mirror of
https://github.com/grafana/grafana.git
synced 2025-02-25 18:55:37 -06:00
ArrayDataFrame: Convert to a simple utility function rather than dynamically loaded values (#67427)
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
import { FieldType, DataFrame } from '../types';
|
||||
import { DataFrame } from '../types';
|
||||
|
||||
import { ArrayDataFrame } from './ArrayDataFrame';
|
||||
import { ArrayDataFrame, arrayToDataFrame } from './ArrayDataFrame';
|
||||
import { toDataFrameDTO } from './processDataFrame';
|
||||
|
||||
describe('Array DataFrame', () => {
|
||||
@@ -15,30 +15,9 @@ describe('Array DataFrame', () => {
|
||||
const frame = new ArrayDataFrame(input);
|
||||
frame.name = 'Hello';
|
||||
frame.refId = 'Z';
|
||||
frame.setFieldType('phantom', FieldType.string, (v) => '🦥');
|
||||
const field = frame.fields.find((f) => f.name === 'value');
|
||||
field!.config.unit = 'kwh';
|
||||
|
||||
test('Should support functional methods', () => {
|
||||
const expectedNames = input.map((row) => row.name);
|
||||
|
||||
// Check map
|
||||
expect(frame.map((row) => row.name)).toEqual(expectedNames);
|
||||
expect(frame[0].name).toEqual(input[0].name);
|
||||
|
||||
let names: string[] = [];
|
||||
for (const row of frame) {
|
||||
names.push(row.name);
|
||||
}
|
||||
expect(names).toEqual(expectedNames);
|
||||
|
||||
names = [];
|
||||
frame.forEach((row) => {
|
||||
names.push(row.name);
|
||||
});
|
||||
expect(names).toEqual(expectedNames);
|
||||
});
|
||||
|
||||
test('Should convert an array of objects to a dataframe', () => {
|
||||
expect(toDataFrameDTO(frame)).toMatchInlineSnapshot(`
|
||||
{
|
||||
@@ -84,19 +63,6 @@ describe('Array DataFrame', () => {
|
||||
1100,
|
||||
],
|
||||
},
|
||||
{
|
||||
"config": {},
|
||||
"labels": undefined,
|
||||
"name": "phantom",
|
||||
"type": "string",
|
||||
"values": [
|
||||
"🦥",
|
||||
"🦥",
|
||||
"🦥",
|
||||
"🦥",
|
||||
"🦥",
|
||||
],
|
||||
},
|
||||
],
|
||||
"meta": undefined,
|
||||
"name": "Hello",
|
||||
@@ -114,4 +80,25 @@ describe('Array DataFrame', () => {
|
||||
expect(copy.length).toEqual(frame.length);
|
||||
expect(copy.length).toEqual(input.length);
|
||||
});
|
||||
|
||||
test('Handles any array input', () => {
|
||||
const f = arrayToDataFrame([1, 2, 3]);
|
||||
expect(f).toMatchInlineSnapshot(`
|
||||
{
|
||||
"fields": [
|
||||
{
|
||||
"config": {},
|
||||
"name": "Value",
|
||||
"type": "number",
|
||||
"values": [
|
||||
1,
|
||||
2,
|
||||
3,
|
||||
],
|
||||
},
|
||||
],
|
||||
"length": 3,
|
||||
}
|
||||
`);
|
||||
});
|
||||
});
|
||||
|
||||
@@ -1,118 +1,69 @@
|
||||
import { makeArrayIndexableVector, QueryResultMeta } from '../types';
|
||||
import { Field, FieldType, DataFrame } from '../types/dataFrame';
|
||||
import { FunctionalVector } from '../vector/FunctionalVector';
|
||||
import { vectorToArray } from '../vector/vectorToArray';
|
||||
import { QueryResultMeta } from '../types';
|
||||
import { Field, FieldType, DataFrame, TIME_SERIES_VALUE_FIELD_NAME } from '../types/dataFrame';
|
||||
|
||||
import { guessFieldTypeFromNameAndValue, toDataFrameDTO } from './processDataFrame';
|
||||
|
||||
/** @public */
|
||||
export type ValueConverter<T = any> = (val: unknown) => T;
