feat(alerting): implement transform objects

This commit is contained in:
bergquist 2016-06-10 15:30:38 +02:00
parent c18017381b
commit 83c422e6ef
6 changed files with 128 additions and 86 deletions

View File

@ -108,6 +108,12 @@ func ConvetAlertModelToAlertRule(ruleDef *m.AlertRuleModel) (*AlertRule, error)
model.Transform = ruleDef.Expression.Get("transform").Get("type").MustString() model.Transform = ruleDef.Expression.Get("transform").Get("type").MustString()
model.TransformParams = *ruleDef.Expression.Get("transform") model.TransformParams = *ruleDef.Expression.Get("transform")
if model.Transform == "aggregation" {
model.Transformer = &AggregationTransformer{
Method: ruleDef.Expression.Get("transform").Get("method").MustString(),
}
}
query := ruleDef.Expression.Get("query") query := ruleDef.Expression.Get("query")
model.Query = AlertQuery{ model.Query = AlertQuery{
Query: query.Get("query").MustString(), Query: query.Get("query").MustString(),

View File

@ -0,0 +1,15 @@
package alerting
type compareFn func(float64, float64) bool
func evalCondition(level Level, result float64) bool {
return operators[level.Operator](result, level.Level)
}
var operators = map[string]compareFn{
">": func(num1, num2 float64) bool { return num1 > num2 },
">=": func(num1, num2 float64) bool { return num1 >= num2 },
"<": func(num1, num2 float64) bool { return num1 < num2 },
"<=": func(num1, num2 float64) bool { return num1 <= num2 },
"": func(num1, num2 float64) bool { return false },
}

View File

@ -3,8 +3,6 @@ package alerting
import ( import (
"fmt" "fmt"
"math"
"github.com/grafana/grafana/pkg/bus" "github.com/grafana/grafana/pkg/bus"
"github.com/grafana/grafana/pkg/log" "github.com/grafana/grafana/pkg/log"
m "github.com/grafana/grafana/pkg/models" m "github.com/grafana/grafana/pkg/models"
@ -26,63 +24,6 @@ func NewExecutor() *ExecutorImpl {
} }
} }
type compareFn func(float64, float64) bool
type aggregationFn func(*tsdb.TimeSeries) float64
var operators = map[string]compareFn{
">": func(num1, num2 float64) bool { return num1 > num2 },
">=": func(num1, num2 float64) bool { return num1 >= num2 },
"<": func(num1, num2 float64) bool { return num1 < num2 },
"<=": func(num1, num2 float64) bool { return num1 <= num2 },
"": func(num1, num2 float64) bool { return false },
}
var aggregator = map[string]aggregationFn{
"avg": func(series *tsdb.TimeSeries) float64 {
sum := float64(0)
for _, v := range series.Points {
sum += v[0]
}
return sum / float64(len(series.Points))
},
"sum": func(series *tsdb.TimeSeries) float64 {
sum := float64(0)
for _, v := range series.Points {
sum += v[0]
}
return sum
},
"min": func(series *tsdb.TimeSeries) float64 {
min := series.Points[0][0]
for _, v := range series.Points {
if v[0] < min {
min = v[0]
}
}
return min
},
"max": func(series *tsdb.TimeSeries) float64 {
max := series.Points[0][0]
for _, v := range series.Points {
if v[0] > max {
max = v[0]
}
}
return max
},
"mean": func(series *tsdb.TimeSeries) float64 {
midPosition := int64(math.Floor(float64(len(series.Points)) / float64(2)))
return series.Points[midPosition][0]
},
}
func (e *ExecutorImpl) Execute(job *AlertJob, resultQueue chan *AlertResult) { func (e *ExecutorImpl) Execute(job *AlertJob, resultQueue chan *AlertResult) {
timeSeries, err := e.executeQuery(job) timeSeries, err := e.executeQuery(job)
if err != nil { if err != nil {
@ -156,32 +97,25 @@ func (e *ExecutorImpl) evaluateRule(rule *AlertRule, series tsdb.TimeSeriesSlice
for _, serie := range series { for _, serie := range series {
e.log.Debug("Evaluating series", "series", serie.Name) e.log.Debug("Evaluating series", "series", serie.Name)
transformedValue, _ := rule.Transformer.Transform(serie)
if aggregator["avg"] == nil { critResult := evalCondition(rule.Critical, transformedValue)
continue e.log.Debug("Alert execution Crit", "name", serie.Name, "transformedValue", transformedValue, "operator", rule.Critical.Operator, "level", rule.Critical.Level, "result", critResult)
}
var aggValue = aggregator["avg"](serie)
var critOperartor = operators[rule.Critical.Operator]
var critResult = critOperartor(aggValue, rule.Critical.Level)
e.log.Debug("Alert execution Crit", "name", serie.Name, "aggValue", aggValue, "operator", rule.Critical.Operator, "level", rule.Critical.Level, "result", critResult)
if critResult { if critResult {
return &AlertResult{ return &AlertResult{
State: alertstates.Critical, State: alertstates.Critical,
ActualValue: aggValue, ActualValue: transformedValue,
Description: fmt.Sprintf(descriptionFmt, aggValue, serie.Name), Description: fmt.Sprintf(descriptionFmt, transformedValue, serie.Name),
} }
} }
var warnOperartor = operators[rule.Warning.Operator] warnResult := evalCondition(rule.Warning, transformedValue)
var warnResult = warnOperartor(aggValue, rule.Warning.Level) e.log.Debug("Alert execution Warn", "name", serie.Name, "transformedValue", transformedValue, "operator", rule.Warning.Operator, "level", rule.Warning.Level, "result", warnResult)
e.log.Debug("Alert execution Warn", "name", serie.Name, "aggValue", aggValue, "operator", rule.Warning.Operator, "level", rule.Warning.Level, "result", warnResult)
if warnResult { if warnResult {
return &AlertResult{ return &AlertResult{
State: alertstates.Warn, State: alertstates.Warn,
Description: fmt.Sprintf(descriptionFmt, aggValue, serie.Name), Description: fmt.Sprintf(descriptionFmt, transformedValue, serie.Name),
ActualValue: aggValue, ActualValue: transformedValue,
} }
} }
} }

