logs: handle dataplane-compatible logs-frames (#70318)

* logs: handle dataplane-compatible logs-frames

* simpler tests

* simpler code

* simpler code

* switch to null from undefined

* updated tests

* added test for simplest case

* more direct comparisons

* simplified code

* removed by-mistake added code
This commit is contained in:
Gábor Farkas 2023-06-27 14:50:36 +02:00 committed by GitHub
parent 8e9ec9dcef
commit e9b9a08dd0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 367 additions and 68 deletions

View File

@ -14,7 +14,6 @@ import {
FieldCache,
FieldColorModeId,
FieldType,
FieldWithIndex,
findCommonLabels,
findUniqueLabels,
getTimeField,
@ -41,6 +40,7 @@ import { BarAlignment, GraphDrawStyle, StackingMode } from '@grafana/schema';
import { ansicolor, colors } from '@grafana/ui';
import { getThemeColor } from 'app/core/utils/colors';
import { Attributes, LogsFrame, parseLogsFrame } from '../features/logs/logsFrame';
import { getLogLevel, getLogLevelFromKey, sortInAscendingOrder } from '../features/logs/utils';
export const LIMIT_LABEL = 'Line limit';
@ -310,42 +310,20 @@ function separateLogsAndMetrics(dataFrames: DataFrame[]) {
return { logSeries, metricSeries };
}
interface LogFields {
series: DataFrame;
timeField: FieldWithIndex;
stringField: FieldWithIndex;
labelsField?: FieldWithIndex;
timeNanosecondField?: FieldWithIndex;
logLevelField?: FieldWithIndex;
idField?: FieldWithIndex;
interface LogInfo {
rawFrame: DataFrame;
logsFrame: LogsFrame;
frameLabels?: Labels[];
}
function getAllLabels(fields: LogFields): Labels[] {
// there are two types of dataframes we handle:
// 1. labels are in a separate field (more efficient when labels change by every log-row)
// 2. labels are in in the string-field's `.labels` attribute
export function attributesToLabels(attributes: Attributes): Labels {
const result: Labels = {};
const { stringField, labelsField } = fields;
Object.entries(attributes).forEach(([k, v]) => {
result[k] = typeof v === 'string' ? v : JSON.stringify(v);
});
if (labelsField !== undefined) {
return labelsField.values;
} else {
return [stringField.labels ?? {}];
}
}
function getLabelsForFrameRow(fields: LogFields, index: number): Labels {
// there are two types of dataframes we handle.
// either labels-on-the-string-field, or labels-in-the-labels-field
const { stringField, labelsField } = fields;
if (labelsField !== undefined) {
return labelsField.values[index];
} else {
return stringField.labels ?? {};
}
return result;
}
/**
@ -359,7 +337,7 @@ export function logSeriesToLogsModel(logSeries: DataFrame[], queries: DataQuery[
const allLabels: Labels[][] = [];
// Find the fields we care about and collect all labels
let allSeries: LogFields[] = [];
let allSeries: LogInfo[] = [];
// We are sometimes passing data frames with no fields because we want to calculate correct meta stats.
// Therefore we need to filter out series with no fields. These series are used only for meta stats calculation.
@ -367,31 +345,19 @@ export function logSeriesToLogsModel(logSeries: DataFrame[], queries: DataQuery[
if (seriesWithFields.length) {
seriesWithFields.forEach((series) => {
const fieldCache = new FieldCache(series);
const stringField = fieldCache.getFirstFieldOfType(FieldType.string);
const timeField = fieldCache.getFirstFieldOfType(FieldType.time);
// NOTE: this is experimental, please do not use in your code.
// we will get this custom-frame-type into the "real" frame-type list soon,
// but the name might change, so please do not use it until then.
const labelsField =
series.meta?.custom?.frameType === 'LabeledTimeValues' ? fieldCache.getFieldByName('labels') : undefined;
if (stringField !== undefined && timeField !== undefined) {
const logsFrame = parseLogsFrame(series);
if (logsFrame != null) {
// for now we ignore the nested-ness of attributes, and just stringify-them
const frameLabels = logsFrame.getAttributesAsLabels() ?? undefined;
const info = {
series,
timeField,
labelsField,
timeNanosecondField: fieldCache.getFieldByName('tsNs'),
stringField,
logLevelField: fieldCache.getFieldByName('level'),
idField: getIdField(fieldCache),
rawFrame: series,
logsFrame: logsFrame,
frameLabels,
};
allSeries.push(info);
const labels = getAllLabels(info);
if (labels.length > 0) {
allLabels.push(labels);
if (frameLabels && frameLabels.length > 0) {
allLabels.push(frameLabels);
}
}
});
@ -404,7 +370,8 @@ export function logSeriesToLogsModel(logSeries: DataFrame[], queries: DataQuery[
let hasUniqueLabels = false;
for (const info of allSeries) {
const { timeField, timeNanosecondField, stringField, logLevelField, idField, series } = info;
const { logsFrame, rawFrame: series, frameLabels } = info;
const { timeField, timeNanosecondField, bodyField: stringField, severityField: logLevelField, idField } = logsFrame;
for (let j = 0; j < series.length; j++) {
const ts = timeField.values[j];
@ -426,7 +393,7 @@ export function logSeriesToLogsModel(logSeries: DataFrame[], queries: DataQuery[
const searchWords = series.meta?.custom?.searchWords ?? series.meta?.searchWords ?? [];
const entry = hasAnsi ? ansicolor.strip(message) : message;
const labels = getLabelsForFrameRow(info, j);
const labels = frameLabels?.[j];
const uniqueLabels = findUniqueLabels(labels, commonLabels);
if (Object.keys(uniqueLabels).length > 0) {
hasUniqueLabels = true;
@ -540,17 +507,6 @@ export function logSeriesToLogsModel(logSeries: DataFrame[], queries: DataQuery[
};
}
function getIdField(fieldCache: FieldCache): FieldWithIndex | undefined {
const idFieldNames = ['id'];
for (const fieldName of idFieldNames) {
const idField = fieldCache.getFieldByName(fieldName);
if (idField) {
return idField;
}
}
return undefined;
}
// Used to add additional information to Line limit meta info
function adjustMetaInfo(logsModel: LogsModel, visibleRangeMs?: number, requestedRangeMs?: number): LogsMetaItem[] {
let logsModelMeta = [...logsModel.meta!];