|
||||
|
||||
const NOOP: ValueConverter = (v) => v;
|
||||
|
||||
class ArrayPropertyVector<T = any> extends FunctionalVector<T> {
|
||||
converter = NOOP;
|
||||
|
||||
constructor(private source: any[], private prop: string) {
|
||||
super();
|
||||
return makeArrayIndexableVector(this);
|
||||
}
|
||||
|
||||
get length(): number {
|
||||
return this.source.length;
|
||||
}
|
||||
|
||||
get(index: number): T {
|
||||
return this.converter(this.source[index][this.prop]);
|
||||
}
|
||||
|
||||
toArray(): T[] {
|
||||
return vectorToArray(this);
|
||||
}
|
||||
|
||||
toJSON(): T[] {
|
||||
return vectorToArray(this);
|
||||
}
|
||||
}
|
||||
import { guessFieldTypeForField } from './processDataFrame';
|
||||
|
||||
/**
|
||||
* The ArrayDataFrame takes an array of objects and presents it as a DataFrame
|
||||
*
|
||||
* @alpha
|
||||
* @deprecated use arrayToDataFrame
|
||||
*/
|
||||
export class ArrayDataFrame<T = any> extends FunctionalVector<T> implements DataFrame {
|
||||
export class ArrayDataFrame<T = any> implements DataFrame {
|
||||
fields: Field[] = [];
|
||||
length = 0;
|
||||
name?: string;
|
||||
refId?: string;
|
||||
meta?: QueryResultMeta;
|
||||
|
||||
fields: Field[] = [];
|
||||
length = 0;
|
||||
|
||||
constructor(private source: T[], names?: string[]) {
|
||||
super();
|
||||
|
||||
this.length = source.length;
|
||||
const first: any = source.length ? source[0] : {};
|
||||
if (names) {
|
||||
this.fields = names.map((name) => {
|
||||
return {
|
||||
name,
|
||||
type: guessFieldTypeFromNameAndValue(name, first[name]),
|
||||
config: {},
|
||||
values: new ArrayPropertyVector(source, name),
|
||||
};
|
||||
});
|
||||
} else {
|
||||
this.setFieldsFromObject(first);
|
||||
}
|
||||
return makeArrayIndexableVector(this);
|
||||
}
|
||||
|
||||
/**
|
||||
* Add a field for each property in the object. This will guess the type
|
||||
*/
|
||||
setFieldsFromObject(obj: Record<string, unknown>) {
|
||||
this.fields = Object.keys(obj).map((name) => {
|
||||
return {
|
||||
name,
|
||||
type: guessFieldTypeFromNameAndValue(name, obj[name]),
|
||||
config: {},
|
||||
values: new ArrayPropertyVector(this.source, name),
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Configure how the object property is passed to the data frame
|
||||
*/
|
||||
setFieldType(name: string, type: FieldType, converter?: ValueConverter): Field {
|
||||
let field = this.fields.find((f) => f.name === name);
|
||||
if (field) {
|
||||
field.type = type;
|
||||
} else {
|
||||
field = {
|
||||
name,
|
||||
type,
|
||||
config: {},
|
||||
values: new ArrayPropertyVector(this.source, name),
|
||||
};
|
||||
this.fields.push(field);
|
||||
}
|
||||
(field.values as any).converter = converter ?? NOOP;
|
||||
return field;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get an object with a property for each field in the DataFrame
|
||||
*/
|
||||
get(idx: number): T {
|
||||
return this.source[idx];
|
||||
}
|
||||
|
||||
/**
|
||||
* The simplified JSON values used in JSON.stringify()
|
||||
*/
|
||||
toJSON() {
|
||||
return toDataFrameDTO(this);
|
||||
constructor(source: T[], names?: string[]) {
|
||||
return arrayToDataFrame(source, names) as ArrayDataFrame<T>; // returns a standard DataFrame
