loki: use single-dataframe format on the backend (#47069)

This commit is contained in:
Gábor Farkas 2022-04-12 11:58:48 +02:00 committed by GitHub
parent 201557c6fc
commit 68511e7712
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 383 additions and 437 deletions

View File

@ -2,6 +2,7 @@ package loki
import (
"fmt"
"hash/fnv"
"sort"
"strings"
"time"
@ -11,14 +12,42 @@ import (
// we adjust the dataframes to be the way frontend & alerting
// wants them.
func adjustFrame(frame *data.Frame, query *lokiQuery) *data.Frame {
func adjustFrame(frame *data.Frame, query *lokiQuery) error {
fields := frame.Fields
if len(fields) < 2 {
return fmt.Errorf("missing fields in frame")
}
// metric-fields have "timefield, valuefield"
// logs-fields have "labelsfield, timefield, ..."
secondField := fields[1]
if secondField.Type() == data.FieldTypeFloat64 {
return adjustMetricFrame(frame, query)
} else {
return adjustLogsFrame(frame, query)
}
}
func adjustMetricFrame(frame *data.Frame, query *lokiQuery) error {
fields := frame.Fields
// we check if the fields are of correct type
if len(fields) != 2 {
return fmt.Errorf("invalid fields in metric frame")
}
timeField := fields[0]
valueField := fields[1]
if (timeField.Type() != data.FieldTypeTime) || (valueField.Type() != data.FieldTypeFloat64) {
return fmt.Errorf("invalid fields in metric frame")
}
labels := getFrameLabels(frame)
timeFields, nonTimeFields := partitionFields(frame)
isMetricFrame := nonTimeFields[0].Type() != data.FieldTypeString
isMetricRange := isMetricFrame && query.QueryType == QueryTypeRange
isMetricRange := query.QueryType == QueryTypeRange
name := formatName(labels, query)
frame.Name = name
@ -33,48 +62,109 @@ func adjustFrame(frame *data.Frame, query *lokiQuery) *data.Frame {
frame.Meta.ExecutedQueryString = "Expr: " + query.Expr
}
for _, field := range timeFields {
field.Name = "time"
if isMetricRange {
if field.Config == nil {
field.Config = &data.FieldConfig{}
}
field.Config.Interval = float64(query.Step.Milliseconds())
if isMetricRange {
if timeField.Config == nil {
timeField.Config = &data.FieldConfig{}
}
timeField.Config.Interval = float64(query.Step.Milliseconds())
}
for _, field := range nonTimeFields {
field.Name = "value"
if field.Config == nil {
field.Config = &data.FieldConfig{}
}
field.Config.DisplayNameFromDS = name
if valueField.Config == nil {
valueField.Config = &data.FieldConfig{}
}
valueField.Config.DisplayNameFromDS = name
return nil
}
func adjustLogsFrame(frame *data.Frame, query *lokiQuery) error {
// we check if the fields are of correct type and length
fields := frame.Fields
if len(fields) != 3 {
return fmt.Errorf("invalid fields in logs frame")
}
// for streams-dataframes, we need to send to the browser the nanosecond-precision timestamp too.
labelsField := fields[0]
timeField := fields[1]
lineField := fields[2]
if (timeField.Type() != data.FieldTypeTime) || (lineField.Type() != data.FieldTypeString) || (labelsField.Type() != data.FieldTypeString) {
return fmt.Errorf("invalid fields in metric frame")
