadTestFile("./test-data/4-azure-monitor-response-minimum.json")
data, err := loadTestFile("./test-data/azuremonitor/4-azure-monitor-response-minimum.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
@ -264,7 +264,7 @@ func TestAzureMonitorDatasource(t *testing.T) {
})
Convey("when data from query aggregated as Count to one time series", func() {
data, err := loadTestFile("./test-data/5-azure-monitor-response-count.json")
data, err := loadTestFile("./test-data/azuremonitor/5-azure-monitor-response-count.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
@ -284,7 +284,7 @@ func TestAzureMonitorDatasource(t *testing.T) {
})
Convey("when data from query aggregated as total and has dimension filter", func() {
data, err := loadTestFile("./test-data/6-azure-monitor-response-multi-dimension.json")
data, err := loadTestFile("./test-data/azuremonitor/6-azure-monitor-response-multi-dimension.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
@ -311,7 +311,7 @@ func TestAzureMonitorDatasource(t *testing.T) {
})
Convey("when data from query has alias patterns", func() {
data, err := loadTestFile("./test-data/2-azure-monitor-response-total.json")
data, err := loadTestFile("./test-data/azuremonitor/2-azure-monitor-response-total.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
@ -331,7 +331,7 @@ func TestAzureMonitorDatasource(t *testing.T) {
})
Convey("when data has dimension filters and alias patterns", func() {
data, err := loadTestFile("./test-data/6-azure-monitor-response-multi-dimension.json")
data, err := loadTestFile("./test-data/azuremonitor/6-azure-monitor-response-multi-dimension.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
@ -363,16 +363,16 @@ func TestAzureMonitorDatasource(t *testing.T) {
"2d": 172800000,
}
closest := datasource.findClosestAllowedIntervalMS(intervals["3m"], []int64{})
closest := findClosestAllowedIntervalMS(intervals["3m"], []int64{})
So(closest, ShouldEqual, intervals["5m"])
closest = datasource.findClosestAllowedIntervalMS(intervals["10m"], []int64{})
closest = findClosestAllowedIntervalMS(intervals["10m"], []int64{})
So(closest, ShouldEqual, intervals["15m"])
closest = datasource.findClosestAllowedIntervalMS(intervals["2d"], []int64{})
closest = findClosestAllowedIntervalMS(intervals["2d"], []int64{})
So(closest, ShouldEqual, intervals["1d"])
closest = datasource.findClosestAllowedIntervalMS(intervals["3m"], []int64{intervals["1d"]})
closest = findClosestAllowedIntervalMS(intervals["3m"], []int64{intervals["1d"]})
So(closest, ShouldEqual, intervals["1d"])
})
})

View File

@ -0,0 +1,58 @@
package azuremonitor
import "encoding/json"
// setAutoTimeGrain tries to find the closest interval to the query's intervalMs value
// if the metric has a limited set of possible intervals/time grains then use those
// instead of the default list of intervals
func setAutoTimeGrain(intervalMs int64, timeGrains interface{}) (string, error) {
// parses array of numbers from the timeGrains json field
allowedTimeGrains := []int64{}
tgs, ok := timeGrains.([]interface{})
if ok {
for _, v := range tgs {
jsonNumber, ok := v.(json.Number)
if ok {
tg, err := jsonNumber.Int64()
if err == nil {
allowedTimeGrains = append(allowedTimeGrains, tg)
}
}
}
}
autoInterval := findClosestAllowedIntervalMS(intervalMs, allowedTimeGrains)
tg := &TimeGrain{}
autoTimeGrain, err := tg.createISO8601DurationFromIntervalMS(autoInterval)
if err != nil {
return "", err
}
return autoTimeGrain, nil
}
// findClosestAllowedIntervalMs is used for the auto time grain setting.
// It finds the closest time grain from the list of allowed time grains for Azure Monitor
// using the Grafana interval in milliseconds
// Some metrics only allow a limited list of time grains. The allowedTimeGrains parameter
// allows overriding the default list of allowed time grains.
func findClosestAllowedIntervalMS(intervalMs int64, allowedTimeGrains []int64) int64 {
allowedIntervals := defaultAllowedIntervalsMS
if len(allowedTimeGrains) > 0 {
allowedIntervals = allowedTimeGrains
}
closest := allowedIntervals[0]
for i, allowed := range allowedIntervals {
if intervalMs > allowed {
if i+1 < len(allowedIntervals) {
closest = allowedIntervals[i+1]
} else {
closest = allowed
}
}
}
return closest
}

View File

@ -46,10 +46,10 @@ func init() {
// executes the queries against the API and parses the response into
// the right format
func (e *AzureMonitorExecutor) Query(ctx context.Context, dsInfo *models.DataSource, tsdbQuery *tsdb.TsdbQuery) (*tsdb.Response, error) {
var result *tsdb.Response
var err error
var azureMonitorQueries []*tsdb.Query
var applicationInsightsQueries []*tsdb.Query
for _, query := range tsdbQuery.Queries {
queryType := query.Model.Get("queryType").MustString("")
@ -57,6 +57,8 @@ func (e *AzureMonitorExecutor) Query(ctx context.Context, dsInfo *models.DataSou
switch queryType {
case "Azure Monitor":
azureMonitorQueries = append(azureMonitorQueries, query)
case "Application Insights":
applicationInsightsQueries = append(applicationInsightsQueries, query)
default:
return nil, fmt.Errorf("Alerting not supported for %s", queryType)
}
@ -67,7 +69,24 @@ func (e *AzureMonitorExecutor) Query(ctx context.Context, dsInfo *models.DataSou
dsInfo: e.dsInfo,
}
result, err = azDatasource.executeTimeSeriesQuery(ctx, azureMonitorQueries, tsdbQuery.TimeRange)
aiDatasource := &ApplicationInsightsDatasource{
httpClient: e.httpClient,
dsInfo: e.dsInfo,
}
return result, err
azResult, err := azDatasource.executeTimeSeriesQuery(ctx, azureMonitorQueries, tsdbQuery.TimeRange)
if err != nil {
return nil, err
}
aiResult, err := aiDatasource.executeTimeSeriesQuery(ctx, applicationInsightsQueries, tsdbQuery.TimeRange)
if err != nil {
return nil, err
}
for k, v := range aiResult.Results {
azResult.Results[k] = v
}
return azResult, nil
}

