Azure Monitor: Change response to be dataframes (#25123)

note: This is just Azure Monitor within the Azure Monitor datasource (not insights, insights analytics, or log analytics yet).

Co-authored-by: Ryan McKinley <ryantxu@gmail.com>
This commit is contained in:
Kyle Brandt
2020-06-01 12:37:39 -04:00
committed by GitHub
parent 07582a8e85
commit 376a9d35e4
7 changed files with 548 additions and 568 deletions

View File

@@ -12,6 +12,7 @@ import (
"strings"
"time"
"github.com/grafana/grafana-plugin-sdk-go/data"
"github.com/grafana/grafana/pkg/api/pluginproxy"
"github.com/grafana/grafana/pkg/models"
"github.com/grafana/grafana/pkg/plugins"
@@ -20,7 +21,6 @@ import (
opentracing "github.com/opentracing/opentracing-go"
"golang.org/x/net/context/ctxhttp"
"github.com/grafana/grafana/pkg/components/null"
"github.com/grafana/grafana/pkg/components/simplejson"
"github.com/grafana/grafana/pkg/tsdb"
)
@@ -260,25 +260,32 @@ func (e *AzureMonitorDatasource) unmarshalResponse(res *http.Response) (AzureMon
return data, nil
}
func (e *AzureMonitorDatasource) parseResponse(queryRes *tsdb.QueryResult, data AzureMonitorResponse, query *AzureMonitorQuery) error {
if len(data.Value) == 0 {
func (e *AzureMonitorDatasource) parseResponse(queryRes *tsdb.QueryResult, amr AzureMonitorResponse, query *AzureMonitorQuery) error {
if len(amr.Value) == 0 {
return nil
}
for _, series := range data.Value[0].Timeseries {
points := []tsdb.TimePoint{}
for _, series := range amr.Value[0].Timeseries {
metadataName := ""
metadataValue := ""
if len(series.Metadatavalues) > 0 {
metadataName = series.Metadatavalues[0].Name.LocalizedValue
metadataValue = series.Metadatavalues[0].Value
}
metricName := formatAzureMonitorLegendKey(query.Alias, query.UrlComponents["resourceName"], data.Value[0].Name.LocalizedValue, metadataName, metadataValue, data.Namespace, data.Value[0].ID)
metricName := formatAzureMonitorLegendKey(query.Alias, query.UrlComponents["resourceName"], amr.Value[0].Name.LocalizedValue, metadataName, metadataValue, amr.Namespace, amr.Value[0].ID)
for _, point := range series.Data {
frame := data.NewFrameOfFieldTypes("", len(series.Data), data.FieldTypeTime, data.FieldTypeFloat64)
frame.RefID = query.RefID
frame.Fields[1].Name = metricName
frame.Fields[1].SetConfig(&data.FieldConfig{
Unit: amr.Value[0].Unit,
})
requestedAgg := query.Params.Get("aggregation")
for i, point := range series.Data {
var value float64
switch query.Params.Get("aggregation") {
switch requestedAgg {
case "Average":
value = point.Average
case "Total":
@@ -292,15 +299,17 @@ func (e *AzureMonitorDatasource) parseResponse(queryRes *tsdb.QueryResult, data
default:
value = point.Count
}
points = append(points, tsdb.NewTimePoint(null.FloatFrom(value), float64((point.TimeStamp).Unix())*1000))
frame.SetRow(i, point.TimeStamp, value)
}
queryRes.Series = append(queryRes.Series, &tsdb.TimeSeries{
Name: metricName,
Points: points,
})
encodedFrame, err := frame.MarshalArrow()
if err != nil {
queryRes.Error = fmt.Errorf("failed to encode dataframe response into arrow: %w", err)
}
queryRes.Dataframes = append(queryRes.Dataframes, encodedFrame)
}
queryRes.Meta.Set("unit", data.Value[0].Unit)
return nil
}

View File

@@ -9,19 +9,99 @@ import (
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"github.com/grafana/grafana-plugin-sdk-go/data"
"github.com/grafana/grafana/pkg/components/simplejson"
"github.com/grafana/grafana/pkg/models"
"github.com/grafana/grafana/pkg/tsdb"
. "github.com/smartystreets/goconvey/convey"
"github.com/stretchr/testify/require"
)
func TestAzureMonitorDatasource(t *testing.T) {
Convey("AzureMonitorDatasource", t, func() {
datasource := &AzureMonitorDatasource{}
func TestAzureMonitorBuildQueries(t *testing.T) {
datasource := &AzureMonitorDatasource{}
fromStart := time.Date(2018, 3, 15, 13, 0, 0, 0, time.UTC).In(time.Local)
Convey("Parse queries from frontend and build AzureMonitor API queries", func() {
fromStart := time.Date(2018, 3, 15, 13, 0, 0, 0, time.UTC).In(time.Local)
tests := []struct {
name string
azureMonitorVariedProperties map[string]interface{}
azureMonitorQueryTarget string
expectedInterval string
queryIntervalMS int64
}{
{
name: "Parse queries from frontend and build AzureMonitor API queries",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "PT1M",
"top": "10",
},
expectedInterval: "PT1M",
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
},
{
name: "time grain set to auto",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "auto",