}
if (timeField.Len() != lineField.Len()) || (timeField.Len() != labelsField.Len()) {
return fmt.Errorf("invalid fields in metric frame")
}
if frame.Meta == nil {
frame.Meta = &data.FrameMeta{}
}
frame.Meta.ExecutedQueryString = "Expr: " + query.Expr
// we need to send to the browser the nanosecond-precision timestamp too.
// usually timestamps become javascript-date-objects in the browser automatically, which only
// have millisecond-precision.
// so we send a separate timestamp-as-string field too.
if !isMetricFrame {
stringTimeField := makeStringTimeField(timeFields[0])
frame.Fields = append(frame.Fields, stringTimeField)
}
stringTimeField := makeStringTimeField(timeField)
return frame
idField, err := makeIdField(stringTimeField, lineField, labelsField, frame.RefID)
if err != nil {
return err
}
frame.Fields = append(frame.Fields, stringTimeField, idField)
return nil
}
func makeStringTimeField(field *data.Field) *data.Field {
length := field.Len()
func makeStringTimeField(timeField *data.Field) *data.Field {
length := timeField.Len()
stringTimestamps := make([]string, length)
for i := 0; i < length; i++ {
if v, ok := field.ConcreteAt(i); ok {
nsNumber := v.(time.Time).UnixNano()
stringTimestamps[i] = fmt.Sprintf("%d", nsNumber)
}
nsNumber := timeField.At(i).(time.Time).UnixNano()
stringTimestamps[i] = fmt.Sprintf("%d", nsNumber)
}
return data.NewField("tsNs", field.Labels.Copy(), stringTimestamps)
return data.NewField("tsNs", timeField.Labels.Copy(), stringTimestamps)
}
func calculateCheckSum(time string, line string, labels string) (string, error) {
input := []byte(line + "_" + labels)
hash := fnv.New32()
_, err := hash.Write(input)
if err != nil {
return "", err
}
return fmt.Sprintf("%s_%x", time, hash.Sum32()), nil
}
func makeIdField(stringTimeField *data.Field, lineField *data.Field, labelsField *data.Field, refId string) (*data.Field, error) {
length := stringTimeField.Len()
ids := make([]string, length)
checksums := make(map[string]int)
for i := 0; i < length; i++ {
time := stringTimeField.At(i).(string)
line := lineField.At(i).(string)
labels := labelsField.At(i).(string)
sum, err := calculateCheckSum(time, line, labels)
if err != nil {
return nil, err
}
sumCount := checksums[sum]
idSuffix := ""
if sumCount > 0 {
// we had this checksum already, we need to do something to make it unique
idSuffix = fmt.Sprintf("_%d", sumCount)
}
checksums[sum] = sumCount + 1
ids[i] = sum + idSuffix + "_" + refId
}
return data.NewField("id", nil, ids), nil
}
func formatNamePrometheusStyle(labels map[string]string) string {
@ -119,18 +209,3 @@ func getFrameLabels(frame *data.Frame) map[string]string {
return labels
}
func partitionFields(frame *data.Frame) ([]*data.Field, []*data.Field) {
var timeFields []*data.Field
var nonTimeFields []*data.Field
for _, field := range frame.Fields {
if field.Type() == data.FieldTypeTime {
timeFields = append(timeFields, field)
} else {
nonTimeFields = append(nonTimeFields, field)
}
}
return timeFields, nonTimeFields
}