View File

@ -0,0 +1,118 @@
package azuremonitor
import (
"fmt"
"regexp"
"strings"
"time"
"github.com/grafana/grafana/pkg/tsdb"
)
const rsIdentifier = `([_a-zA-Z0-9]+)`
const sExpr = `\$` + rsIdentifier + `(?:\(([^\)]*)\))?`
type kqlMacroEngine struct {
timeRange *tsdb.TimeRange
query *tsdb.Query
}
func KqlInterpolate(query *tsdb.Query, timeRange *tsdb.TimeRange, kql string) (string, error) {
engine := kqlMacroEngine{}
return engine.Interpolate(query, timeRange, kql)
}
func (m *kqlMacroEngine) Interpolate(query *tsdb.Query, timeRange *tsdb.TimeRange, kql string) (string, error) {
m.timeRange = timeRange
m.query = query
rExp, _ := regexp.Compile(sExpr)
var macroError error
kql = m.ReplaceAllStringSubmatchFunc(rExp, kql, func(groups []string) string {
args := []string{}
if len(groups) > 2 {
args = strings.Split(groups[2], ",")
}
for i, arg := range args {
args[i] = strings.Trim(arg, " ")
}
res, err := m.evaluateMacro(groups[1], args)
if err != nil && macroError == nil {
macroError = err
return "macro_error()"
}
return res
})
if macroError != nil {
return "", macroError
}
return kql, nil
}
func (m *kqlMacroEngine) evaluateMacro(name string, args []string) (string, error) {
switch name {
case "__timeFilter":
timeColumn := "timestamp"
if len(args) > 0 && args[0] != "" {
timeColumn = args[0]
}
return fmt.Sprintf("['%s'] >= datetime('%s') and ['%s'] <= datetime('%s')", timeColumn, m.timeRange.GetFromAsTimeUTC().Format(time.RFC3339), timeColumn, m.timeRange.GetToAsTimeUTC().Format(time.RFC3339)), nil
case "__from":
return fmt.Sprintf("datetime('%s')", m.timeRange.GetFromAsTimeUTC().Format(time.RFC3339)), nil
case "__to":
return fmt.Sprintf("datetime('%s')", m.timeRange.GetToAsTimeUTC().Format(time.RFC3339)), nil
case "__interval":
var interval time.Duration
if m.query.IntervalMs == 0 {
to := m.timeRange.MustGetTo().UnixNano()
from := m.timeRange.MustGetFrom().UnixNano()
// default to "100 datapoints" if nothing in the query is more specific
defaultInterval := time.Duration((to - from) / 60)
var err error
interval, err = tsdb.GetIntervalFrom(m.query.DataSource, m.query.Model, defaultInterval)
if err != nil {
azlog.Warn("Unable to get interval from query", "datasource", m.query.DataSource, "model", m.query.Model)
interval = defaultInterval
}
} else {
interval = time.Millisecond * time.Duration(m.query.IntervalMs)
}
return fmt.Sprintf("%dms", int(interval/time.Millisecond)), nil
case "__contains":
if len(args) < 2 || args[0] == "" || args[1] == "" {
return "", fmt.Errorf("macro %v needs colName and variableSet", name)
}
if args[1] == "all" {
return "1 == 1", nil
}
return fmt.Sprintf("['%s'] in ('%s')", args[0], args[1]), nil
default:
return "", fmt.Errorf("Unknown macro %v", name)
}
}
func (m *kqlMacroEngine) ReplaceAllStringSubmatchFunc(re *regexp.Regexp, str string, repl func([]string) string) string {
result := ""
lastIndex := 0
for _, v := range re.FindAllSubmatchIndex([]byte(str), -1) {
groups := []string{}
for i := 0; i < len(v); i += 2 {
if v[i] < 0 {
groups = append(groups, "")
} else {
groups = append(groups, str[v[i]:v[i+1]])
}
}
result += str[lastIndex:v[0]] + repl(groups)
lastIndex = v[1]
}
return result + str[lastIndex:]
}

View File

@ -0,0 +1,27 @@
{
"tables": [
{
"name": "PrimaryResult",
"columns": [
{
"name": "timestamp",
"type": "datetime"
},
{
"name": "value",
"type": "int"
}
],
"rows": [
[
"2019-09-13T01:02:03.456789Z",
1
],
[
"2019-09-13T02:02:03.456789Z",
2
]
]
}
]
}

View File

@ -0,0 +1,43 @@
{
"tables": [
{
"name": "PrimaryResult",
"columns": [
{
"name": "timestamp",
"type": "datetime"
},
{
"name": "value",
"type": "int"
},
{
"name": "segment",
"type": "string"
}
],
"rows": [
[
"2019-09-13T01:02:03.456789Z",
1,
"a"
],
[
"2019-09-13T01:02:03.456789Z",
2,
"b"
],
[
"2019-09-14T02:02:03.456789Z",
3,
"a"
],
[
"2019-09-14T02:02:03.456789Z",
4,
"b"
]
]
}
]
}

View File

@ -0,0 +1,9 @@
{
"value": {
"start": "2019-09-13T01:02:03.456789Z",
"end": "2019-09-13T02:02:03.456789Z",
"value": {
"avg": 1.2
}
}
}

View File

@ -0,0 +1,23 @@
{
"value": {
"start": "2019-09-13T01:02:03.456789Z",
"end": "2019-09-13T03:02:03.456789Z",
"interval": "PT1H",
"segments": [
{
"start": "2019-09-13T01:02:03.456789Z",
"end": "2019-09-13T02:02:03.456789Z",
"value": {
"avg": 1
}
},
{
"start": "2019-09-13T02:02:03.456789Z",
"end": "2019-09-13T03:02:03.456789Z",
"value": {
"avg": 2
}
}
]
}
}

View File

@ -0,0 +1,45 @@
{
"value": {
"start": "2019-09-13T01:02:03.456789Z",
"end": "2019-09-13T03:02:03.456789Z",
"interval": "PT1H",
"segments": [
{
"start": "2019-09-13T01:02:03.456789Z",
"end": "2019-09-13T02:02:03.456789Z",
"segments": [
{
"value": {
"avg": 1
},
"blob": "a"
},
{
"value": {
"avg": 3
},
"blob": "b"
}
]
},
{
"start": "2019-09-13T02:02:03.456789Z",
"end": "2019-09-13T03:02:03.456789Z",
"segments": [
{
"value": {
"avg": 2
},
"blob": "a"
},
{
"value": {
"avg": 4
},
"blob": "b"
}
]
}
]
}
}

View File

@ -51,17 +51,32 @@ type AzureMonitorResponse struct {
Resourceregion string `json:"resourceregion"`
}
// ApplicationInsightsResponse is the json response from the Application Insights API
type ApplicationInsightsResponse struct {
MetricResponse *ApplicationInsightsMetricsResponse
QueryResponse *ApplicationInsightsQueryResponse
}
// ApplicationInsightsResponse is the json response from the Application Insights API
type ApplicationInsightsQueryResponse struct {
Tables []struct {
TableName string `json:"TableName"`
Columns []struct {
ColumnName string `json:"ColumnName"`
DataType string `json:"DataType"`
ColumnType string `json:"ColumnType"`
} `json:"Columns"`
Rows [][]interface{} `json:"Rows"`
} `json:"Tables"`
Name string `json:"name"`
Columns []struct {
Name string `json:"name"`
Type string `json:"type"`
} `json:"columns"`
Rows [][]interface{} `json:"rows"`
} `json:"tables"`
}
// ApplicationInsightsMetricsResponse is the json response from the Application Insights API
type ApplicationInsightsMetricsResponse struct {
Name string
Segments []struct {
Start time.Time
End time.Time
Segmented map[string]float64
Value float64
}
}
// AzureLogAnalyticsResponse is the json response object from the Azure Log Analytics API.

View File

@ -5,7 +5,7 @@ import (
"strings"
)
// URLQueryReader is a URL query type.
// URLQueryReader is a ApiURL query type.
type URLQueryReader struct {
values url.Values
}
@ -22,7 +22,7 @@ func NewURLQueryReader(urlInfo *url.URL) (*URLQueryReader, error) {
}, nil
}
// Get parse parameters from an URL. If the parameter does not exist, it returns
// Get parse parameters from an ApiURL. If the parameter does not exist, it returns
// the default value.
func (r *URLQueryReader) Get(name string, def string) string {
val := r.values[name]
@ -33,7 +33,7 @@ func (r *URLQueryReader) Get(name string, def string) string {
return val[0]
}
// JoinURLFragments joins two URL fragments into only one URL string.
// JoinURLFragments joins two ApiURL fragments into only one ApiURL string.
func JoinURLFragments(a, b string) string {
aslash := strings.HasSuffix(a, "/")
bslash := strings.HasPrefix(b, "/")