"top": "10",
},
queryIntervalMS: 400000,
expectedInterval: "PT15M",
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT15M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
},
{
name: "time grain set to auto",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "auto",
"allowedTimeGrainsMs": []int64{60000, 300000},
"top": "10",
},
queryIntervalMS: 400000,
expectedInterval: "PT5M",
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT5M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
},
{
name: "has a dimension filter",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "PT1M",
"dimension": "blob",
"dimensionFilter": "*",
"top": "30",
},
queryIntervalMS: 400000,
expectedInterval: "PT1M",
azureMonitorQueryTarget: "%24filter=blob+eq+%27%2A%27&aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z&top=30",
},
{
name: "has a dimension filter",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "PT1M",
"dimension": "None",
"dimensionFilter": "*",
"top": "10",
},
queryIntervalMS: 400000,
expectedInterval: "PT1M",
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
},
}
commonAzureModelProps := map[string]interface{}{
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricNamespace": "Microsoft.Compute-virtualMachines",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Azure Monitor",
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
for k, v := range commonAzureModelProps {
tt.azureMonitorVariedProperties[k] = v
}
tsdbQuery := &tsdb.TsdbQuery{
TimeRange: &tsdb.TimeRange{
From: fmt.Sprintf("%v", fromStart.Unix()*1000),
@@ -36,357 +116,325 @@ func TestAzureMonitorDatasource(t *testing.T) {
},
Model: simplejson.NewFromAny(map[string]interface{}{
"subscription": "12345678-aaaa-bbbb-cccc-123456789abc",
"azureMonitor": map[string]interface{}{
"timeGrain": "PT1M",
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricNamespace": "Microsoft.Compute-virtualMachines",
"metricName": "Percentage CPU",
"top": "10",
"alias": "testalias",
"queryType": "Azure Monitor",
},
}),
RefId: "A",
"azureMonitor": tt.azureMonitorVariedProperties,
},
),
RefId: "A",
IntervalMs: tt.queryIntervalMS,
},
},
}
Convey("and is a normal query", func() {
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(len(queries), ShouldEqual, 1)
So(queries[0].RefID, ShouldEqual, "A")
So(queries[0].URL, ShouldEqual, "12345678-aaaa-bbbb-cccc-123456789abc/resourceGroups/grafanastaging/providers/Microsoft.Compute/virtualMachines/grafana/providers/microsoft.insights/metrics")
So(queries[0].Target, ShouldEqual, "aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z")
So(len(queries[0].Params), ShouldEqual, 6)
So(queries[0].Params["timespan"][0], ShouldEqual, "2018-03-15T13:00:00Z/2018-03-15T13:34:00Z")
So(queries[0].Params["api-version"][0], ShouldEqual, "2018-01-01")
So(queries[0].Params["aggregation"][0], ShouldEqual, "Average")
So(queries[0].Params["metricnames"][0], ShouldEqual, "Percentage CPU")
So(queries[0].Params["interval"][0], ShouldEqual, "PT1M")
So(queries[0].Alias, ShouldEqual, "testalias")
})
Convey("and has a time grain set to auto", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"azureMonitor": map[string]interface{}{
"timeGrain": "auto",
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricNamespace": "Microsoft.Compute-virtualMachines",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Azure Monitor",
},
})
tsdbQuery.Queries[0].IntervalMs = 400000
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Params["interval"][0], ShouldEqual, "PT15M")
})
Convey("and has a time grain set to auto and the metric has a limited list of allowed time grains", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"azureMonitor": map[string]interface{}{
"timeGrain": "auto",
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricNamespace": "Microsoft.Compute-virtualMachines",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Azure Monitor",
"allowedTimeGrainsMs": []int64{60000, 300000},
},
})
tsdbQuery.Queries[0].IntervalMs = 400000
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Params["interval"][0], ShouldEqual, "PT5M")
})
Convey("and has a dimension filter", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"azureMonitor": map[string]interface{}{
"timeGrain": "PT1M",
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricNamespace": "Microsoft.Compute-virtualMachines",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Azure Monitor",
"dimension": "blob",