View File

@ -37,7 +37,56 @@ func TestFormatName(t *testing.T) {
}
func TestAdjustFrame(t *testing.T) {
t.Run("response should be parsed normally", func(t *testing.T) {
t.Run("logs-frame metadata should be set correctly", func(t *testing.T) {
frame := data.NewFrame("",
data.NewField("labels", nil, []string{
`{"level":"info"}`,
`{"level":"error"}`,
`{"level":"error"}`,
`{"level":"info"}`,
}),
data.NewField("time", nil, []time.Time{
time.Date(2022, 1, 2, 3, 4, 5, 6, time.UTC),
time.Date(2022, 1, 2, 3, 5, 5, 6, time.UTC),
time.Date(2022, 1, 2, 3, 5, 5, 6, time.UTC),
time.Date(2022, 1, 2, 3, 6, 5, 6, time.UTC),
}),
data.NewField("line", nil, []string{"line1", "line2", "line2", "line3"}),
)
frame.RefID = "A"
query := &lokiQuery{
Expr: `{type="important"}`,
QueryType: QueryTypeRange,
}
err := adjustFrame(frame, query)
require.NoError(t, err)
fields := frame.Fields
require.Equal(t, 5, len(fields))
tsNsField := fields[3]
require.Equal(t, "tsNs", tsNsField.Name)
require.Equal(t, data.FieldTypeString, tsNsField.Type())
require.Equal(t, 4, tsNsField.Len())
require.Equal(t, "1641092645000000006", tsNsField.At(0))
require.Equal(t, "1641092705000000006", tsNsField.At(1))
require.Equal(t, "1641092705000000006", tsNsField.At(2))
require.Equal(t, "1641092765000000006", tsNsField.At(3))
idField := fields[4]
require.Equal(t, "id", idField.Name)
require.Equal(t, data.FieldTypeString, idField.Type())
require.Equal(t, 4, idField.Len())
require.Equal(t, "1641092645000000006_a36f4e1b_A", idField.At(0))
require.Equal(t, "1641092705000000006_1d77c9ca_A", idField.At(1))
require.Equal(t, "1641092705000000006_1d77c9ca_1_A", idField.At(2))
require.Equal(t, "1641092765000000006_948c1a7d_A", idField.At(3))
})
t.Run("logs-frame id and string-time fields should be created", func(t *testing.T) {
field1 := data.NewField("", nil, make([]time.Time, 0))
field2 := data.NewField("", nil, make([]float64, 0))
field2.Labels = data.Labels{"app": "Application", "tag2": "tag2"}
@ -52,7 +101,8 @@ func TestAdjustFrame(t *testing.T) {
Step: time.Second * 42,
}
adjustFrame(frame, query)
err := adjustFrame(frame, query)
require.NoError(t, err)
require.Equal(t, frame.Name, "legend Application")
require.Equal(t, frame.Meta.ExecutedQueryString, "Expr: up(ALERTS)\nStep: 42s")
@ -72,7 +122,8 @@ func TestAdjustFrame(t *testing.T) {
frame := data.NewFrame("test", field1, field2)
frame.SetMeta(&data.FrameMeta{Type: data.FrameTypeTimeSeriesMany})
adjustFrame(frame, query)
err := adjustFrame(frame, query)
require.NoError(t, err)
// to keep the test simple, we assume the
// first field is the time-field

View File

@ -2,11 +2,13 @@ package loki
import (
"fmt"
"sort"
"time"
"github.com/grafana/grafana-plugin-sdk-go/data"
"github.com/grafana/loki/pkg/loghttp"
"github.com/grafana/loki/pkg/logqlmodel/stats"
jsoniter "github.com/json-iterator/go"
)
func parseResponse(value *loghttp.QueryResponse, query *lokiQuery) (data.Frames, error) {
@ -17,7 +19,10 @@ func parseResponse(value *loghttp.QueryResponse, query *lokiQuery) (data.Frames,
}
for _, frame := range frames {
adjustFrame(frame, query)
err = adjustFrame(frame, query)
if err != nil {
return nil, err
}
}
return frames, nil
@ -31,7 +36,7 @@ func lokiResponseToDataFrames(value *loghttp.QueryResponse, query *lokiQuery) (d