View File

@ -1,8 +1,8 @@
import AzureMonitorDatasource from '../datasource';
import Datasource from '../datasource';
import { DataFrame, toUtc } from '@grafana/data';
import { TemplateSrv } from 'app/features/templating/template_srv';
// @ts-ignore
import Q from 'q';
import { TemplateSrv } from 'app/features/templating/template_srv';
import { toUtc } from '@grafana/data';
describe('AppInsightsDatasource', () => {
const ctx: any = {
@ -17,7 +17,7 @@ describe('AppInsightsDatasource', () => {
url: 'http://appinsightsapi',
};
ctx.ds = new AzureMonitorDatasource(ctx.instanceSettings, ctx.backendSrv, ctx.templateSrv, ctx.$q);
ctx.ds = new Datasource(ctx.instanceSettings, ctx.backendSrv, ctx.templateSrv, ctx.$q);
});
describe('When performing testDatasource', () => {
@ -108,7 +108,121 @@ describe('AppInsightsDatasource', () => {
});
});
describe('When performing query', () => {
describe('When performing raw query', () => {
const queryString =
'metrics ' +
'| where $__timeFilter(timestamp) ' +
'| where name == "testMetrics" ' +
'| summarize max=max(valueMax) by bin(timestamp, $__interval), partition';
const options = {
range: {
from: toUtc('2017-08-22T20:00:00Z'),
to: toUtc('2017-08-22T23:59:00Z'),
},
targets: [
{
apiVersion: '2016-09-01',
refId: 'A',
queryType: 'Application Insights',
appInsights: {
rawQuery: true,
rawQueryString: queryString,
timeColumn: 'timestamp',
valueColumn: 'max',
segmentColumn: undefined as string,
},
},
],
};
describe('with no grouping', () => {
const response: any = {
results: {
A: {
refId: 'A',
meta: {},
series: [
{
name: 'PrimaryResult',
points: [[2.2075, 1558278660000]],
},
],
tables: null,
},
},
};
beforeEach(() => {
ctx.backendSrv.datasourceRequest = (options: any) => {
expect(options.url).toContain('/api/tsdb/query');
expect(options.data.queries.length).toBe(1);
expect(options.data.queries[0].refId).toBe('A');
expect(options.data.queries[0].appInsights.rawQueryString).toEqual(queryString);
expect(options.data.queries[0].appInsights.timeColumn).toEqual('timestamp');
expect(options.data.queries[0].appInsights.valueColumn).toEqual('max');
expect(options.data.queries[0].appInsights.segmentColumn).toBeUndefined();
return ctx.$q.when({ data: response, status: 200 });
};
});
it('should return a list of datapoints', () => {
return ctx.ds.query(options).then((results: any) => {
expect(results.data.length).toBe(1);
const data = results.data[0] as DataFrame;
expect(data.name).toEqual('PrimaryResult');
expect(data.fields[0].values.length).toEqual(1);
expect(data.fields[1].values.get(0)).toEqual(1558278660000);
expect(data.fields[0].values.get(0)).toEqual(2.2075);
});
});
});
describe('with grouping', () => {
const response: any = {
results: {
A: {
refId: 'A',
meta: {},
series: [
{
name: 'paritionA',
points: [[2.2075, 1558278660000]],
},
],
tables: null,
},
},
};
beforeEach(() => {
options.targets[0].appInsights.segmentColumn = 'partition';
ctx.backendSrv.datasourceRequest = (options: any) => {
expect(options.url).toContain('/api/tsdb/query');
expect(options.data.queries.length).toBe(1);
expect(options.data.queries[0].refId).toBe('A');
expect(options.data.queries[0].appInsights.rawQueryString).toEqual(queryString);
expect(options.data.queries[0].appInsights.timeColumn).toEqual('timestamp');
expect(options.data.queries[0].appInsights.valueColumn).toEqual('max');
expect(options.data.queries[0].appInsights.segmentColumn).toEqual('partition');
return ctx.$q.when({ data: response, status: 200 });
};
});
it('should return a list of datapoints', () => {
return ctx.ds.query(options).then((results: any) => {
expect(results.data.length).toBe(1);
const data = results.data[0] as DataFrame;
expect(data.name).toEqual('paritionA');
expect(data.fields[0].values.length).toEqual(1);
expect(data.fields[1].values.get(0)).toEqual(1558278660000);
expect(data.fields[0].values.get(0)).toEqual(2.2075);
});
});
});
});
describe('When performing metric query', () => {
const options = {
range: {
from: toUtc('2017-08-22T20:00:00Z'),
@ -121,30 +235,37 @@ describe('AppInsightsDatasource', () => {
queryType: 'Application Insights',
appInsights: {
metricName: 'exceptions/server',
groupBy: '',
timeGrainType: 'none',
timeGrain: '',
timeGrainUnit: '',
alias: '',
dimension: '',
timeGrain: 'none',
},
},
],
};
describe('and with a single value', () => {
const response = {
value: {
start: '2017-08-30T15:53:58.845Z',
end: '2017-09-06T15:53:58.845Z',
'exceptions/server': {
sum: 100,
const response: any = {
results: {
A: {
refId: 'A',
meta: {},
series: [
{
name: 'exceptions/server',
points: [[2.2075, 1558278660000]],
},
],
tables: null,
},
},
};
beforeEach(() => {
ctx.backendSrv.datasourceRequest = (options: { url: string }) => {
expect(options.url).toContain('/metrics/exceptions/server');
ctx.backendSrv.datasourceRequest = (options: any) => {
expect(options.url).toContain('/api/tsdb/query');
expect(options.data.queries.length).toBe(1);
expect(options.data.queries[0].refId).toBe('A');
expect(options.data.queries[0].appInsights.rawQueryString).toBeUndefined();
expect(options.data.queries[0].appInsights.metricName).toBe('exceptions/server');
return ctx.$q.when({ data: response, status: 200 });
};
});
@ -152,46 +273,39 @@ describe('AppInsightsDatasource', () => {
it('should return a single datapoint', () => {
return ctx.ds.query(options).then((results: any) => {
expect(results.data.length).toBe(1);
expect(results.data[0].datapoints.length).toBe(1);
expect(results.data[0].target).toEqual('exceptions/server');
expect(results.data[0].datapoints[0][1]).toEqual(1504713238845);
expect(results.data[0].datapoints[0][0]).toEqual(100);
const data = results.data[0] as DataFrame;
expect(data.name).toEqual('exceptions/server');
expect(data.fields[1].values.get(0)).toEqual(1558278660000);
expect(data.fields[0].values.get(0)).toEqual(2.2075);
});
});
});
describe('and with an interval group and without a segment group by', () => {
const response = {
value: {
start: '2017-08-30T15:53:58.845Z',
end: '2017-09-06T15:53:58.845Z',
interval: 'PT1H',
segments: [
{
start: '2017-08-30T15:53:58.845Z',
end: '2017-08-30T16:00:00.000Z',