"dimensionFilter": "*",
"top": "30",
},
})
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Target, ShouldEqual, "%24filter=blob+eq+%27%2A%27&aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z&top=30")
})
Convey("and has a dimension filter set to None", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"azureMonitor": map[string]interface{}{
"timeGrain": "PT1M",
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricNamespace": "Microsoft.Compute-virtualMachines",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Azure Monitor",
"dimension": "None",
"dimensionFilter": "*",
"top": "10",
},
})
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Target, ShouldEqual, "aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z")
})
})
Convey("Parse AzureMonitor API response in the time series format", func() {
Convey("when data from query aggregated as average to one time series", func() {
data, err := loadTestFile("azuremonitor/1-azure-monitor-response-avg.json")
So(err, ShouldBeNil)
So(data.Interval, ShouldEqual, "PT1M")
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(len(res.Series), ShouldEqual, 1)
So(res.Series[0].Name, ShouldEqual, "grafana.Percentage CPU")
So(len(res.Series[0].Points), ShouldEqual, 5)
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 2.0875)
So(res.Series[0].Points[0][1].Float64, ShouldEqual, int64(1549620780000))
So(res.Series[0].Points[1][0].Float64, ShouldEqual, 2.1525)
So(res.Series[0].Points[1][1].Float64, ShouldEqual, int64(1549620840000))
So(res.Series[0].Points[2][0].Float64, ShouldEqual, 2.155)
So(res.Series[0].Points[2][1].Float64, ShouldEqual, int64(1549620900000))
So(res.Series[0].Points[3][0].Float64, ShouldEqual, 3.6925)
So(res.Series[0].Points[3][1].Float64, ShouldEqual, int64(1549620960000))
So(res.Series[0].Points[4][0].Float64, ShouldEqual, 2.44)
So(res.Series[0].Points[4][1].Float64, ShouldEqual, int64(1549621020000))
})
Convey("when data from query aggregated as total to one time series", func() {
data, err := loadTestFile("azuremonitor/2-azure-monitor-response-total.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Total"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 8.26)
So(res.Series[0].Points[0][1].Float64, ShouldEqual, int64(1549718940000))
})
Convey("when data from query aggregated as maximum to one time series", func() {
data, err := loadTestFile("azuremonitor/3-azure-monitor-response-maximum.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Maximum"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 3.07)
So(res.Series[0].Points[0][1].Float64, ShouldEqual, int64(1549722360000))
})
Convey("when data from query aggregated as minimum to one time series", func() {
data, err := loadTestFile("azuremonitor/4-azure-monitor-response-minimum.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Minimum"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 1.51)
So(res.Series[0].Points[0][1].Float64, ShouldEqual, int64(1549723380000))
})
Convey("when data from query aggregated as Count to one time series", func() {
data, err := loadTestFile("azuremonitor/5-azure-monitor-response-count.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Count"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 4)
So(res.Series[0].Points[0][1].Float64, ShouldEqual, int64(1549723440000))
})
Convey("when data from query aggregated as total and has dimension filter", func() {
data, err := loadTestFile("azuremonitor/6-azure-monitor-response-multi-dimension.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(len(res.Series), ShouldEqual, 3)
So(res.Series[0].Name, ShouldEqual, "grafana{blobtype=PageBlob}.Blob Count")
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 3)
So(res.Series[1].Name, ShouldEqual, "grafana{blobtype=BlockBlob}.Blob Count")
So(res.Series[1].Points[0][0].Float64, ShouldEqual, 1)
So(res.Series[2].Name, ShouldEqual, "grafana{blobtype=Azure Data Lake Storage}.Blob Count")
So(res.Series[2].Points[0][0].Float64, ShouldEqual, 0)
})
Convey("when data from query has alias patterns", func() {
data, err := loadTestFile("azuremonitor/2-azure-monitor-response-total.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
Alias: "custom {{resourcegroup}} {{namespace}} {{resourceName}} {{metric}}",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Total"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Name, ShouldEqual, "custom grafanastaging Microsoft.Compute/virtualMachines grafana Percentage CPU")
})
