feat(elasticsearch): refactoring elasticsearch response handling to support series alias patterns

This commit is contained in:
Torkel Ödegaard
2015-09-07 20:00:27 +02:00
parent f361f324da
commit 2aa695fb66
3 changed files with 161 additions and 70 deletions

View File

@@ -1,6 +1,7 @@
define([
"lodash"
],
function () {
function (_) {
'use strict';
function ElasticResponse(targets, response) {
@@ -10,66 +11,106 @@ function () {
// This is quite complex
// neeed to recurise down the nested buckets to build series
ElasticResponse.prototype.processBuckets = function(aggs, target, series, level, parentName) {
var seriesName, value, metric, i, y, bucket, aggDef, esAgg;
function addMetricPoint(seriesName, value, time) {
var current = series[seriesName];
if (!current) {
current = series[seriesName] = {target: seriesName, datapoints: []};
}
current.datapoints.push([value, time]);
}
ElasticResponse.prototype.processBuckets = function(aggs, target, series, level) {
var value, metric, i, y, bucket, aggDef, esAgg, nestedSeries;
aggDef = target.bucketAggs[level];
esAgg = aggs[aggDef.id];
for (i = 0; i < esAgg.buckets.length; i++) {
bucket = esAgg.buckets[i];
if (level < target.bucketAggs.length - 1) {
for (i = 0; i < esAgg.buckets.length; i++) {
bucket = esAgg.buckets[i];
nestedSeries = {prop: {key: bucket.key, field: aggDef.field}, series: []};
series.push(nestedSeries);
this.processBuckets(bucket, target, nestedSeries.series, level+1);
}
return;
}
// if last agg collect series
if (level === target.bucketAggs.length - 1) {
for (y = 0; y < target.metrics.length; y++) {
metric = target.metrics[y];
seriesName = parentName;
for (y = 0; y < target.metrics.length; y++) {
metric = target.metrics[y];
switch(metric.type) {
case 'count': {
seriesName += ' count';
value = bucket.doc_count;
addMetricPoint(seriesName, value, bucket.key);
break;
}
case 'percentiles': {
var values = bucket[metric.id].values;
for (var prop in values) {
addMetricPoint(seriesName + ' ' + prop, values[prop], bucket.key);
}
break;
}
case 'extended_stats': {
var stats = bucket[metric.id];
stats.std_deviation_bounds_upper = stats.std_deviation_bounds.upper;
stats.std_deviation_bounds_lower = stats.std_deviation_bounds.lower;
for (var statName in metric.meta) {
if (metric.meta[statName]) {
addMetricPoint(seriesName + ' ' + statName, stats[statName], bucket.key);
}
}
break;
}
default: {
seriesName += ' ' + metric.field + ' ' + metric.type;
value = bucket[metric.id].value;
addMetricPoint(seriesName, value, bucket.key);
break;
}
switch(metric.type) {
case 'count': {
var countSeries = { datapoints: [], metric: 'count'};
for (i = 0; i < esAgg.buckets.length; i++) {
bucket = esAgg.buckets[i];
value = bucket.doc_count;
countSeries.datapoints.push([value, bucket.key]);
}
series.push(countSeries);
break;
}
case 'percentiles': {
// for (i = 0; i < esAgg.buckets.length; i++) {
// bucket = esAgg.buckets[i];
// var values = bucket[metric.id].values;
// for (var prop in values) {
// addMetricPoint(seriesName + ' ' + prop, values[prop], bucket.key);
// }
// }
break;
}
case 'extended_stats': {
// var stats = bucket[metric.id];
// stats.std_deviation_bounds_upper = stats.std_deviation_bounds.upper;
// stats.std_deviation_bounds_lower = stats.std_deviation_bounds.lower;
//
// for (var statName in metric.meta) {
// if (metric.meta[statName]) {
// addMetricPoint(seriesName + ' ' + statName, stats[statName], bucket.key);
// }
// }
break;
}
default: {
var newSeries = { datapoints: [], metric: metric.type + ' ' + metric.field };
for (i = 0; i < esAgg.buckets.length; i++) {
bucket = esAgg.buckets[i];
value = bucket[metric.id].value;
newSeries.datapoints.push([value, bucket.key]);
}
series.push(newSeries);
break;
}
}
else {
this.processBuckets(bucket, target, series, level+1, parentName + ' ' + bucket.key);
}
};
ElasticResponse.prototype._getSeriesName = function(props, metric, alias) {
if (alias) {
return alias;
}
var propKeys = _.keys(props);
if (propKeys.length === 0) {
return metric;
}
var name = '';
for (var propName in props) {
name += props[propName] + ' ';
}
if (propKeys.length === 1) {
return name.trim();
}
return name.trim() + ' ' + metric;
};
ElasticResponse.prototype._collectSeriesFromTree = function(seriesTree, props, seriesList, alias) {
console.log('props: ', props);
for (var i = 0; i < seriesTree.length; i++) {
var series = seriesTree[i];
if (series.datapoints) {
series.target = this._getSeriesName(props, series.metric, alias);
seriesList.push(series);
} else {
props = _.clone(props);
props[series.prop.field] = series.prop.key;
this._collectSeriesFromTree(series.series, props, seriesList);
}
}
};
@@ -85,15 +126,10 @@ function () {
var aggregations = response.aggregations;
var target = this.targets[i];
var querySeries = {};
var seriesTree = [];
this.processBuckets(aggregations, target, querySeries, 0, target.refId);
for (var prop in querySeries) {
if (querySeries.hasOwnProperty(prop)) {
series.push(querySeries[prop]);
}
}
this.processBuckets(aggregations, target, seriesTree, 0, '');
this._collectSeriesFromTree(seriesTree, {}, series, '');
}
return { data: series };