mirror of
https://github.com/grafana/grafana.git
synced 2025-02-25 18:55:37 -06:00
Began work on alias support and alias patterns for InfluxDB 0.9, #1525
This commit is contained in:
@@ -1,218 +1,57 @@
|
||||
define([
|
||||
'plugins/datasource/influxdb_08/influxSeries'
|
||||
'plugins/datasource/influxdb/influxSeries'
|
||||
], function(InfluxSeries) {
|
||||
'use strict';
|
||||
|
||||
describe('when generating timeseries from influxdb response', function() {
|
||||
|
||||
describe('given two series', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'mean', 'sequence_number'],
|
||||
name: 'prod.server1.cpu',
|
||||
points: [[1402596000, 10, 1], [1402596001, 12, 2]]
|
||||
},
|
||||
{
|
||||
columns: ['time', 'mean', 'sequence_number'],
|
||||
name: 'prod.server2.cpu',
|
||||
points: [[1402596000, 15, 1], [1402596001, 16, 2]]
|
||||
}
|
||||
]
|
||||
});
|
||||
|
||||
var result = series.getTimeSeries();
|
||||
|
||||
it('should generate two time series', function() {
|
||||
expect(result.length).to.be(2);
|
||||
expect(result[0].target).to.be('prod.server1.cpu.mean');
|
||||
expect(result[0].datapoints[0][0]).to.be(10);
|
||||
expect(result[0].datapoints[0][1]).to.be(1402596000);
|
||||
expect(result[0].datapoints[1][0]).to.be(12);
|
||||
expect(result[0].datapoints[1][1]).to.be(1402596001);
|
||||
|
||||
expect(result[1].target).to.be('prod.server2.cpu.mean');
|
||||
expect(result[1].datapoints[0][0]).to.be(15);
|
||||
expect(result[1].datapoints[0][1]).to.be(1402596000);
|
||||
expect(result[1].datapoints[1][0]).to.be(16);
|
||||
expect(result[1].datapoints[1][1]).to.be(1402596001);
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
describe('given an alias format', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'mean', 'sequence_number'],
|
||||
name: 'prod.server1.cpu',
|
||||
points: [[1402596000, 10, 1], [1402596001, 12, 2]]
|
||||
}
|
||||
],
|
||||
alias: '$s.testing'
|
||||
});
|
||||
|
||||
var result = series.getTimeSeries();
|
||||
|
||||
it('should generate correct series name', function() {
|
||||
expect(result[0].target).to.be('prod.server1.cpu.testing');
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
describe('given an alias format with segment numbers', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'mean', 'sequence_number'],
|
||||
name: 'prod.server1.cpu',
|
||||
points: [[1402596000, 10, 1], [1402596001, 12, 2]]
|
||||
}
|
||||
],
|
||||
alias: '$1.mean'
|
||||
});
|
||||
|
||||
var result = series.getTimeSeries();
|
||||
|
||||
it('should generate correct series name', function() {
|
||||
expect(result[0].target).to.be('server1.mean');
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
describe('given an alias format and many segments', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'mean', 'sequence_number'],
|
||||
name: 'a0.a1.a2.a3.a4.a5.a6.a7.a8.a9.a10.a11.a12',
|
||||
points: [[1402596000, 10, 1], [1402596001, 12, 2]]
|
||||
}
|
||||
],
|
||||
alias: '$5.$11.mean'
|
||||
});
|
||||
|
||||
var result = series.getTimeSeries();
|
||||
|
||||
it('should generate correct series name', function() {
|
||||
expect(result[0].target).to.be('a5.a11.mean');
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
|
||||
describe('given an alias format with group by field', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'mean', 'host'],
|
||||
name: 'prod.cpu',
|
||||
points: [[1402596000, 10, 'A']]
|
||||
}
|
||||
],
|
||||
groupByField: 'host',
|
||||
alias: '$g.$1'
|
||||
});
|
||||
|
||||
var result = series.getTimeSeries();
|
||||
|
||||
it('should generate correct series name', function() {
|
||||
expect(result[0].target).to.be('A.cpu');
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
