mirror of
https://github.com/grafana/grafana.git
synced 2024-11-22 08:56:43 -06:00
Arrow: toArray() on nullable values should include null values (#29520)
This commit is contained in:
parent
df0ef18731
commit
24086c63a3
@ -55,6 +55,9 @@ export function arrowTableToDataFrame(table: Table): ArrowDataFrame {
|
||||
case ArrowType.Decimal:
|
||||
case ArrowType.FloatingPoint: {
|
||||
type = FieldType.number;
|
||||
if (col.nullCount) {
|
||||
values = new WrappedColumn(col);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case ArrowType.Int: {
|
||||
@ -64,6 +67,9 @@ export function arrowTableToDataFrame(table: Table): ArrowDataFrame {
|
||||
}
|
||||
case ArrowType.Bool: {
|
||||
type = FieldType.boolean;
|
||||
if (col.nullCount) {
|
||||
values = new WrappedColumn(col);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case ArrowType.Timestamp: {
|
||||
@ -202,3 +208,20 @@ class NumberColumn extends FunctionalVector<number> {
|
||||
return Number(v);
|
||||
}
|
||||
}
|
||||
|
||||
// The `toArray()` arrow function will return a native ArrayBuffer -- this works fine
|
||||
// if there are no null values, but the native arrays do not support nulls. This
|
||||
// class simply wraps the vector so `toArray` creates a new array
|
||||
class WrappedColumn extends FunctionalVector {
|
||||
constructor(private col: Column) {
|
||||
super();
|
||||
}
|
||||
|
||||
get length() {
|
||||
return this.col.length;
|
||||
}
|
||||
|
||||
get(index: number): number {
|
||||
return this.col.get(index);
|
||||
}
|
||||
}
|
||||
|
@ -265,7 +265,7 @@ Object {
|
||||
"labels": undefined,
|
||||
"name": "float32_values",
|
||||
"type": "number",
|
||||
"values": Array [
|
||||
"values": Float32Array [
|
||||
1.401298464324817e-45,
|
||||
1.401298464324817e-45,
|
||||
1,
|
||||
|
@ -24,6 +24,7 @@ import { SortedVector } from '../vector/SortedVector';
|
||||
import { ArrayDataFrame } from './ArrayDataFrame';
|
||||
import { getFieldDisplayName } from '../field/fieldState';
|
||||
import { fieldIndexComparer } from '../field/fieldComparers';
|
||||
import { vectorToArray } from '../vector/vectorToArray';
|
||||
|
||||
function convertTableToDataFrame(table: TableData): DataFrame {
|
||||
const fields = table.columns.map(c => {
|
||||
@ -444,16 +445,10 @@ export function getDataFrameRow(data: DataFrame, row: number): any[] {
|
||||
export function toDataFrameDTO(data: DataFrame): DataFrameDTO {
|
||||
const fields: FieldDTO[] = data.fields.map(f => {
|
||||
let values = f.values.toArray();
|
||||
if (!Array.isArray(values)) {
|
||||
// Apache arrow will pack objects into typed arrays
|
||||
// Float64Array, etc
|
||||
// TODO: Float64Array could be used directly
|
||||
values = [];
|
||||
for (let i = 0; i < f.values.length; i++) {
|
||||
values.push(f.values.get(i));
|
||||
}
|
||||
// The byte buffers serialize like objects
|
||||
if (values instanceof Float64Array) {
|
||||
values = vectorToArray(f.values);
|
||||
}
|
||||
|
||||
return {
|
||||
name: f.name,
|
||||
type: f.type,
|
||||
|
@ -37,7 +37,7 @@ const emptyResults = {
|
||||
|
||||
/* eslint-enable */
|
||||
|
||||
describe('GEL Utils', () => {
|
||||
describe('Query Response parser', () => {
|
||||
test('should parse output with dataframe', () => {
|
||||
const res = toDataQueryResponse(resp);
|
||||
const frames = res.data;
|
||||
|
Loading…
Reference in New Issue
Block a user