'exceptions/server': {
sum: 3,
const response: any = {
results: {
A: {
refId: 'A',
meta: {},
series: [
{
name: 'exceptions/server',
points: [[3, 1504108800000], [6, 1504112400000]],
},
},
{
start: '2017-08-30T16:00:00.000Z',
end: '2017-08-30T17:00:00.000Z',
'exceptions/server': {
sum: 66,
},
},
],
],
tables: null,
},
},
};
beforeEach(() => {
options.targets[0].appInsights.timeGrainType = 'specific';
options.targets[0].appInsights.timeGrain = '30';
options.targets[0].appInsights.timeGrainUnit = 'minute';
ctx.backendSrv.datasourceRequest = (options: { url: string }) => {
expect(options.url).toContain('/metrics/exceptions/server');
expect(options.url).toContain('interval=PT30M');
options.targets[0].appInsights.timeGrain = 'PT30M';
ctx.backendSrv.datasourceRequest = (options: any) => {
expect(options.url).toContain('/api/tsdb/query');
expect(options.data.queries[0].refId).toBe('A');
expect(options.data.queries[0].appInsights.rawQueryString).toBeUndefined();
expect(options.data.queries[0].appInsights.metricName).toBe('exceptions/server');
expect(options.data.queries[0].appInsights.timeGrain).toBe('PT30M');
return ctx.$q.when({ data: response, status: 200 });
};
});
@ -199,108 +313,68 @@ describe('AppInsightsDatasource', () => {
it('should return a list of datapoints', () => {
return ctx.ds.query(options).then((results: any) => {
expect(results.data.length).toBe(1);
expect(results.data[0].datapoints.length).toBe(2);
expect(results.data[0].target).toEqual('exceptions/server');
expect(results.data[0].datapoints[0][1]).toEqual(1504108800000);
expect(results.data[0].datapoints[0][0]).toEqual(3);
expect(results.data[0].datapoints[1][1]).toEqual(1504112400000);
expect(results.data[0].datapoints[1][0]).toEqual(66);
const data = results.data[0] as DataFrame;
expect(data.name).toEqual('exceptions/server');
expect(data.fields[0].values.length).toEqual(2);
expect(data.fields[1].values.get(0)).toEqual(1504108800000);
expect(data.fields[0].values.get(0)).toEqual(3);
expect(data.fields[1].values.get(1)).toEqual(1504112400000);
expect(data.fields[0].values.get(1)).toEqual(6);
});
});
});
describe('and with a group by', () => {
const response = {
value: {
start: '2017-08-30T15:53:58.845Z',
end: '2017-09-06T15:53:58.845Z',
interval: 'PT1H',
segments: [
{
start: '2017-08-30T15:53:58.845Z',
end: '2017-08-30T16:00:00.000Z',
segments: [
{
'exceptions/server': {
sum: 10,
},
'client/city': 'Miami',
},
{
'exceptions/server': {
sum: 1,
},
'client/city': 'San Jose',
},
],
},
{
start: '2017-08-30T16:00:00.000Z',
end: '2017-08-30T17:00:00.000Z',
segments: [
{
'exceptions/server': {
sum: 20,
},
'client/city': 'Miami',
},
{
'exceptions/server': {
sum: 2,
},
'client/city': 'San Antonio',
},
],
},
],
const response: any = {
results: {
A: {
refId: 'A',
meta: {},
series: [
{
name: 'exceptions/server{client/city="Miami"}',
points: [[10, 1504108800000], [20, 1504112400000]],
},
{
name: 'exceptions/server{client/city="San Antonio"}',
points: [[1, 1504108800000], [2, 1504112400000]],
},
],
tables: null,
},
},
};
describe('and with no alias specified', () => {
beforeEach(() => {
options.targets[0].appInsights.groupBy = 'client/city';
options.targets[0].appInsights.dimension = 'client/city';
ctx.backendSrv.datasourceRequest = (options: { url: string }) => {
expect(options.url).toContain('/metrics/exceptions/server');
expect(options.url).toContain('segment=client/city');
ctx.backendSrv.datasourceRequest = (options: any) => {
expect(options.url).toContain('/api/tsdb/query');
expect(options.data.queries[0].appInsights.rawQueryString).toBeUndefined();
expect(options.data.queries[0].appInsights.metricName).toBe('exceptions/server');
expect(options.data.queries[0].appInsights.dimension).toBe('client/city');
return ctx.$q.when({ data: response, status: 200 });
};
});
it('should return a list of datapoints', () => {
return ctx.ds.query(options).then((results: any) => {
expect(results.data.length).toBe(3);
expect(results.data[0].datapoints.length).toBe(2);
expect(results.data[0].target).toEqual('exceptions/server{client/city="Miami"}');
expect(results.data[0].datapoints[0][1]).toEqual(1504108800000);
expect(results.data[0].datapoints[0][0]).toEqual(10);
expect(results.data[0].datapoints[1][1]).toEqual(1504112400000);
expect(results.data[0].datapoints[1][0]).toEqual(20);
});
});
});
describe('and with an alias specified', () => {
beforeEach(() => {
options.targets[0].appInsights.groupBy = 'client/city';
options.targets[0].appInsights.alias = '{{metric}} + {{groupbyname}} + {{groupbyvalue}}';
ctx.backendSrv.datasourceRequest = (options: { url: string }) => {
expect(options.url).toContain('/metrics/exceptions/server');
expect(options.url).toContain('segment=client/city');
return ctx.$q.when({ data: response, status: 200 });
};
});
it('should return a list of datapoints', () => {
return ctx.ds.query(options).then((results: any) => {
expect(results.data.length).toBe(3);
expect(results.data[0].datapoints.length).toBe(2);
expect(results.data[0].target).toEqual('exceptions/server + client/city + Miami');
expect(results.data[0].datapoints[0][1]).toEqual(1504108800000);
expect(results.data[0].datapoints[0][0]).toEqual(10);
expect(results.data[0].datapoints[1][1]).toEqual(1504112400000);
expect(results.data[0].datapoints[1][0]).toEqual(20);
expect(results.data.length).toBe(2);
let data = results.data[0] as DataFrame;
expect(data.name).toEqual('exceptions/server{client/city="Miami"}');
expect(data.fields[0].values.length).toEqual(2);
expect(data.fields[1].values.get(0)).toEqual(1504108800000);
expect(data.fields[0].values.get(0)).toEqual(10);
expect(data.fields[1].values.get(1)).toEqual(1504112400000);
expect(data.fields[0].values.get(1)).toEqual(20);
data = results.data[1] as DataFrame;
expect(data.name).toEqual('exceptions/server{client/city="San Antonio"}');
expect(data.fields[0].values.length).toEqual(2);
expect(data.fields[1].values.get(0)).toEqual(1504108800000);
expect(data.fields[0].values.get(0)).toEqual(1);
expect(data.fields[1].values.get(1)).toEqual(1504112400000);
expect(data.fields[0].values.get(1)).toEqual(2);
});
});
});