case loghttp.Vector:
return lokiVectorToDataFrames(res, query, stats), nil
case loghttp.Streams:
return lokiStreamsToDataFrames(res, query, stats), nil
return lokiStreamsToDataFrames(res, query, stats)
default:
return nil, fmt.Errorf("resultType %T not supported{", res)
}
@ -54,8 +59,8 @@ func lokiMatrixToDataFrames(matrix loghttp.Matrix, query *lokiQuery, stats []dat
values = append(values, float64(k.Value))
}
timeField := data.NewField("", nil, timeVector)
valueField := data.NewField("", tags, values)
timeField := data.NewField("time", nil, timeVector)
valueField := data.NewField("value", tags, values)
frame := data.NewFrame("", timeField, valueField)
frame.SetMeta(&data.FrameMeta{
@ -79,8 +84,8 @@ func lokiVectorToDataFrames(vector loghttp.Vector, query *lokiQuery, stats []dat
for k, v := range v.Metric {
tags[string(k)] = string(v)
}
timeField := data.NewField("", nil, timeVector)
valueField := data.NewField("", tags, values)
timeField := data.NewField("time", nil, timeVector)
valueField := data.NewField("value", tags, values)
frame := data.NewFrame("", timeField, valueField)
frame.SetMeta(&data.FrameMeta{
@ -93,35 +98,61 @@ func lokiVectorToDataFrames(vector loghttp.Vector, query *lokiQuery, stats []dat
return frames
}
func lokiStreamsToDataFrames(streams loghttp.Streams, query *lokiQuery, stats []data.QueryStat) data.Frames {
frames := data.Frames{}
// we serialize the labels as an ordered list of pairs
func labelsToString(labels data.Labels) (string, error) {
keys := make([]string, 0, len(labels))
for k := range labels {
keys = append(keys, k)
}
sort.Strings(keys)
labelArray := make([][2]string, 0, len(labels))
for _, k := range keys {
pair := [2]string{k, labels[k]}
labelArray = append(labelArray, pair)
}
bytes, err := jsoniter.Marshal(labelArray)
if err != nil {
return "", err
}
return string(bytes), nil
}
func lokiStreamsToDataFrames(streams loghttp.Streams, query *lokiQuery, stats []data.QueryStat) (data.Frames, error) {
var timeVector []time.Time
var values []string
var labelsVector []string
for _, v := range streams {
tags := make(map[string]string, len(v.Labels))
timeVector := make([]time.Time, 0, len(v.Entries))
values := make([]string, 0, len(v.Entries))
for k, v := range v.Labels {
tags[k] = v
labelsText, err := labelsToString(v.Labels.Map())
if err != nil {
return nil, err
}
for _, k := range v.Entries {
timeVector = append(timeVector, k.Timestamp.UTC())
values = append(values, k.Line)
labelsVector = append(labelsVector, labelsText)
}
timeField := data.NewField("", nil, timeVector)
valueField := data.NewField("", tags, values)
frame := data.NewFrame("", timeField, valueField)
frame.SetMeta(&data.FrameMeta{
Stats: stats,
})
frames = append(frames, frame)
}
return frames
timeField := data.NewField("ts", nil, timeVector)
valueField := data.NewField("line", nil, values)
labelsField := data.NewField("labels", nil, labelsVector)
labelsField.Config = &data.FieldConfig{
// we should have a native json-field-type
Custom: map[string]interface{}{"json": true},
}
frame := data.NewFrame("", labelsField, timeField, valueField)
frame.SetMeta(&data.FrameMeta{
Stats: stats,
})
return data.Frames{frame}, nil
}
func parseStats(result stats.Result) []data.QueryStat {