View File

@ -0,0 +1,53 @@
import { DataFrame, FieldCache, FieldType, Field, Labels } from '@grafana/data';
import type { LogsFrame } from './logsFrame';
function getLabels(frame: DataFrame, cache: FieldCache, lineField: Field): Labels[] | null {
const useLabelsField = frame.meta?.custom?.frameType === 'LabeledTimeValues';
if (!useLabelsField) {
const lineLabels = lineField.labels;
if (lineLabels !== undefined) {
const result = new Array(frame.length);
result.fill(lineLabels);
return result;
} else {
return null;
}
}
const labelsField = cache.getFieldByName('labels');
if (labelsField === undefined) {
return null;
}
return labelsField.values;
}
export function parseLegacyLogsFrame(frame: DataFrame): LogsFrame | null {
const cache = new FieldCache(frame);
const timeField = cache.getFields(FieldType.time)[0];
const bodyField = cache.getFields(FieldType.string)[0];
// these two are mandatory
if (timeField === undefined || bodyField === undefined) {
return null;
}
const timeNanosecondField = cache.getFieldByName('tsNs') ?? null;
const severityField = cache.getFieldByName('level') ?? null;
const idField = cache.getFieldByName('id') ?? null;
const labels = getLabels(frame, cache, bodyField);
return {
timeField,
bodyField,
timeNanosecondField,
severityField,
idField,
attributes: labels,
getAttributesAsLabels: () => labels,
};
}