Convey("when data has dimension filters and alias patterns", func() {
data, err := loadTestFile("azuremonitor/6-azure-monitor-response-multi-dimension.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
Alias: "{{dimensionname}}={{DimensionValue}}",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Name, ShouldEqual, "blobtype=PageBlob")
So(res.Series[1].Name, ShouldEqual, "blobtype=BlockBlob")
So(res.Series[2].Name, ShouldEqual, "blobtype=Azure Data Lake Storage")
})
})
Convey("Find closest allowed interval for auto time grain", func() {
intervals := map[string]int64{
"3m": 180000,
"5m": 300000,
"10m": 600000,
"15m": 900000,
"1d": 86400000,
"2d": 172800000,
azureMonitorQuery := &AzureMonitorQuery{
URL: "12345678-aaaa-bbbb-cccc-123456789abc/resourceGroups/grafanastaging/providers/Microsoft.Compute/virtualMachines/grafana/providers/microsoft.insights/metrics",
UrlComponents: map[string]string{
"metricDefinition": "Microsoft.Compute/virtualMachines",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"subscription": "12345678-aaaa-bbbb-cccc-123456789abc",
},
Target: tt.azureMonitorQueryTarget,
RefID: "A",
Alias: "testalias",
}
closest := findClosestAllowedIntervalMS(intervals["3m"], []int64{})
So(closest, ShouldEqual, intervals["5m"])
closest = findClosestAllowedIntervalMS(intervals["10m"], []int64{})
So(closest, ShouldEqual, intervals["15m"])
closest = findClosestAllowedIntervalMS(intervals["2d"], []int64{})
So(closest, ShouldEqual, intervals["1d"])
closest = findClosestAllowedIntervalMS(intervals["3m"], []int64{intervals["1d"]})
So(closest, ShouldEqual, intervals["1d"])
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
if err != nil {
t.Error(err)
}
if diff := cmp.Diff(azureMonitorQuery, queries[0], cmpopts.IgnoreUnexported(simplejson.Json{}), cmpopts.IgnoreFields(AzureMonitorQuery{}, "Params")); diff != "" {
t.Errorf("Result mismatch (-want +got):\n%s", diff)
}
})
})
}
}
func makeDates(startDate time.Time, count int, interval time.Duration) (times []time.Time) {
for i := 0; i < count; i++ {
times = append(times, startDate.Add(interval*time.Duration(i)))
}
return
}
func TestAzureMonitorParseResponse(t *testing.T) {
tests := []struct {
name string
responseFile string
mockQuery *AzureMonitorQuery
expectedFrames data.Frames
queryIntervalMS int64
}{
{
name: "average aggregate time series response",
responseFile: "1-azure-monitor-response-avg.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 8, 10, 13, 0, 0, time.UTC), 5, time.Minute)),
data.NewField("grafana.Percentage CPU", nil, []float64{
2.0875, 2.1525, 2.155, 3.6925, 2.44,
}).SetConfig(&data.FieldConfig{Unit: "Percent"})),
},
},
{
name: "total aggregate time series response",
responseFile: "2-azure-monitor-response-total.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Total"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 13, 29, 0, 0, time.UTC), 5, time.Minute)),
data.NewField("grafana.Percentage CPU", nil, []float64{
8.26, 8.7, 14.82, 10.07, 8.52,
}).SetConfig(&data.FieldConfig{Unit: "Percent"})),
},
},
{
name: "maximum aggregate time series response",
responseFile: "3-azure-monitor-response-maximum.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Maximum"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 14, 26, 0, 0, time.UTC), 5, time.Minute)),
data.NewField("grafana.Percentage CPU", nil, []float64{
3.07, 2.92, 2.87, 2.27, 2.52,
}).SetConfig(&data.FieldConfig{Unit: "Percent"})),
},
},
{
name: "minimum aggregate time series response",
responseFile: "4-azure-monitor-response-minimum.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Minimum"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 14, 43, 0, 0, time.UTC), 5, time.Minute)),
data.NewField("grafana.Percentage CPU", nil, []float64{
1.51, 2.38, 1.69, 2.27, 1.96,
}).SetConfig(&data.FieldConfig{Unit: "Percent"})),
},
},
{
name: "count aggregate time series response",
responseFile: "5-azure-monitor-response-count.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Count"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 14, 44, 0, 0, time.UTC), 5, time.Minute)),
data.NewField("grafana.Percentage CPU", nil, []float64{
4, 4, 4, 4, 4,
}).SetConfig(&data.FieldConfig{Unit: "Percent"})),
},
},
{
name: "multi dimension time series response",
responseFile: "6-azure-monitor-response-multi-dimension.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
},
// Regarding multi-dimensional response:
// - It seems they all share the same time index, so maybe can be a wide frame.