View File

@ -14,7 +14,10 @@ func TestAlertingExecutor(t *testing.T) {
Convey("single time serie", func() { Convey("single time serie", func() {
Convey("Show return ok since avg is above 2", func() { Convey("Show return ok since avg is above 2", func() {
rule := &AlertRule{Critical: Level{Level: 10, Operator: ">"}} rule := &AlertRule{
Critical: Level{Level: 10, Operator: ">"},
Transformer: &AggregationTransformer{Method: "avg"},
}
timeSeries := []*tsdb.TimeSeries{ timeSeries := []*tsdb.TimeSeries{
tsdb.NewTimeSeries("test1", [][2]float64{{2, 0}}), tsdb.NewTimeSeries("test1", [][2]float64{{2, 0}}),
@ -25,7 +28,10 @@ func TestAlertingExecutor(t *testing.T) {
}) })
Convey("Show return critical since below 2", func() { Convey("Show return critical since below 2", func() {
rule := &AlertRule{Critical: Level{Level: 10, Operator: "<"}} rule := &AlertRule{
Critical: Level{Level: 10, Operator: "<"},
Transformer: &AggregationTransformer{Method: "avg"},
}
timeSeries := []*tsdb.TimeSeries{ timeSeries := []*tsdb.TimeSeries{
tsdb.NewTimeSeries("test1", [][2]float64{{2, 0}}), tsdb.NewTimeSeries("test1", [][2]float64{{2, 0}}),
@ -49,7 +55,10 @@ func TestAlertingExecutor(t *testing.T) {
*/ */
Convey("Show return ok since avg is below 10", func() { Convey("Show return ok since avg is below 10", func() {
rule := &AlertRule{Critical: Level{Level: 10, Operator: ">"}} rule := &AlertRule{
Critical: Level{Level: 10, Operator: ">"},
Transformer: &AggregationTransformer{Method: "avg"},
}
timeSeries := []*tsdb.TimeSeries{ timeSeries := []*tsdb.TimeSeries{
tsdb.NewTimeSeries("test1", [][2]float64{{9, 0}, {9, 0}}), tsdb.NewTimeSeries("test1", [][2]float64{{9, 0}, {9, 0}}),
@ -60,7 +69,10 @@ func TestAlertingExecutor(t *testing.T) {
}) })
Convey("Show return ok since min is below 10", func() { Convey("Show return ok since min is below 10", func() {
rule := &AlertRule{Critical: Level{Level: 10, Operator: ">"}} rule := &AlertRule{
Critical: Level{Level: 10, Operator: ">"},
Transformer: &AggregationTransformer{Method: "avg"},
}
timeSeries := []*tsdb.TimeSeries{ timeSeries := []*tsdb.TimeSeries{
tsdb.NewTimeSeries("test1", [][2]float64{{11, 0}, {9, 0}}), tsdb.NewTimeSeries("test1", [][2]float64{{11, 0}, {9, 0}}),
@ -85,7 +97,10 @@ func TestAlertingExecutor(t *testing.T) {
Convey("muliple time series", func() { Convey("muliple time series", func() {
Convey("both are ok", func() { Convey("both are ok", func() {
rule := &AlertRule{Critical: Level{Level: 10, Operator: ">"}} rule := &AlertRule{
Critical: Level{Level: 10, Operator: ">"},
Transformer: &AggregationTransformer{Method: "avg"},
}
timeSeries := []*tsdb.TimeSeries{ timeSeries := []*tsdb.TimeSeries{
tsdb.NewTimeSeries("test1", [][2]float64{{2, 0}}), tsdb.NewTimeSeries("test1", [][2]float64{{2, 0}}),
@ -97,7 +112,10 @@ func TestAlertingExecutor(t *testing.T) {
}) })
Convey("first serie is good, second is critical", func() { Convey("first serie is good, second is critical", func() {
rule := &AlertRule{Critical: Level{Level: 10, Operator: ">"}} rule := &AlertRule{
Critical: Level{Level: 10, Operator: ">"},
Transformer: &AggregationTransformer{Method: "avg"},
}
timeSeries := []*tsdb.TimeSeries{ timeSeries := []*tsdb.TimeSeries{
tsdb.NewTimeSeries("test1", [][2]float64{{2, 0}}), tsdb.NewTimeSeries("test1", [][2]float64{{2, 0}}),