describe('given group by column', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'mean', 'host'],
|
||||
name: 'prod.cpu',
|
||||
points: [
|
||||
[1402596000, 10, 'A'],
|
||||
[1402596001, 11, 'A'],
|
||||
[1402596000, 5, 'B'],
|
||||
[1402596001, 6, 'B'],
|
||||
]
|
||||
}
|
||||
],
|
||||
groupByField: 'host'
|
||||
});
|
||||
|
||||
var result = series.getTimeSeries();
|
||||
|
||||
it('should generate two time series', function() {
|
||||
expect(result.length).to.be(2);
|
||||
expect(result[0].target).to.be('prod.cpu.A');
|
||||
expect(result[0].datapoints[0][0]).to.be(10);
|
||||
expect(result[0].datapoints[0][1]).to.be(1402596000);
|
||||
expect(result[0].datapoints[1][0]).to.be(11);
|
||||
expect(result[0].datapoints[1][1]).to.be(1402596001);
|
||||
|
||||
expect(result[1].target).to.be('prod.cpu.B');
|
||||
expect(result[1].datapoints[0][0]).to.be(5);
|
||||
expect(result[1].datapoints[0][1]).to.be(1402596000);
|
||||
expect(result[1].datapoints[1][0]).to.be(6);
|
||||
expect(result[1].datapoints[1][1]).to.be(1402596001);
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
describe("when creating annotations from influxdb response", function() {
|
||||
describe('given column mapping for all columns', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'text', 'sequence_number', 'title', 'tags'],
|
||||
name: 'events1',
|
||||
points: [[1402596000000, 'some text', 1, 'Hello', 'B'], [1402596001000, 'asd', 2, 'Hello2', 'B']]
|
||||
}
|
||||
],
|
||||
annotation: {
|
||||
query: 'select',
|
||||
titleColumn: 'title',
|
||||
tagsColumn: 'tags',
|
||||
textColumn: 'text',
|
||||
var options = { series: [
|
||||
{
|
||||
name: 'cpu',
|
||||
tags: {app: 'test'},
|
||||
columns: ['time', 'mean'],
|
||||
values: [["2015-05-18T10:57:05Z", 10], ["2015-05-18T10:57:06Z", 12]]
|
||||
},
|
||||
{
|
||||
name: 'cpu',
|
||||
tags: {app: 'test2'},
|
||||
columns: ['time', 'mean'],
|
||||
values: [["2015-05-18T10:57:05Z", 15], ["2015-05-18T10:57:06Z", 16]]
|
||||
}
|
||||
]};
|
||||
|
||||
describe('and no alias', function() {
|
||||
|
||||
it('should generate two time series', function() {
|
||||
var series = new InfluxSeries(options);
|
||||
var result = series.getTimeSeries();
|
||||
|
||||
expect(result.length).to.be(2);
|
||||
expect(result[0].target).to.be('cpu {app: test}');
|
||||
expect(result[0].datapoints[0][0]).to.be(10);
|
||||
expect(result[0].datapoints[0][1]).to.be(1431946625000);
|
||||
expect(result[0].datapoints[1][0]).to.be(12);
|
||||
expect(result[0].datapoints[1][1]).to.be(1431946626000);
|
||||
|
||||
expect(result[1].target).to.be('cpu {app: test2}');
|
||||
expect(result[1].datapoints[0][0]).to.be(15);
|
||||
expect(result[1].datapoints[0][1]).to.be(1431946625000);
|
||||
expect(result[1].datapoints[1][0]).to.be(16);
|
||||
expect(result[1].datapoints[1][1]).to.be(1431946626000);
|
||||
});
|
||||
});
|
||||
|
||||
var result = series.getAnnotations();
|
||||
describe('and simple alias', function() {
|
||||
it('should use alias', function() {
|
||||
options.alias = 'new series';
|
||||
var series = new InfluxSeries(options);
|
||||
var result = series.getTimeSeries();
|
||||
|
||||
expect(result[0].target).to.be('new series');
|
||||
});
|
||||
|
||||
it(' should generate 2 annnotations ', function() {
|
||||
expect(result.length).to.be(2);
|
||||
expect(result[0].annotation.query).to.be('select');
|
||||
expect(result[0].title).to.be('Hello');
|
||||
expect(result[0].time).to.be(1402596000000);
|
||||
expect(result[0].tags).to.be('B');
|
||||
expect(result[0].text).to.be('some text');
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