View File

@ -1,12 +1,12 @@
import _ from 'lodash';
import AppInsightsQuerystringBuilder from './app_insights_querystring_builder';
import LogAnalyticsQuerystringBuilder from '../log_analytics/querystring_builder';
import ResponseParser from './response_parser';
import { DataSourceInstanceSettings } from '@grafana/ui';
import { AzureDataSourceJsonData } from '../types';
import { TimeSeries, toDataFrame } from '@grafana/data';
import { DataQueryRequest, DataQueryResponseData, DataSourceInstanceSettings } from '@grafana/ui';
import { BackendSrv } from 'app/core/services/backend_srv';
import { TemplateSrv } from 'app/features/templating/template_srv';
import { IQService } from 'angular';
import _ from 'lodash';
import TimegrainConverter from '../time_grain_converter';
import { AzureDataSourceJsonData, AzureMonitorQuery } from '../types';
import ResponseParser from './response_parser';
export interface LogAnalyticsColumn {
text: string;
@ -24,8 +24,7 @@ export default class AppInsightsDatasource {
constructor(
instanceSettings: DataSourceInstanceSettings<AzureDataSourceJsonData>,
private backendSrv: BackendSrv,
private templateSrv: TemplateSrv,
private $q: IQService
private templateSrv: TemplateSrv
) {
this.id = instanceSettings.id;
this.applicationId = instanceSettings.jsonData.appInsightsAppId;
@ -37,73 +36,82 @@ export default class AppInsightsDatasource {
return !!this.applicationId && this.applicationId.length > 0;
}
query(options: any) {
createRawQueryRequest(item: any, options: DataQueryRequest<AzureMonitorQuery>, target: AzureMonitorQuery) {
if (item.xaxis && !item.timeColumn) {
item.timeColumn = item.xaxis;
}
if (item.yaxis && !item.valueColumn) {
item.valueColumn = item.yaxis;
}
if (item.spliton && !item.segmentColumn) {
item.segmentColumn = item.spliton;
}
return {
type: 'timeSeriesQuery',
raw: false,
appInsights: {
rawQuery: true,
rawQueryString: this.templateSrv.replace(item.rawQueryString, options.scopedVars),
timeColumn: item.timeColumn,
valueColumn: item.valueColumn,
segmentColumn: item.segmentColumn,
},
};
}
createMetricsRequest(item: any, options: DataQueryRequest<AzureMonitorQuery>, target: AzureMonitorQuery) {
// fix for timeGrainUnit which is a deprecated/removed field name
if (item.timeGrainCount) {
item.timeGrain = TimegrainConverter.createISO8601Duration(item.timeGrainCount, item.timeGrainUnit);
} else if (item.timeGrainUnit && item.timeGrain !== 'auto') {
item.timeGrain = TimegrainConverter.createISO8601Duration(item.timeGrain, item.timeGrainUnit);
}
// migration for non-standard names
if (item.groupBy && !item.dimension) {
item.dimension = item.groupBy;
}
if (item.filter && !item.dimensionFilter) {
item.dimensionFilter = item.filter;
}
return {
type: 'timeSeriesQuery',
raw: false,
appInsights: {
rawQuery: false,
timeGrain: this.templateSrv.replace((item.timeGrain || '').toString(), options.scopedVars),
allowedTimeGrainsMs: item.allowedTimeGrainsMs,
metricName: this.templateSrv.replace(item.metricName, options.scopedVars),
aggregation: this.templateSrv.replace(item.aggregation, options.scopedVars),
dimension: this.templateSrv.replace(item.dimension, options.scopedVars),
dimensionFilter: this.templateSrv.replace(item.dimensionFilter, options.scopedVars),
alias: item.alias,
format: target.format,
},
};
}
async query(options: DataQueryRequest<AzureMonitorQuery>): Promise<DataQueryResponseData[]> {
const queries = _.filter(options.targets, item => {
return item.hide !== true;
}).map(target => {
}).map((target: AzureMonitorQuery) => {
const item = target.appInsights;
let query: any;
if (item.rawQuery) {
const querystringBuilder = new LogAnalyticsQuerystringBuilder(
this.templateSrv.replace(item.rawQueryString, options.scopedVars),
options,
'timestamp'
);
const generated = querystringBuilder.generate();
const url = `${this.baseUrl}/query?${generated.uriString}`;
return {
refId: target.refId,
intervalMs: options.intervalMs,
maxDataPoints: options.maxDataPoints,
datasourceId: this.id,
url: url,
format: options.format,
alias: item.alias,
query: generated.rawQuery,
xaxis: item.xaxis,
yaxis: item.yaxis,
spliton: item.spliton,
raw: true,
};
query = this.createRawQueryRequest(item, options, target);
} else {
const querystringBuilder = new AppInsightsQuerystringBuilder(
options.range.from,
options.range.to,
options.interval
);
if (item.groupBy !== 'none') {
querystringBuilder.setGroupBy(this.templateSrv.replace(item.groupBy, options.scopedVars));
}
querystringBuilder.setAggregation(item.aggregation);
querystringBuilder.setInterval(
item.timeGrainType,
this.templateSrv.replace(item.timeGrain, options.scopedVars),
item.timeGrainUnit
);
querystringBuilder.setFilter(this.templateSrv.replace(item.filter || ''));
const url = `${this.baseUrl}/metrics/${this.templateSrv.replace(
encodeURI(item.metricName),
options.scopedVars
)}?${querystringBuilder.generate()}`;
return {
refId: target.refId,
intervalMs: options.intervalMs,
maxDataPoints: options.maxDataPoints,
datasourceId: this.id,
url: url,
format: options.format,
alias: item.alias,
xaxis: '',
yaxis: '',
spliton: '',
raw: false,
};
query = this.createMetricsRequest(item, options, target);
}
query.refId = target.refId;
query.intervalMs = options.intervalMs;
query.datasourceId = this.id;
query.queryType = 'Application Insights';
return query;
});
if (!queries || queries.length === 0) {
@ -111,25 +119,42 @@ export default class AppInsightsDatasource {
return;
}
const promises = this.doQueries(queries);
const { data } = await this.backendSrv.datasourceRequest({
url: '/api/tsdb/query',
method: 'POST',
data: {
from: options.range.from.valueOf().toString(),
to: options.range.to.valueOf().toString(),
queries,
},
});
return this.$q
.all(promises)
.then(results => {
return new ResponseParser(results).parseQueryResult();
})
.then(results => {
const flattened: any[] = [];
for (let i = 0; i < results.length; i++) {
if (results[i].columnsForDropdown) {
this.logAnalyticsColumns[results[i].refId] = results[i].columnsForDropdown;
}
flattened.push(results[i]);
const result: DataQueryResponseData[] = [];
if (data.results) {
Object.values(data.results).forEach((queryRes: any) => {
if (queryRes.meta && queryRes.meta.columns) {
const columnNames = queryRes.meta.columns as string[];
this.logAnalyticsColumns[queryRes.refId] = _.map(columnNames, n => ({ text: n, value: n }));
}
return flattened;
if (!queryRes.series) {
return;
}
queryRes.series.forEach((series: any) => {
const timeSerie: TimeSeries = {
target: series.name,
datapoints: series.points,
refId: queryRes.refId,
meta: queryRes.meta,
};
result.push(toDataFrame(timeSerie));
});
});
return result;
}
return Promise.resolve([]);
}
doQueries(queries: any) {

View File

@ -1,72 +0,0 @@
import AppInsightsQuerystringBuilder from './app_insights_querystring_builder';
import { toUtc } from '@grafana/data';
describe('AppInsightsQuerystringBuilder', () => {
let builder: AppInsightsQuerystringBuilder;
beforeEach(() => {
builder = new AppInsightsQuerystringBuilder(toUtc('2017-08-22 06:00'), toUtc('2017-08-22 07:00'), '1h');
});
describe('with only from/to date range', () => {
it('should always add datetime filtering to the querystring', () => {
const querystring = `timespan=2017-08-22T06:00:00Z/2017-08-22T07:00:00Z`;
expect(builder.generate()).toEqual(querystring);
});
});
describe('with from/to date range and aggregation type', () => {
beforeEach(() => {
builder.setAggregation('avg');
});
it('should add datetime filtering and aggregation to the querystring', () => {
const querystring = `timespan=2017-08-22T06:00:00Z/2017-08-22T07:00:00Z&aggregation=avg`;
expect(builder.generate()).toEqual(querystring);
});
});
describe('with from/to date range and group by segment', () => {
beforeEach(() => {
builder.setGroupBy('client/city');
});
it('should add datetime filtering and segment to the querystring', () => {
const querystring = `timespan=2017-08-22T06:00:00Z/2017-08-22T07:00:00Z&segment=client/city`;
expect(builder.generate()).toEqual(querystring);
});
});
describe('with from/to date range and specific group by interval', () => {
beforeEach(() => {
builder.setInterval('specific', 1, 'hour');
});
it('should add datetime filtering and interval to the querystring', () => {
const querystring = `timespan=2017-08-22T06:00:00Z/2017-08-22T07:00:00Z&interval=PT1H`;
expect(builder.generate()).toEqual(querystring);
});
});
describe('with from/to date range and auto group by interval', () => {
beforeEach(() => {
builder.setInterval('auto', '', '');
});
it('should add datetime filtering and interval to the querystring', () => {
const querystring = `timespan=2017-08-22T06:00:00Z/2017-08-22T07:00:00Z&interval=PT1H`;
expect(builder.generate()).toEqual(querystring);
});
});
describe('with filter', () => {
beforeEach(() => {
builder.setFilter(`client/city eq 'Boydton'`);
});
it('should add datetime filtering and interval to the querystring', () => {
const querystring = `timespan=2017-08-22T06:00:00Z/2017-08-22T07:00:00Z&filter=client/city eq 'Boydton'`;
expect(builder.generate()).toEqual(querystring);
});
});
});