File diff suppressed because one or more lines are too long

View File

@ -5,8 +5,8 @@
"result": [
{
"stream": {
"level": "error",
"location": "moon"
"code": "one\",",
"location": "moon🌙"
},
"values": [
[
@ -17,8 +17,8 @@
},
{
"stream": {
"level": "info",
"location": "moon"
"code": "\",two",
"location": "moon🌙"
},
"values": [
[
@ -29,6 +29,10 @@
"1645030246277587968",
"log line info 2"
],
[
"1645030246277587968",
"log line info 2"
],
[
"1645030245539423744",
"log line info 3"

View File

@ -1,100 +1,95 @@
import { ArrayVector, CoreApp, DataFrame, DataQueryRequest, DataQueryResponse, FieldType, toUtc } from '@grafana/data';
import { ArrayVector, DataFrame, DataQueryResponse, FieldType } from '@grafana/data';
import { cloneDeep } from 'lodash';
import { transformBackendResult } from './backendResultTransformer';
import { LokiQuery } from './types';
const frame: DataFrame = {
name: 'frame1',
const LOKI_EXPR = '{level="info"} |= "thing1"';
const inputFrame: DataFrame = {
refId: 'A',
meta: {
executedQueryString: 'something1',
executedQueryString: LOKI_EXPR,
},
fields: [
{
name: 'Time',
name: 'time',
type: FieldType.time,
config: {},
values: new ArrayVector([1645029699311, 1645029699312, 1645029699313]),
values: new ArrayVector([1645030244810, 1645030247027, 1645030246277, 1645030245539, 1645030244091]),
},
{
name: 'Value',
name: 'value',
type: FieldType.string,
config: {},
values: new ArrayVector(['line1', 'line2', 'line3', 'line4', 'line5']),
},
{
name: 'labels',
type: FieldType.string,
labels: {
level: 'error',
location: 'moon',
protocol: 'http',
},
config: {
displayNameFromDS: '{level="error", location="moon", protocol="http"}',
custom: {
json: true,
},
},
values: new ArrayVector(['line1', 'line2', 'line3']),
values: new ArrayVector([
`[["level", "info"],["code", "41🌙"]]`,
`[["level", "error"],["code", "41🌙"]]`,
`[["level", "error"],["code", "43🌙"]]`,
`[["level", "error"],["code", "41🌙"]]`,
`[["level", "info"],["code", "41🌙"]]`,
]),
},
{
name: 'tsNs',
type: FieldType.time,
config: {},
values: new ArrayVector([
'1645030244810757120',
'1645030247027735040',
'1645030246277587968',
'1645030245539423744',
'1645030244091700992',
]),
},
{
name: 'id',
type: FieldType.string,
config: {},
values: new ArrayVector(['1645029699311000500', '1645029699312000500', '1645029699313000500']),
values: new ArrayVector(['id1', 'id2', 'id3', 'id4', 'id5']),
},
],
length: 3,
length: 5,
};
function makeRequest(expr: string): DataQueryRequest<LokiQuery> {
return {
requestId: 'test1',
interval: '1s',
intervalMs: 1000,
range: {
from: toUtc('2022-02-22T13:14:15'),
to: toUtc('2022-02-22T13:15:15'),
raw: {
from: toUtc('2022-02-22T13:14:15'),
to: toUtc('2022-02-22T13:15:15'),
},
},
scopedVars: {},
targets: [
{
refId: 'A',
expr,
},
],
timezone: 'UTC',
app: CoreApp.Explore,
startTime: 0,
};
}
describe('loki backendResultTransformer', () => {
it('processes a logs-dataframe correctly', () => {
const response: DataQueryResponse = { data: [cloneDeep(frame)] };
const request = makeRequest('{level="info"} |= "thing1"');
const response: DataQueryResponse = { data: [cloneDeep(inputFrame)] };
const expectedFrame = cloneDeep(frame);
const expectedFrame = cloneDeep(inputFrame);
expectedFrame.meta = {
executedQueryString: 'something1',
...expectedFrame.meta,
preferredVisualisationType: 'logs',
searchWords: ['thing1'],
custom: {
lokiQueryStatKey: 'Summary: total bytes processed',
},
};
expectedFrame.fields[2].type = FieldType.time;
expectedFrame.fields.push({
name: 'id',
type: FieldType.string,
config: {},
values: new ArrayVector([
'6b099923-25a6-5336-96fa-c84a14b7c351_A',
'0e1b7c47-a956-5cf2-a803-d487679745bd_A',
'6f9a840c-6a00-525b-9ed4-cceea29e62af_A',
]),
});
expectedFrame.fields[2].type = FieldType.other;
expectedFrame.fields[2].values = new ArrayVector([
{ level: 'info', code: '41🌙' },
{ level: 'error', code: '41🌙' },
{ level: 'error', code: '43🌙' },
{ level: 'error', code: '41🌙' },
{ level: 'info', code: '41🌙' },
]);
const expected: DataQueryResponse = { data: [expectedFrame] };
const result = transformBackendResult(response, request);
const result = transformBackendResult(response, [
{
refId: 'A',
expr: LOKI_EXPR,
},
]);
expect(result).toEqual(expected);
});
});