View File

@ -0,0 +1,209 @@
import { FieldType, DataFrameType, Field, Labels } from '@grafana/data';
import { parseLogsFrame, attributesToLabels } from './logsFrame';
function makeString(name: string, values: string[], labels?: Labels): Field {
return {
name,
type: FieldType.string,
config: {},
values,
labels,
};
}
function makeTime(name: string, values: number[], nanos?: number[]): Field {
return {
name,
type: FieldType.time,
config: {},
values,
};
}
function makeObject(name: string, values: Object[]): Field {
return {
name,
type: FieldType.other,
config: {},
values,
};
}
describe('parseLogsFrame should parse different logs-dataframe formats', () => {
it('should parse a dataplane-complaint logs frame', () => {
const time = makeTime('timestamp', [1687185711795, 1687185711995]);
const body = makeString('body', ['line1', 'line2']);
const severity = makeString('severity', ['info', 'debug']);
const id = makeString('id', ['id1', 'id2']);
const attributes = makeObject('attributes', [
{ counter: '38141', label: 'val2', level: 'warning' },
{ counter: '38143', label: 'val2', level: 'info' },
]);
const result = parseLogsFrame({
meta: {
type: DataFrameType.LogLines,
},
fields: [id, body, attributes, severity, time],
length: 2,
});
expect(result).not.toBeNull();
expect(result!.timeField.values[0]).toBe(time.values[0]);
expect(result!.bodyField.values[0]).toBe(body.values[0]);
expect(result!.idField?.values[0]).toBe(id.values[0]);
expect(result!.timeNanosecondField).toBeNull();
expect(result!.severityField?.values[0]).toBe(severity.values[0]);
expect(result!.attributes).toStrictEqual([
{ counter: '38141', label: 'val2', level: 'warning' },
{ counter: '38143', label: 'val2', level: 'info' },
]);
});
it('should parse old Loki-style (grafana8.x) frames ( multi-frame, but here we only parse a single frame )', () => {
const time = makeTime('ts', [1687185711795, 1687185711995]);
const line = makeString('line', ['line1', 'line2'], { counter: '34543', lable: 'val3', level: 'info' });
const id = makeString('id', ['id1', 'id2']);
const ns = makeString('tsNs', ['1687185711795123456', '1687185711995987654']);
const result = parseLogsFrame({
fields: [time, line, ns, id],
length: 2,
});
expect(result).not.toBeNull();
expect(result!.timeField.values[0]).toBe(time.values[0]);
expect(result!.bodyField.values[0]).toBe(line.values[0]);
expect(result!.idField?.values[0]).toBe(id.values[0]);
expect(result!.timeNanosecondField?.values[0]).toBe(ns.values[0]);
expect(result!.severityField).toBeNull();
expect(result!.attributes).toStrictEqual([
{ counter: '34543', lable: 'val3', level: 'info' },
{ counter: '34543', lable: 'val3', level: 'info' },
]);
});
it('should parse a Loki-style frame (single-frame, labels-in-json)', () => {
const time = makeTime('Time', [1687185711795, 1687185711995]);
const line = makeString('Line', ['line1', 'line2']);
const id = makeString('id', ['id1', 'id2']);
const ns = makeString('tsNs', ['1687185711795123456', '1687185711995987654']);
const labels = makeObject('labels', [
{ counter: '38141', label: 'val2', level: 'warning' },
{ counter: '38143', label: 'val2', level: 'info' },
]);
const result = parseLogsFrame({
meta: {
custom: {
frameType: 'LabeledTimeValues',
},
},
fields: [labels, time, line, ns, id],
length: 2,
});
expect(result).not.toBeNull();
expect(result!.timeField.values[0]).toBe(time.values[0]);
expect(result!.bodyField.values[0]).toBe(line.values[0]);
expect(result!.idField?.values[0]).toBe(id.values[0]);
expect(result!.timeNanosecondField?.values[0]).toBe(ns.values[0]);
expect(result!.severityField).toBeNull();
expect(result!.attributes).toStrictEqual([
{ counter: '38141', label: 'val2', level: 'warning' },
{ counter: '38143', label: 'val2', level: 'info' },
]);
});
it('should parse elastic-style frame (has level-field, no labels parsed, extra fields ignored)', () => {
const time = makeTime('Time', [1687185711795, 1687185711995]);
const line = makeString('Line', ['line1', 'line2']);
const source = makeObject('_source', [
{ counter: '38141', label: 'val2', level: 'warning' },
{ counter: '38143', label: 'val2', level: 'info' },
]);
const host = makeString('hostname', ['h1', 'h2']);
const level = makeString('level', ['info', 'error']);
const result = parseLogsFrame({
meta: {
custom: {
frameType: 'LabeledTimeValues',
},
},
fields: [time, line, source, level, host],
length: 2,
});
expect(result).not.toBeNull();
expect(result!.timeField.values[0]).toBe(time.values[0]);
expect(result!.bodyField.values[0]).toBe(line.values[0]);
expect(result!.severityField?.values[0]).toBe(level.values[0]);
expect(result!.idField).toBeNull();
expect(result!.timeNanosecondField).toBeNull();
expect(result!.attributes).toBeNull();
});
it('should parse a minimal old-style frame (only two fields, time and line)', () => {
const time = makeTime('Time', [1687185711795, 1687185711995]);
const line = makeString('Line', ['line1', 'line2']);
const result = parseLogsFrame({
fields: [time, line],
length: 2,
});
expect(result).not.toBeNull();
expect(result!.timeField.values[0]).toBe(time.values[0]);
expect(result!.bodyField.values[0]).toBe(line.values[0]);
expect(result!.severityField).toBeNull();
expect(result!.idField).toBeNull();
expect(result!.timeNanosecondField).toBeNull();
expect(result!.attributes).toBeNull();
});
});
describe('attributesToLabels', () => {
it('should convert nested structures correctly', () => {
expect(
attributesToLabels({
key1: 'val1',
key2: ['k2v1', 'k2v2', 'k2v3'],
key3: {
k3k1: 'v1',
k3k2: 'v2',
k3k3: [
'k3k3v1',
{
k3k3k1: 'one',
k3k3k2: 'two',
},
],
},
})
).toStrictEqual({
key1: 'val1',
key2: '["k2v1","k2v2","k2v3"]',
key3: '{"k3k1":"v1","k3k2":"v2","k3k3":["k3k3v1",{"k3k3k1":"one","k3k3k2":"two"}]}',
});
});
it('should convert not-nested structures correctly', () => {
expect(
attributesToLabels({
key1: 'val1',
key2: 'val2',
})
).toStrictEqual({
key1: 'val1',
key2: 'val2',
});
// FIXME
});
});