View File

@ -1,56 +0,0 @@
import TimeGrainConverter from '../time_grain_converter';
export default class AppInsightsQuerystringBuilder {
aggregation = '';
groupBy = '';
timeGrainType = '';
timeGrain = '';
timeGrainUnit = '';
filter = '';
constructor(private from: any, private to: any, public grafanaInterval: any) {}
setAggregation(aggregation: string) {
this.aggregation = aggregation;
}
setGroupBy(groupBy: string) {
this.groupBy = groupBy;
}
setInterval(timeGrainType: string, timeGrain: any, timeGrainUnit: string) {
this.timeGrainType = timeGrainType;
this.timeGrain = timeGrain;
this.timeGrainUnit = timeGrainUnit;
}
setFilter(filter: string) {
this.filter = filter;
}
generate() {
let querystring = `timespan=${this.from.utc().format()}/${this.to.utc().format()}`;
if (this.aggregation && this.aggregation.length > 0) {
querystring += `&aggregation=${this.aggregation}`;
}
if (this.groupBy && this.groupBy.length > 0) {
querystring += `&segment=${this.groupBy}`;
}
if (this.timeGrainType === 'specific' && this.timeGrain && this.timeGrainUnit) {
querystring += `&interval=${TimeGrainConverter.createISO8601Duration(this.timeGrain, this.timeGrainUnit)}`;
}
if (this.timeGrainType === 'auto') {
querystring += `&interval=${TimeGrainConverter.createISO8601DurationFromInterval(this.grafanaInterval)}`;
}
if (this.filter) {
querystring += `&filter=${this.filter}`;
}
return querystring;
}
}

View File

@ -22,12 +22,7 @@ export default class Datasource extends DataSourceApi<AzureMonitorQuery, AzureDa
) {
super(instanceSettings);
this.azureMonitorDatasource = new AzureMonitorDatasource(instanceSettings, this.backendSrv, this.templateSrv);
this.appInsightsDatasource = new AppInsightsDatasource(
instanceSettings,
this.backendSrv,
this.templateSrv,
this.$q
);
this.appInsightsDatasource = new AppInsightsDatasource(instanceSettings, this.backendSrv, this.templateSrv);
this.azureLogAnalyticsDatasource = new AzureLogAnalyticsDatasource(
instanceSettings,

View File

@ -48,7 +48,7 @@
get-options="ctrl.getMetricNamespaces($query)" on-change="ctrl.onMetricNamespacesChange()" css-class="min-width-12">
</gf-form-dropdown>
</div>
<div class="gf-form">
<div class="gf-form">
<label class="gf-form-label query-keyword width-9">Metric</label>
<gf-form-dropdown model="ctrl.target.azureMonitor.metricName" allow-custom="true" lookup-text="true"
get-options="ctrl.getMetricNames($query)" on-change="ctrl.onMetricNameChange()" css-class="min-width-12">
@ -62,7 +62,7 @@
</div>
</div>
</div>
<div class="gf-form-inline">
<div class="gf-form-inline">
<div class="gf-form">
<label class="gf-form-label query-keyword width-9">Time Grain</label>
<div class="gf-form-select-wrapper gf-form-select-wrapper--caret-indent timegrainunit-dropdown-wrapper">
@ -72,7 +72,7 @@
</div>
<div class="gf-form" ng-show="ctrl.target.azureMonitor.timeGrain.trim() === 'auto'">
<label class="gf-form-label">Auto Interval</label>
<label class="gf-form-label">{{ctrl.getAutoInterval()}}</label>
<label class="gf-form-label">{{ctrl.getAzureMonitorAutoInterval()}}</label>
</div>
<div class="gf-form gf-form--grow">
<div class="gf-form-label gf-form-label--grow"></div>
@ -238,19 +238,19 @@
<div class="gf-form-inline">
<div class="gf-form">
<label class="gf-form-label query-keyword width-9">Group By</label>
<gf-form-dropdown allow-custom="true" ng-hide="ctrl.target.appInsights.groupBy !== 'none'" model="ctrl.target.appInsights.groupBy"
<gf-form-dropdown allow-custom="true" ng-hide="ctrl.target.appInsights.dimension !== 'none'" model="ctrl.target.appInsights.dimension"
lookup-text="true" get-options="ctrl.getAppInsightsGroupBySegments($query)" on-change="ctrl.refresh()"
css-class="min-width-20">
</gf-form-dropdown>
<label class="gf-form-label min-width-20 pointer" ng-hide="ctrl.target.appInsights.groupBy === 'none'"
ng-click="ctrl.resetAppInsightsGroupBy()">{{ctrl.target.appInsights.groupBy}}
<label class="gf-form-label min-width-20 pointer" ng-hide="ctrl.target.appInsights.dimension === 'none'"
ng-click="ctrl.resetAppInsightsGroupBy()">{{ctrl.target.appInsights.dimension}}
<i class="fa fa-remove"></i>
</label>
</div>
<div class="gf-form-inline">
<div class="gf-form">
<label class="gf-form-label query-keyword width-9">Filter</label>
<input type="text" class="gf-form-input width-17" ng-model="ctrl.target.appInsights.filter" spellcheck="false"
<input type="text" class="gf-form-input width-17" ng-model="ctrl.target.appInsights.dimensionFilter" spellcheck="false"
placeholder="your/groupby eq 'a_value'" ng-blur="ctrl.refresh()">
</div>
</div>
@ -258,7 +258,6 @@
<div class="gf-form-label gf-form-label--grow"></div>
</div>
</div>
<div class="gf-form-inline">
<div class="gf-form">
<label class="gf-form-label query-keyword width-9">Time Grain</label>
@ -268,17 +267,17 @@
</div>
</div>
<div class="gf-form" ng-hide="ctrl.target.appInsights.timeGrainType === 'auto' || ctrl.target.appInsights.timeGrainType === 'none'">
<input type="text" class="gf-form-input width-3" ng-model="ctrl.target.appInsights.timeGrain" spellcheck="false"
placeholder="" ng-blur="ctrl.refresh()">
<input type="text" class="gf-form-input width-3" ng-model="ctrl.target.appInsights.timeGrainCount" spellcheck="false"
placeholder="" ng-blur="ctrl.updateAppInsightsTimeGrain()">
</div>
<div class="gf-form" ng-hide="ctrl.target.appInsights.timeGrainType === 'auto' || ctrl.target.appInsights.timeGrainType === 'none'">
<div class="gf-form-select-wrapper gf-form-select-wrapper--caret-indent timegrainunit-dropdown-wrapper">
<div class="gf-form-select-wrapper gf-form-select-wrapper--caret-indent timegrainunit-dropdown-wrapper">
<select class="gf-form-input" ng-model="ctrl.target.appInsights.timeGrainUnit" ng-options="f as f for f in ['minute', 'hour', 'day', 'month', 'year']"
ng-change="ctrl.refresh()"></select>
ng-change="ctrl.updateAppInsightsTimeGrain()"></select>
</div>
</div>
</div>
<div class="gf-form" ng-hide="ctrl.target.appInsights.timeGrainType !== 'auto'">
<label class="gf-form-label">Auto Interval</label>
<label class="gf-form-label">Auto Interval</label>
<label class="gf-form-label">{{ctrl.getAppInsightsAutoInterval()}}</label>
</div>
<div class="gf-form gf-form--grow">
@ -291,10 +290,9 @@
<input type="text" class="gf-form-input width-30" ng-model="ctrl.target.appInsights.alias" spellcheck="false"
placeholder="alias patterns (see help for more info)" ng-blur="ctrl.refresh()">
</div>
<div class="gf-form gf-form--grow">
<div class="gf-form-label gf-form-label--grow"></div>
</div>
</div>
<div class="gf-form gf-form--grow">
<div class="gf-form-label gf-form-label--grow"></div>
</div>
</div>
<div ng-show="ctrl.target.appInsights.rawQuery">
@ -316,13 +314,13 @@
<div class="gf-form-inline">
<div class="gf-form">
<label class="gf-form-label query-keyword width-9">X-axis</label>
<gf-form-dropdown model="ctrl.target.appInsights.xaxis" allow-custom="true" placeholder="eg. 'timestamp'"
<gf-form-dropdown model="ctrl.target.appInsights.timeColumn" allow-custom="true" placeholder="eg. 'timestamp'"
get-options="ctrl.getAppInsightsColumns($query)" on-change="ctrl.onAppInsightsColumnChange()" css-class="min-width-20">
</gf-form-dropdown>
</div>
<div class="gf-form">
<label class="gf-form-label query-keyword width-9">Y-axis(es)</label>
<gf-form-dropdown model="ctrl.target.appInsights.yaxis" allow-custom="true" get-options="ctrl.getAppInsightsColumns($query)"
<label class="gf-form-label query-keyword width-9">Y-axis</label>
<gf-form-dropdown model="ctrl.target.appInsights.valueColumn" allow-custom="true" get-options="ctrl.getAppInsightsColumns($query)"
on-change="ctrl.onAppInsightsColumnChange()" css-class="min-width-20">
</gf-form-dropdown>
</div>
@ -333,7 +331,7 @@
<div class="gf-form-inline">
<div class="gf-form">
<label class="gf-form-label query-keyword width-9">Split On</label>
<gf-form-dropdown model="ctrl.target.appInsights.spliton" allow-custom="true" get-options="ctrl.getAppInsightsColumns($query)"
<gf-form-dropdown model="ctrl.target.appInsights.segmentColumn" allow-custom="true" get-options="ctrl.getAppInsightsColumns($query)"
on-change="ctrl.onAppInsightsColumnChange()" css-class="min-width-20">
</gf-form-dropdown>
</div>