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* arrayToDataFrame will convert any array into a DataFrame
|
||||
*
|
||||
* @public
|
||||
*/
|
||||
export function arrayToDataFrame(source: any[], names?: string[]): DataFrame {
|
||||
const df: DataFrame = {
|
||||
fields: [],
|
||||
length: source.length,
|
||||
};
|
||||
if (!source?.length) {
|
||||
return df;
|
||||
}
|
||||
|
||||
if (names) {
|
||||
for (const name of names) {
|
||||
df.fields.push(
|
||||
makeFieldFromValues(
|
||||
name,
|
||||
source.map((v) => v[name])
|
||||
)
|
||||
);
|
||||
}
|
||||
return df;
|
||||
}
|
||||
|
||||
const first = source.find((v) => v != null); // first not null|undefined
|
||||
if (first != null) {
|
||||
if (typeof first === 'object') {
|
||||
df.fields = Object.keys(first).map((name) => {
|
||||
return makeFieldFromValues(
|
||||
name,
|
||||
source.map((v) => v[name])
|
||||
);
|
||||
});
|
||||
} else {
|
||||
df.fields.push(makeFieldFromValues(TIME_SERIES_VALUE_FIELD_NAME, source));
|
||||
}
|
||||
}
|
||||
return df;
|
||||
}
|
||||
|
||||
function makeFieldFromValues(name: string, values: unknown[]): Field {
|
||||
const f = { name, config: {}, values, type: FieldType.other };
|
||||
f.type = guessFieldTypeForField(f) ?? FieldType.other;
|
||||
return f;
|
||||
}
|
||||
|
||||
@@ -83,10 +83,9 @@ describe('toDataFrame', () => {
|
||||
{ a: 1, b: 2 },
|
||||
{ a: 3, b: 4 },
|
||||
];
|
||||
const array = new ArrayDataFrame(orig);
|
||||
const array = new ArrayDataFrame(orig); // will return a simple DataFrame
|
||||
const frame = toDataFrame(array);
|
||||
expect(frame).toEqual(array);
|
||||
expect(frame instanceof ArrayDataFrame).toEqual(true);
|
||||
expect(frame.length).toEqual(orig.length);
|
||||
expect(frame.fields.map((f) => f.name)).toEqual(['a', 'b']);
|
||||
});
|
||||
|
||||
@@ -25,7 +25,7 @@ import {
|
||||
GraphSeriesValue,
|
||||
} from '../types/index';
|
||||
|
||||
import { ArrayDataFrame } from './ArrayDataFrame';
|
||||
import { arrayToDataFrame } from './ArrayDataFrame';
|
||||
import { dataFrameFromJSON } from './DataFrameJSON';
|
||||
import { MutableDataFrame } from './MutableDataFrame';
|
||||
|
||||
@@ -36,7 +36,7 @@ function convertTableToDataFrame(table: TableData): DataFrame {
|
||||
return {
|
||||
name: text?.length ? text : c, // rename 'text' to the 'name' field
|
||||
config: (disp || {}) as FieldConfig,
|
||||
values: [] as any[],
|
||||
values: [] as unknown[],
|
||||
type: type && Object.values(FieldType).includes(type as FieldType) ? (type as FieldType) : FieldType.other,
|
||||
};
|
||||
});
|
||||
@@ -339,7 +339,7 @@ export function toDataFrame(data: any): DataFrame {
|
||||
}
|
||||
|
||||
if (Array.isArray(data)) {
|
||||
return new ArrayDataFrame(data);
|
||||
return arrayToDataFrame(data);
|
||||
}
|
||||
|
||||
console.warn('Can not convert', data);
|
||||
@@ -350,7 +350,7 @@ export const toLegacyResponseData = (frame: DataFrame): TimeSeries | TableData =
|
||||
const { fields } = frame;
|
||||
|
||||
const rowCount = frame.length;
|
||||
const rows: any[][] = [];
|
||||
const rows: unknown[][] = [];
|
||||
|
||||
if (fields.length === 2) {
|
||||
const { timeField, timeIndex } = getTimeField(frame);