View File

@ -2,7 +2,6 @@ package alerting
import ( import (
"github.com/grafana/grafana/pkg/components/simplejson" "github.com/grafana/grafana/pkg/components/simplejson"
"github.com/grafana/grafana/pkg/tsdb"
) )
type AlertJob struct { type AlertJob struct {
@ -36,10 +35,7 @@ type AlertRule struct {
Query AlertQuery Query AlertQuery
Transform string Transform string
TransformParams simplejson.Json TransformParams simplejson.Json
} Transformer Transformer
type Transformer interface {
Transform(tsdb tsdb.TimeSeriesSlice) float64
} }
type Level struct { type Level struct {

View File

@ -0,0 +1,73 @@
package alerting
import (
"fmt"
"math"
"github.com/grafana/grafana/pkg/tsdb"
)
type Transformer interface {
Transform(timeserie *tsdb.TimeSeries) (float64, error)
}
type AggregationTransformer struct {
Method string
}
func (at *AggregationTransformer) Transform(timeserie *tsdb.TimeSeries) (float64, error) {
if at.Method == "avg" {
sum := float64(0)
for _, point := range timeserie.Points {
sum += point[0]
}
return sum / float64(len(timeserie.Points)), nil
}
//"sum": func(series *tsdb.TimeSeries) float64 {
if at.Method == "sum" {
sum := float64(0)
for _, v := range timeserie.Points {
sum += v[0]
}
return sum, nil
}
//"min": func(series *tsdb.TimeSeries) float64 {
if at.Method == "min" {
min := timeserie.Points[0][0]
for _, v := range timeserie.Points {
if v[0] < min {
min = v[0]
}
}
return min, nil
}
//"max": func(series *tsdb.TimeSeries) float64 {
if at.Method == "max" {
max := timeserie.Points[0][0]
for _, v := range timeserie.Points {
if v[0] > max {
max = v[0]
}
}
return max, nil
}
//"mean": func(series *tsdb.TimeSeries) float64 {
if at.Method == "mean" {
midPosition := int64(math.Floor(float64(len(timeserie.Points)) / float64(2)))
return timeserie.Points[midPosition][0], nil
}
return float64(0), fmt.Errorf("Missing method")
}