View File

@ -41,7 +41,7 @@ describe('AzureMonitorQueryCtrl', () => {
expect(queryCtrl.target.azureMonitor.resourceName).toBe('select');
expect(queryCtrl.target.azureMonitor.metricNamespace).toBe('select');
expect(queryCtrl.target.azureMonitor.metricName).toBe('select');
expect(queryCtrl.target.appInsights.groupBy).toBe('none');
expect(queryCtrl.target.appInsights.dimension).toBe('none');
});
});
@ -239,6 +239,35 @@ describe('AzureMonitorQueryCtrl', () => {
});
describe('and query type is Application Insights', () => {
describe('and target is in old format', () => {
it('data is migrated', () => {
queryCtrl.target.appInsights.xaxis = 'sample-x';
queryCtrl.target.appInsights.yaxis = 'sample-y';
queryCtrl.target.appInsights.spliton = 'sample-split';
queryCtrl.target.appInsights.groupBy = 'sample-group';
queryCtrl.target.appInsights.groupByOptions = ['sample-group-1', 'sample-group-2'];
queryCtrl.target.appInsights.filter = 'sample-filter';
queryCtrl.target.appInsights.metricName = 'sample-metric';
queryCtrl.migrateApplicationInsightsKeys();
expect(queryCtrl.target.appInsights.xaxis).toBeUndefined();
expect(queryCtrl.target.appInsights.yaxis).toBeUndefined();
expect(queryCtrl.target.appInsights.spliton).toBeUndefined();
expect(queryCtrl.target.appInsights.groupBy).toBeUndefined();
expect(queryCtrl.target.appInsights.groupByOptions).toBeUndefined();
expect(queryCtrl.target.appInsights.filter).toBeUndefined();
expect(queryCtrl.target.appInsights.timeColumn).toBe('sample-x');
expect(queryCtrl.target.appInsights.valueColumn).toBe('sample-y');
expect(queryCtrl.target.appInsights.segmentColumn).toBe('sample-split');
expect(queryCtrl.target.appInsights.dimension).toBe('sample-group');
expect(queryCtrl.target.appInsights.dimensions).toEqual(['sample-group-1', 'sample-group-2']);
expect(queryCtrl.target.appInsights.dimensionFilter).toBe('sample-filter');
expect(queryCtrl.target.appInsights.metricName).toBe('sample-metric');
});
});
describe('when getOptions for the Metric Names dropdown is called', () => {
const response = [{ text: 'metric1', value: 'metric1' }, { text: 'metric2', value: 'metric2' }];
@ -259,7 +288,7 @@ describe('AzureMonitorQueryCtrl', () => {
describe('when getOptions for the GroupBy segments dropdown is called', () => {
beforeEach(() => {
queryCtrl.target.appInsights.groupByOptions = ['opt1', 'opt2'];
queryCtrl.target.appInsights.dimensions = ['opt1', 'opt2'];
});
it('should return a list of GroupBy segments', () => {
@ -291,8 +320,8 @@ describe('AzureMonitorQueryCtrl', () => {
expect(queryCtrl.target.appInsights.aggregation).toBe('avg');
expect(queryCtrl.target.appInsights.aggOptions).toContain('avg');
expect(queryCtrl.target.appInsights.aggOptions).toContain('sum');
expect(queryCtrl.target.appInsights.groupByOptions).toContain('client/os');
expect(queryCtrl.target.appInsights.groupByOptions).toContain('client/city');
expect(queryCtrl.target.appInsights.dimensions).toContain('client/os');
expect(queryCtrl.target.appInsights.dimensions).toContain('client/city');
});
});
});