|
||||
@@ -379,7 +379,7 @@ export const toLegacyResponseData = (frame: DataFrame): TimeSeries | TableData =
|
||||
}
|
||||
|
||||
for (let i = 0; i < rowCount; i++) {
|
||||
const row: any[] = [];
|
||||
const row: unknown[] = [];
|
||||
for (let j = 0; j < fields.length; j++) {
|
||||
row.push(fields[j].values[i]);
|
||||
}
|
||||
@@ -460,8 +460,8 @@ export function reverseDataFrame(data: DataFrame): DataFrame {
|
||||
/**
|
||||
* Wrapper to get an array from each field value
|
||||
*/
|
||||
export function getDataFrameRow(data: DataFrame, row: number): any[] {
|
||||
const values: any[] = [];
|
||||
export function getDataFrameRow(data: DataFrame, row: number): unknown[] {
|
||||
const values: unknown[] = [];
|
||||
for (const field of data.fields) {
|
||||
values.push(field.values[row]);
|
||||
}
|
||||
|
||||
@@ -146,6 +146,8 @@ export interface QueryResultBase {
|
||||
export interface Labels {
|
||||
[key: string]: string;
|
||||
}
|
||||
|
||||
/** @deprecated this is a very old (pre Grafana 7 + DataFrame) representation for tabular data */
|
||||
export interface Column {
|
||||
text: string; // For a Column, the 'text' is the field name
|
||||
filterable?: boolean;
|
||||
@@ -153,6 +155,7 @@ export interface Column {
|
||||
custom?: Record<string, any>;
|
||||
}
|
||||
|
||||
/** @deprecated this is a very old (pre Grafana 7 + DataFrame) representation for tabular data */
|
||||
export interface TableData extends QueryResultBase {
|
||||
name?: string;
|
||||
columns: Column[];
|
||||
@@ -160,10 +163,13 @@ export interface TableData extends QueryResultBase {
|
||||
type?: string;
|
||||
}
|
||||
|
||||
/** @deprecated this is a very old (pre Grafana 7 + DataFrame) representation for tabular data */
|
||||
export type TimeSeriesValue = number | null;
|
||||
|
||||
/** @deprecated this is a very old (pre Grafana 7 + DataFrame) representation for tabular data */
|
||||
export type TimeSeriesPoints = TimeSeriesValue[][];
|
||||
|
||||
/** @deprecated this is a very old (pre Grafana 7 + DataFrame) representation for tabular data */
|
||||
export interface TimeSeries extends QueryResultBase {
|
||||
target: string;
|
||||
/**
|
||||
|
||||
@@ -85,9 +85,6 @@ export abstract class FunctionalVector<T = any> implements Vector<T> {
|
||||
shift(): T | undefined {
|
||||
throw new Error('Method not implemented.');
|
||||
}
|
||||
slice(start?: number | undefined, end?: number | undefined): T[] {
|
||||
throw new Error('Method not implemented.');
|
||||
}
|
||||
sort(compareFn?: ((a: T, b: T) => number) | undefined): this {
|
||||
throw new Error('Method not implemented.');
|
||||
}
|
||||
@@ -121,6 +118,9 @@ export abstract class FunctionalVector<T = any> implements Vector<T> {
|
||||
// Delegated Array function -- these will not be efficient :grimmice:
|
||||
//--------------------------------------------------------------------------------
|
||||
|
||||
slice(start?: number | undefined, end?: number | undefined): T[] {
|
||||
return this.toArray().slice(start, end);
|
||||
}
|
||||
indexOf(searchElement: T, fromIndex?: number | undefined): number {
|
||||
return this.toArray().indexOf(searchElement, fromIndex);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user