View File

@ -0,0 +1,81 @@
import { DataFrame, FieldCache, FieldType, FieldWithIndex, DataFrameType, Labels } from '@grafana/data';
import { parseLegacyLogsFrame } from './legacyLogsFrame';
// these are like Labels, but their values can be
// arbitrary structures, not just strings
export type Attributes = Record<string, unknown>;
// the attributes-access is a little awkward, but it's necessary
// because there are multiple,very different dataframe-represenations.
export type LogsFrame = {
timeField: FieldWithIndex;
bodyField: FieldWithIndex;
timeNanosecondField: FieldWithIndex | null;
severityField: FieldWithIndex | null;
idField: FieldWithIndex | null;
attributes: Attributes[] | null;
getAttributesAsLabels: () => Labels[] | null; // temporarily exists to make the labels=>attributes migration simpler
};
function getField(cache: FieldCache, name: string, fieldType: FieldType): FieldWithIndex | undefined {
const field = cache.getFieldByName(name);
if (field === undefined) {
return undefined;
}
return field.type === fieldType ? field : undefined;
}
const DATAPLANE_TIMESTAMP_NAME = 'timestamp';
const DATAPLANE_BODY_NAME = 'body';
const DATAPLANE_SEVERITY_NAME = 'severity';
const DATAPLANE_ID_NAME = 'id';
const DATAPLANE_ATTRIBUTES_NAME = 'attributes';
export function attributesToLabels(attributes: Attributes): Labels {
const result: Labels = {};
Object.entries(attributes).forEach(([k, v]) => {
result[k] = typeof v === 'string' ? v : JSON.stringify(v);
});
return result;
}
function parseDataplaneLogsFrame(frame: DataFrame): LogsFrame | null {
const cache = new FieldCache(frame);
const timestampField = getField(cache, DATAPLANE_TIMESTAMP_NAME, FieldType.time);
const bodyField = getField(cache, DATAPLANE_BODY_NAME, FieldType.string);
// these two are mandatory
if (timestampField === undefined || bodyField === undefined) {
return null;
}
const severityField = getField(cache, DATAPLANE_SEVERITY_NAME, FieldType.string) ?? null;
const idField = getField(cache, DATAPLANE_ID_NAME, FieldType.string) ?? null;
const attributesField = getField(cache, DATAPLANE_ATTRIBUTES_NAME, FieldType.other) ?? null;
const attributes = attributesField === null ? null : attributesField.values;
return {
timeField: timestampField,
bodyField,
severityField,
idField,
attributes,
timeNanosecondField: null,
getAttributesAsLabels: () => (attributes !== null ? attributes.map(attributesToLabels) : null),
};
return null;
}
export function parseLogsFrame(frame: DataFrame): LogsFrame | null {
if (frame.meta?.type === DataFrameType.LogLines) {
return parseDataplaneLogsFrame(frame);
} else {
return parseLegacyLogsFrame(frame);
}
}