describe('given no column mapping', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'text', 'sequence_number'],
|
||||
name: 'events1',
|
||||
points: [[1402596000000, 'some text', 1]]
|
||||
}
|
||||
],
|
||||
annotation: { query: 'select' }
|
||||
});
|
||||
|
||||
var result = series.getAnnotations();
|
||||
|
||||
it('should generate 1 annnotation', function() {
|
||||
expect(result.length).to.be(1);
|
||||
expect(result[0].title).to.be('some text');
|
||||
expect(result[0].time).to.be(1402596000000);
|
||||
expect(result[0].tags).to.be(undefined);
|
||||
expect(result[0].text).to.be(undefined);
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
220
public/test/specs/influxSeries08-specs.js
Normal file
220
public/test/specs/influxSeries08-specs.js
Normal file
@@ -0,0 +1,220 @@
|
||||
define([
|
||||
'plugins/datasource/influxdb_08/influxSeries'
|
||||
], function(InfluxSeries) {
|
||||
'use strict';
|
||||
|
||||
describe('when generating timeseries from influxdb response', function() {
|
||||
|
||||
describe('given two series', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'mean', 'sequence_number'],
|
||||
name: 'prod.server1.cpu',
|
||||
points: [[1402596000, 10, 1], [1402596001, 12, 2]]
|
||||
},
|
||||
{
|
||||
columns: ['time', 'mean', 'sequence_number'],
|
||||
name: 'prod.server2.cpu',
|
||||
points: [[1402596000, 15, 1], [1402596001, 16, 2]]
|
||||
}
|
||||
]
|
||||
});
|
||||
|
||||
var result = series.getTimeSeries();
|
||||
|
||||
it('should generate two time series', function() {
|
||||
expect(result.length).to.be(2);
|
||||
expect(result[0].target).to.be('prod.server1.cpu.mean');
|
||||
expect(result[0].datapoints[0][0]).to.be(10);
|
||||
expect(result[0].datapoints[0][1]).to.be(1402596000);
|
||||
expect(result[0].datapoints[1][0]).to.be(12);
|
||||
expect(result[0].datapoints[1][1]).to.be(1402596001);
|
||||
|
||||
expect(result[1].target).to.be('prod.server2.cpu.mean');
|
||||
expect(result[1].datapoints[0][0]).to.be(15);
|
||||
expect(result[1].datapoints[0][1]).to.be(1402596000);
|
||||
expect(result[1].datapoints[1][0]).to.be(16);
|
||||
expect(result[1].datapoints[1][1]).to.be(1402596001);
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
describe('given an alias format', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'mean', 'sequence_number'],
|
||||
name: 'prod.server1.cpu',
|
||||
points: [[1402596000, 10, 1], [1402596001, 12, 2]]
|
||||
}
|
||||
],
|
||||
alias: '$s.testing'
|
||||
});
|
||||
|
||||
var result = series.getTimeSeries();
|
||||
|
||||
it('should generate correct series name', function() {
|
||||
expect(result[0].target).to.be('prod.server1.cpu.testing');
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
describe('given an alias format with segment numbers', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'mean', 'sequence_number'],
|
||||
name: 'prod.server1.cpu',
|
||||
points: [[1402596000, 10, 1], [1402596001, 12, 2]]
|
||||
}
|
||||
],
|
||||
alias: '$1.mean'
|
||||
});
|
||||
|
||||
var result = series.getTimeSeries();
|
||||
|
||||
it('should generate correct series name', function() {
|
||||
expect(result[0].target).to.be('server1.mean');
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
describe('given an alias format and many segments', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'mean', 'sequence_number'],
|
||||
name: 'a0.a1.a2.a3.a4.a5.a6.a7.a8.a9.a10.a11.a12',
|
||||
points: [[1402596000, 10, 1], [1402596001, 12, 2]]
|
||||
}
|
||||
],
|
||||
alias: '$5.$11.mean'
|
||||
});
|
||||
|
||||
var result = series.getTimeSeries();
|
||||
|
||||
it('should generate correct series name', function() {
|
||||
expect(result[0].target).to.be('a5.a11.mean');
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