View File

@ -32,13 +32,13 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
dimensionFilter: string;
timeGrain: string;
timeGrainUnit: string;
timeGrains: Array<{ text: string; value: string }>;
allowedTimeGrainsMs: number[];
dimensions: any[];
dimension: any;
top: string;
aggregation: string;
aggOptions: string[];
timeGrains: Array<{ text: string; value: string }>;
};
azureLogAnalytics: {
query: string;
@ -46,19 +46,28 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
workspace: string;
};
appInsights: {
metricName: string;
rawQuery: boolean;
rawQueryString: string;
groupBy: string;
timeGrainType: string;
xaxis: string;
yaxis: string;
spliton: string;
// metric style query when rawQuery == false
metricName: string;
dimension: any;
dimensionFilter: string;
dimensions: string[];
aggOptions: string[];
aggregation: string;
groupByOptions: string[];
timeGrainType: string;
timeGrainCount: string;
timeGrainUnit: string;
timeGrain: string;
timeGrains: Array<{ text: string; value: string }>;
allowedTimeGrainsMs: number[];
// query style query when rawQuery == true
rawQueryString: string;
timeColumn: string;
valueColumn: string;
segmentColumn: string;
};
};
@ -73,6 +82,8 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
dimensionFilter: '*',
timeGrain: 'auto',
top: '10',
aggOptions: [] as string[],
timeGrains: [] as string[],
},
azureLogAnalytics: {
query: [
@ -96,11 +107,10 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
metricName: this.defaultDropdownValue,
rawQuery: false,
rawQueryString: '',
groupBy: 'none',
timeGrainType: 'auto',
xaxis: 'timestamp',
yaxis: '',
spliton: '',
dimension: 'none',
timeGrain: 'auto',
timeColumn: 'timestamp',
valueColumn: '',
},
};
@ -124,6 +134,8 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
this.migrateToDefaultNamespace();
this.migrateApplicationInsightsKeys();
this.panelCtrl.events.on('data-received', this.onDataReceived.bind(this), $scope);
this.panelCtrl.events.on('data-error', this.onDataError.bind(this), $scope);
this.resultFormats = [{ text: 'Time series', value: 'time_series' }, { text: 'Table', value: 'table' }];
@ -184,6 +196,23 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
this.onMetricNameChange();
}
if (this.target.appInsights.timeGrainUnit) {
if (this.target.appInsights.timeGrain !== 'auto') {
if (this.target.appInsights.timeGrainCount) {
this.target.appInsights.timeGrain = TimegrainConverter.createISO8601Duration(
this.target.appInsights.timeGrainCount,
this.target.appInsights.timeGrainUnit
);
} else {
this.target.appInsights.timeGrainCount = this.target.appInsights.timeGrain;
this.target.appInsights.timeGrain = TimegrainConverter.createISO8601Duration(
this.target.appInsights.timeGrain,
this.target.appInsights.timeGrainUnit
);
}
}
}
if (
this.target.azureMonitor.timeGrains &&
this.target.azureMonitor.timeGrains.length > 0 &&
@ -191,6 +220,14 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
) {
this.target.azureMonitor.allowedTimeGrainsMs = this.convertTimeGrainsToMs(this.target.azureMonitor.timeGrains);
}
if (
this.target.appInsights.timeGrains &&
this.target.appInsights.timeGrains.length > 0 &&
(!this.target.appInsights.allowedTimeGrainsMs || this.target.appInsights.allowedTimeGrainsMs.length === 0)
) {
this.target.appInsights.allowedTimeGrainsMs = this.convertTimeGrainsToMs(this.target.appInsights.timeGrains);
}
}
migrateToFromTimes() {
@ -210,6 +247,27 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
this.target.azureMonitor.metricNamespace = this.target.azureMonitor.metricDefinition;
}
migrateApplicationInsightsKeys(): void {
const appInsights = this.target.appInsights as any;
// Migrate old app insights data keys to match other datasources
const mappings = {
xaxis: 'timeColumn',
yaxis: 'valueColumn',
spliton: 'segmentColumn',
groupBy: 'dimension',
groupByOptions: 'dimensions',
filter: 'dimensionFilter',
} as { [old: string]: string };
for (const old in mappings) {
if (appInsights[old]) {
appInsights[mappings[old]] = appInsights[old];
delete appInsights[old];
}
}
}
replace(variable: string) {
return this.templateSrv.replace(variable, this.panelCtrl.panel.scopedVars);
}
@ -424,6 +482,7 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
if (metadata.dimensions.length > 0) {
this.target.azureMonitor.dimension = metadata.dimensions[0].value;
}
return this.refresh();
})
.catch(this.handleQueryCtrlError.bind(this));
@ -439,19 +498,34 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
return allowedTimeGrainsMs;
}
getAutoInterval() {
if (this.target.azureMonitor.timeGrain === 'auto') {
generateAutoUnits(timeGrain: string, timeGrains: Array<{ value: string }>) {
if (timeGrain === 'auto') {
return TimegrainConverter.findClosestTimeGrain(
this.templateSrv.getBuiltInIntervalValue(),
_.map(this.target.azureMonitor.timeGrains, o =>
TimegrainConverter.createKbnUnitFromISO8601Duration(o.value)
) || ['1m', '5m', '15m', '30m', '1h', '6h', '12h', '1d']
_.map(timeGrains, o => TimegrainConverter.createKbnUnitFromISO8601Duration(o.value)) || [
'1m',
'5m',
'15m',
'30m',
'1h',
'6h',
'12h',
'1d',
]
);
}
return '';
}
getAzureMonitorAutoInterval() {
return this.generateAutoUnits(this.target.azureMonitor.timeGrain, this.target.azureMonitor.timeGrains);
}
getApplicationInsightAutoInterval() {
return this.generateAutoUnits(this.target.appInsights.timeGrain, this.target.appInsights.timeGrains);
}
/* Azure Log Analytics */
getWorkspaces = () => {
@ -521,7 +595,7 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
.getAppInsightsMetricMetadata(this.replace(this.target.appInsights.metricName))
.then((aggData: { supportedAggTypes: string[]; supportedGroupBy: string[]; primaryAggType: string }) => {
this.target.appInsights.aggOptions = aggData.supportedAggTypes;
this.target.appInsights.groupByOptions = aggData.supportedGroupBy;
this.target.appInsights.dimensions = aggData.supportedGroupBy;
this.target.appInsights.aggregation = aggData.primaryAggType;
return this.refresh();
})
@ -541,27 +615,41 @@ export class AzureMonitorQueryCtrl extends QueryCtrl {
};
getAppInsightsGroupBySegments(query: any) {
return _.map(this.target.appInsights.groupByOptions, option => {
return _.map(this.target.appInsights.dimensions, (option: string) => {
return { text: option, value: option };
});
}
resetAppInsightsGroupBy() {
this.target.appInsights.groupBy = 'none';
this.refresh();
}
updateTimeGrainType() {
if (this.target.appInsights.timeGrainType === 'specific') {
this.target.appInsights.timeGrain = '1';
this.target.appInsights.timeGrainUnit = 'minute';
} else {
this.target.appInsights.timeGrain = '';
}
this.target.appInsights.dimension = 'none';
this.refresh();
}
toggleEditorMode() {
this.target.appInsights.rawQuery = !this.target.appInsights.rawQuery;
}
updateTimeGrainType() {
if (this.target.appInsights.timeGrainType === 'specific') {
this.target.appInsights.timeGrainCount = '1';
this.target.appInsights.timeGrainUnit = 'minute';
this.target.appInsights.timeGrain = TimegrainConverter.createISO8601Duration(
this.target.appInsights.timeGrainCount,
this.target.appInsights.timeGrainUnit
);
} else {
this.target.appInsights.timeGrainCount = '';
this.target.appInsights.timeGrainUnit = '';
}
}
updateAppInsightsTimeGrain() {
if (this.target.appInsights.timeGrainUnit && this.target.appInsights.timeGrainCount) {
this.target.appInsights.timeGrain = TimegrainConverter.createISO8601Duration(
this.target.appInsights.timeGrainCount,
this.target.appInsights.timeGrainUnit
);
}
this.refresh();
}
}

View File

@ -1,11 +1,12 @@
import { DataQuery, DataSourceJsonData } from '@grafana/ui';
export interface AzureMonitorQuery extends DataQuery {
refId: string;
format: string;
subscription: string;
azureMonitor: AzureMetricQuery;
azureLogAnalytics: AzureLogsQuery;
// appInsights: any;
appInsights: ApplicationInsightsQuery;
}
export interface AzureDataSourceJsonData extends DataSourceJsonData {
@ -35,7 +36,6 @@ export interface AzureMetricQuery {
metricName: string;
timeGrainUnit: string;
timeGrain: string;
timeGrains: string[];
allowedTimeGrainsMs: number[];
aggregation: string;
dimension: string;
@ -50,6 +50,19 @@ export interface AzureLogsQuery {
workspace: string;
}
export interface ApplicationInsightsQuery {
rawQuery: boolean;
rawQueryString: any;
metricName: string;
timeGrainUnit: string;
timeGrain: string;
allowedTimeGrainsMs: number[];
aggregation: string;
dimension: string;
dimensionFilter: string;
alias: string;
}
// Azure Monitor API Types
export interface AzureMonitorMetricDefinitionsResponse {