View File

@ -1,8 +1,15 @@
import { DataQueryRequest, DataQueryResponse, DataFrame, isDataFrame, FieldType, QueryResultMeta } from '@grafana/data';
import {
DataQueryResponse,
DataFrame,
isDataFrame,
FieldType,
QueryResultMeta,
ArrayVector,
Labels,
} from '@grafana/data';
import { LokiQuery, LokiQueryType } from './types';
import { makeTableFrames } from './makeTableFrames';
import { formatQuery, getHighlighterExpressionsFromQuery } from './query_utils';
import { makeIdField } from './makeIdField';
function isMetricFrame(frame: DataFrame): boolean {
return frame.fields.every((field) => field.type === FieldType.time || field.type === FieldType.number);
@ -19,6 +26,12 @@ function setFrameMeta(frame: DataFrame, meta: QueryResultMeta): DataFrame {
};
}
function decodeLabelsInJson(text: string): Labels {
const array: Array<[string, string]> = JSON.parse(text);
// NOTE: maybe we should go with maps, those have guaranteed ordering
return Object.fromEntries(array);
}
function processStreamFrame(frame: DataFrame, query: LokiQuery | undefined): DataFrame {
const meta: QueryResultMeta = {
preferredVisualisationType: 'logs',
@ -29,21 +42,36 @@ function processStreamFrame(frame: DataFrame, query: LokiQuery | undefined): Dat
},
};
const newFrame = setFrameMeta(frame, meta);
const newFields = frame.fields.map((field) => {
// the nanosecond-timestamp field must have a type-time
if (field.name === 'tsNs') {
return {
...field,
type: FieldType.time,
};
} else {
return field;
const newFields = newFrame.fields.map((field) => {
switch (field.name) {
case 'labels': {
// the labels, when coming from the server, are json-encoded.
// here we decode them if needed.
return field.config.custom.json
? {
name: field.name,
type: FieldType.other,
config: field.config,
// we are parsing the labels the same way as streaming-dataframes do
values: new ArrayVector(field.values.toArray().map((text) => decodeLabelsInJson(text))),
}
: field;
}
case 'tsNs': {
// we need to switch the field-type to be `time`
return {
...field,
type: FieldType.time,
};
}
default: {
// no modification needed
return field;
}
}
});
// we add a calculated id-field
newFields.push(makeIdField(frame));
return {
...newFrame,
fields: newFields,
@ -96,10 +124,7 @@ function groupFrames(
return { streamsFrames, metricInstantFrames, metricRangeFrames };
}
export function transformBackendResult(
response: DataQueryResponse,
request: DataQueryRequest<LokiQuery>
): DataQueryResponse {
export function transformBackendResult(response: DataQueryResponse, queries: LokiQuery[]): DataQueryResponse {
const { data, ...rest } = response;
// in the typescript type, data is an array of basically anything.
@ -112,7 +137,7 @@ export function transformBackendResult(
return d;
});
const queryMap = new Map(request.targets.map((query) => [query.refId, query]));
const queryMap = new Map(queries.map((query) => [query.refId, query]));
const { streamsFrames, metricInstantFrames, metricRangeFrames } = groupFrames(dataFrames, queryMap);

View File

@ -161,7 +161,14 @@ export class LokiDatasource
...request,
targets: request.targets.map(getNormalizedLokiQuery),
};
return super.query(fixedRequest).pipe(map((response) => transformBackendResult(response, fixedRequest)));
if (fixedRequest.liveStreaming) {
return this.runLiveQueryThroughBackend(fixedRequest);
} else {
return super
.query(fixedRequest)
.pipe(map((response) => transformBackendResult(response, fixedRequest.targets)));
}
}
const filteredTargets = request.targets
@ -199,6 +206,27 @@ export class LokiDatasource
return merge(...subQueries);
}
runLiveQueryThroughBackend(request: DataQueryRequest<LokiQuery>): Observable<DataQueryResponse> {
// this only works in explore-mode, so variables don't need to be handled,
// and only for logs-queries, not metric queries
const logsQueries = request.targets.filter((query) => query.expr !== '' && !isMetricsQuery(query.expr));
if (logsQueries.length === 0) {
return of({
data: [],
state: LoadingState.Done,
});
}
const subQueries = logsQueries.map((query) => {
const maxDataPoints = query.maxLines || this.maxLines;
// FIXME: currently we are running it through the frontend still.
return this.runLiveQuery(query, maxDataPoints);
});
return merge(...subQueries);
}
runInstantQuery = (
target: LokiQuery,
options: DataQueryRequest<LokiQuery>,