// - Due to the type for the Azure monitor response, nulls currently become 0.
// - blogtype=X should maybe become labels.
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
data.NewField("grafana{blobtype=PageBlob}.Blob Count", nil, []float64{
3, 3, 3, 3, 3, 0,
}).SetConfig(&data.FieldConfig{Unit: "Count"})),
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
data.NewField("grafana{blobtype=BlockBlob}.Blob Count", nil, []float64{
1, 1, 1, 1, 1, 0,
}).SetConfig(&data.FieldConfig{Unit: "Count"})),
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
data.NewField("grafana{blobtype=Azure Data Lake Storage}.Blob Count", nil, []float64{
0, 0, 0, 0, 0, 0,
}).SetConfig(&data.FieldConfig{Unit: "Count"})),
},
},
{
name: "with alias patterns in the query",
responseFile: "2-azure-monitor-response-total.json",
mockQuery: &AzureMonitorQuery{
Alias: "custom {{resourcegroup}} {{namespace}} {{resourceName}} {{metric}}",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Total"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 13, 29, 0, 0, time.UTC), 5, time.Minute)),
data.NewField("custom grafanastaging Microsoft.Compute/virtualMachines grafana Percentage CPU", nil, []float64{
8.26, 8.7, 14.82, 10.07, 8.52,
}).SetConfig(&data.FieldConfig{Unit: "Percent"})),
},
},
{
name: "multi dimension with alias",
responseFile: "6-azure-monitor-response-multi-dimension.json",
mockQuery: &AzureMonitorQuery{
Alias: "{{dimensionname}}={{DimensionValue}}",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
data.NewField("blobtype=PageBlob", nil, []float64{
3, 3, 3, 3, 3, 0,
}).SetConfig(&data.FieldConfig{Unit: "Count"})),
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
data.NewField("blobtype=BlockBlob", nil, []float64{
1, 1, 1, 1, 1, 0,
}).SetConfig(&data.FieldConfig{Unit: "Count"})),
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
data.NewField("blobtype=Azure Data Lake Storage", nil, []float64{
0, 0, 0, 0, 0, 0,
}).SetConfig(&data.FieldConfig{Unit: "Count"})),
},
},
}
datasource := &AzureMonitorDatasource{}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
azData, err := loadTestFile("azuremonitor/" + tt.responseFile)
require.NoError(t, err)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
err = datasource.parseResponse(res, azData, tt.mockQuery)
require.NoError(t, err)
frames, err := data.UnmarshalArrowFrames(res.Dataframes)
require.NoError(t, err)
if diff := cmp.Diff(tt.expectedFrames, frames, data.FrameTestCompareOptions()...); diff != "" {
t.Errorf("Result mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestFindClosestAllowIntervalMS(t *testing.T) {
humanIntervalToMS := map[string]int64{
"3m": 180000,
"5m": 300000,
"10m": 600000,
"15m": 900000,
"1d": 86400000,
"2d": 172800000,
}
tests := []struct {
name string
allowedTimeGrains []int64 // Note: Uses defaults when empty list
inputInterval int64
expectedInterval int64
}{
{
name: "closest to 3m is 5m",
allowedTimeGrains: []int64{},
inputInterval: humanIntervalToMS["3m"],
expectedInterval: humanIntervalToMS["5m"],
},
{
name: "closest to 10m is 15m",
allowedTimeGrains: []int64{},
inputInterval: humanIntervalToMS["10m"],
expectedInterval: humanIntervalToMS["15m"],
},
{
name: "closest to 2d is 1d",
allowedTimeGrains: []int64{},
inputInterval: humanIntervalToMS["2d"],
expectedInterval: humanIntervalToMS["1d"],
},
{
name: "closest to 3m is 1d when 1d is only allowed interval",
allowedTimeGrains: []int64{humanIntervalToMS["1d"]},
inputInterval: humanIntervalToMS["2d"],
expectedInterval: humanIntervalToMS["1d"],
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
interval := findClosestAllowedIntervalMS(tt.inputInterval, tt.allowedTimeGrains)
require.Equal(t, tt.expectedInterval, interval)
})
}
}
func loadTestFile(name string) (AzureMonitorResponse, error) {
var data AzureMonitorResponse
var azData AzureMonitorResponse
path := filepath.Join("testdata", name)
jsonBody, err := ioutil.ReadFile(path)
if err != nil {
return data, err
return azData, err
}
err = json.Unmarshal(jsonBody, &data)
return data, err
err = json.Unmarshal(jsonBody, &azData)
return azData, err
}