|
||||
describe('given an alias format with group by field', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'mean', 'host'],
|
||||
name: 'prod.cpu',
|
||||
points: [[1402596000, 10, 'A']]
|
||||
}
|
||||
],
|
||||
groupByField: 'host',
|
||||
alias: '$g.$1'
|
||||
});
|
||||
|
||||
var result = series.getTimeSeries();
|
||||
|
||||
it('should generate correct series name', function() {
|
||||
expect(result[0].target).to.be('A.cpu');
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
describe('given group by column', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'mean', 'host'],
|
||||
name: 'prod.cpu',
|
||||
points: [
|
||||
[1402596000, 10, 'A'],
|
||||
[1402596001, 11, 'A'],
|
||||
[1402596000, 5, 'B'],
|
||||
[1402596001, 6, 'B'],
|
||||
]
|
||||
}
|
||||
],
|
||||
groupByField: 'host'
|
||||
});
|
||||
|
||||
var result = series.getTimeSeries();
|
||||
|
||||
it('should generate two time series', function() {
|
||||
expect(result.length).to.be(2);
|
||||
expect(result[0].target).to.be('prod.cpu.A');
|
||||
expect(result[0].datapoints[0][0]).to.be(10);
|
||||
expect(result[0].datapoints[0][1]).to.be(1402596000);
|
||||
expect(result[0].datapoints[1][0]).to.be(11);
|
||||
expect(result[0].datapoints[1][1]).to.be(1402596001);
|
||||
|
||||
expect(result[1].target).to.be('prod.cpu.B');
|
||||
expect(result[1].datapoints[0][0]).to.be(5);
|
||||
expect(result[1].datapoints[0][1]).to.be(1402596000);
|
||||
expect(result[1].datapoints[1][0]).to.be(6);
|
||||
expect(result[1].datapoints[1][1]).to.be(1402596001);
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
describe("when creating annotations from influxdb response", function() {
|
||||
describe('given column mapping for all columns', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'text', 'sequence_number', 'title', 'tags'],
|
||||
name: 'events1',
|
||||
points: [[1402596000000, 'some text', 1, 'Hello', 'B'], [1402596001000, 'asd', 2, 'Hello2', 'B']]
|
||||
}
|
||||
],
|
||||
annotation: {
|
||||
query: 'select',
|
||||
titleColumn: 'title',
|
||||
tagsColumn: 'tags',
|
||||
textColumn: 'text',
|
||||
}
|
||||
});
|
||||
|
||||
var result = series.getAnnotations();
|
||||
|
||||
it(' should generate 2 annnotations ', function() {
|
||||
expect(result.length).to.be(2);
|
||||
expect(result[0].annotation.query).to.be('select');
|
||||
expect(result[0].title).to.be('Hello');
|
||||
expect(result[0].time).to.be(1402596000000);
|
||||
expect(result[0].tags).to.be('B');
|
||||
expect(result[0].text).to.be('some text');
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
describe('given no column mapping', function() {
|
||||
var series = new InfluxSeries({
|
||||
seriesList: [
|
||||
{
|
||||
columns: ['time', 'text', 'sequence_number'],
|
||||
name: 'events1',
|
||||
points: [[1402596000000, 'some text', 1]]
|
||||
}
|
||||
],
|
||||
annotation: { query: 'select' }
|
||||
});
|
||||
|
||||
var result = series.getAnnotations();
|
||||
|
||||
it('should generate 1 annnotation', function() {
|
||||
expect(result.length).to.be(1);
|
||||
expect(result[0].title).to.be('some text');
|
||||
expect(result[0].time).to.be(1402596000000);
|
||||
expect(result[0].tags).to.be(undefined);
|
||||
expect(result[0].text).to.be(undefined);
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
});
|
||||
@@ -125,6 +125,7 @@ require([
|
||||
'specs/graphiteTargetCtrl-specs',
|
||||
'specs/graphiteDatasource-specs',
|
||||
'specs/influxSeries-specs',
|
||||
'specs/influxSeries08-specs',
|
||||
'specs/influxQueryBuilder-specs',
|
||||
'specs/influx09-querybuilder-specs',
|
||||
'specs/influxdb-datasource-specs',
|
||||
|
||||
Reference in New Issue
Block a user