View File

@ -1,87 +0,0 @@
import { ArrayVector, DataFrame, FieldType } from '@grafana/data';
import { makeIdField } from './makeIdField';
function makeFrame(timestamps: number[], values: string[], timestampNss: string[], refId?: string): DataFrame {
return {
name: 'frame',
refId,
meta: {
executedQueryString: 'something1',
},
fields: [
{
name: 'Time',
type: FieldType.time,
config: {},
values: new ArrayVector(timestamps),
},
{
name: 'Value',
type: FieldType.string,
config: {},
labels: {
foo: 'bar',
},
values: new ArrayVector(values),
},
{
name: 'tsNs',
type: FieldType.time,
config: {},
values: new ArrayVector(timestampNss),
},
],
length: timestamps.length,
};
}
describe('loki makeIdField', () => {
it('should always generate unique ids for logs', () => {
const frame = makeFrame(
[1579857562021, 1579857562021, 1579857562021, 1579857562021],
[
't=2020-02-12T15:04:51+0000 lvl=info msg="Duplicated"',
't=2020-02-12T15:04:51+0000 lvl=info msg="Duplicated"',
't=2020-02-12T15:04:51+0000 lvl=info msg="Non-Duplicated"',
't=2020-02-12T15:04:51+0000 lvl=info msg="Duplicated"',
],
['1579857562021616000', '1579857562021616000', '1579857562021616000', '1579857562021616000']
);
expect(makeIdField(frame)).toEqual({
config: {},
name: 'id',
type: 'string',
values: new ArrayVector([
'75fceace-9f98-5134-b222-643fdcde2877',
'75fceace-9f98-5134-b222-643fdcde2877_1',
'4a081a89-040d-5f64-9477-a4d846ce9f6b',
'75fceace-9f98-5134-b222-643fdcde2877_2',
]),
});
});
it('should append refId to the unique ids if refId is provided', () => {
const frame = makeFrame(
[1579857562021, 1579857562021, 1579857562021, 1579857562021],
[
't=2020-02-12T15:04:51+0000 lvl=info msg="Duplicated"',
't=2020-02-12T15:04:51+0000 lvl=info msg="Duplicated"',
't=2020-02-12T15:04:51+0000 lvl=info msg="Non-Duplicated"',
't=2020-02-12T15:04:51+0000 lvl=info msg="Duplicated"',
],
['1579857562021616000', '1579857562021616000', '1579857562021616000', '1579857562021616000'],
'X'
);
expect(makeIdField(frame)).toEqual({
config: {},
name: 'id',
type: 'string',
values: new ArrayVector([
'75fceace-9f98-5134-b222-643fdcde2877_X',
'75fceace-9f98-5134-b222-643fdcde2877_1_X',
'4a081a89-040d-5f64-9477-a4d846ce9f6b_X',
'75fceace-9f98-5134-b222-643fdcde2877_2_X',
]),
});
});
});

View File

@ -1,54 +0,0 @@
import { v5 as uuidv5 } from 'uuid';
import { ArrayVector, DataFrame, Field, FieldType, Labels } from '@grafana/data';
const UUID_NAMESPACE = '6ec946da-0f49-47a8-983a-1d76d17e7c92';
function createUid(text: string, usedUids: Map<string, number>, refId?: string): string {
const id = uuidv5(text, UUID_NAMESPACE);
// check how many times have we seen this id before,
// set the count to zero, if never.
const count = usedUids.get(id) ?? 0;
// if we have seen this id before, we need to make
// it unique by appending the seen-count
// (starts with 1, and goes up)
const uniqueId = count > 0 ? `${id}_${count}` : id;
// we increment the counter for this id, to be used when we are called the next time
usedUids.set(id, count + 1);
// we add refId to the end, if it is available
return refId !== undefined ? `${uniqueId}_${refId}` : uniqueId;
}
export function makeIdField(frame: DataFrame): Field {
const allLabels: Labels = {};
// collect labels from every field
frame.fields.forEach((field) => {
Object.assign(allLabels, field.labels);
});
const labelsString = Object.entries(allLabels)
.map(([key, val]) => `${key}="${val}"`)
.sort()
.join('');
const usedUids = new Map<string, number>();
const { length } = frame;
const uids: string[] = new Array(length);
// we need to go through the dataframe "row by row"
for (let i = 0; i < length; i++) {
const row = frame.fields.map((f) => String(f.values.get(i)));
const text = `${labelsString}_${row.join('_')}`;
const uid = createUid(text, usedUids, frame.refId);
uids[i] = uid;
}
return { name: 'id', type: FieldType.string, config: {}, values: new ArrayVector(uids) };
}