mirror of
https://github.com/grafana/grafana.git
synced 2025-02-25 18:55:37 -06:00
Elastic: Full range logs volume (#40700)
* Add basic implementation for logs volume * Fix aggregation * Move getFieldConfig * Remove duplicated aggregation logic * Extra querying logic * Simplify querying logic * Update logs volume aggregation tests * Remove bar max width and width factor * Clean up * Skip level aggregation if it's not configured * Post merge fix for aggregation * Fix tests * Clean up the code * Ensure logs without level are aggregated as unknown category * Use LogLevel.unknown * Fix strict TS errors
This commit is contained in:
@@ -1,7 +1,12 @@
|
||||
import {
|
||||
ArrayVector,
|
||||
DataFrame,
|
||||
DataQuery,
|
||||
DataQueryRequest,
|
||||
DataQueryResponse,
|
||||
dateTimeParse,
|
||||
FieldType,
|
||||
LoadingState,
|
||||
LogLevel,
|
||||
LogRowModel,
|
||||
LogsDedupStrategy,
|
||||
@@ -10,14 +15,17 @@ import {
|
||||
toDataFrame,
|
||||
} from '@grafana/data';
|
||||
import {
|
||||
COMMON_LABELS,
|
||||
dataFrameToLogsModel,
|
||||
dedupLogRows,
|
||||
getSeriesProperties,
|
||||
logSeriesToLogsModel,
|
||||
filterLogLevels,
|
||||
getSeriesProperties,
|
||||
LIMIT_LABEL,
|
||||
COMMON_LABELS,
|
||||
logSeriesToLogsModel,
|
||||
queryLogsVolume,
|
||||
} from './logs_model';
|
||||
import { Observable } from 'rxjs';
|
||||
import { MockObservableDataSourceApi } from '../../test/mocks/datasource_srv';
|
||||
|
||||
describe('dedupLogRows()', () => {
|
||||
test('should return rows as is when dedup is set to none', () => {
|
||||
@@ -939,3 +947,120 @@ describe('getSeriesProperties()', () => {
|
||||
expect(result.visibleRange).toMatchObject({ from: 8, to: 30 });
|
||||
});
|
||||
});
|
||||
|
||||
describe('logs volume', () => {
|
||||
class TestDataQuery implements DataQuery {
|
||||
refId = 'a';
|
||||
target = '';
|
||||
}
|
||||
|
||||
let volumeProvider: Observable<DataQueryResponse>,
|
||||
datasource: MockObservableDataSourceApi,
|
||||
request: DataQueryRequest<TestDataQuery>;
|
||||
|
||||
function createFrame(labels: object, timestamps: number[], values: number[]) {
|
||||
return toDataFrame({
|
||||
fields: [
|
||||
{ name: 'Time', type: FieldType.time, values: timestamps },
|
||||
{
|
||||
name: 'Number',
|
||||
type: FieldType.number,
|
||||
values,
|
||||
labels,
|
||||
},
|
||||
],
|
||||
});
|
||||
}
|
||||
|
||||
function createExpectedFields(levelName: string, timestamps: number[], values: number[]) {
|
||||
return [
|
||||
{ name: 'Time', values: { buffer: timestamps } },
|
||||
{
|
||||
name: 'Value',
|
||||
config: { displayNameFromDS: levelName },
|
||||
values: { buffer: values },
|
||||
},
|
||||
];
|
||||
}
|
||||
|
||||
function setup(datasourceSetup: () => void) {
|
||||
datasourceSetup();
|
||||
request = ({
|
||||
targets: [{ target: 'volume query 1' }, { target: 'volume query 2' }],
|
||||
scopedVars: {},
|
||||
} as unknown) as DataQueryRequest<TestDataQuery>;
|
||||
volumeProvider = queryLogsVolume(datasource, request, {
|
||||
extractLevel: (dataFrame: DataFrame) => {
|
||||
return dataFrame.fields[1]!.labels!.level === 'error' ? LogLevel.error : LogLevel.unknown;
|
||||
},
|
||||
range: {
|
||||
from: dateTimeParse('2021-06-17 00:00:00', { timeZone: 'utc' }),
|
||||
to: dateTimeParse('2021-06-17 00:00:00', { timeZone: 'utc' }),
|
||||
raw: { from: '0', to: '1' },
|
||||
},
|
||||
targets: request.targets,
|
||||
});
|
||||
}
|
||||
|
||||
function setupMultipleResults() {
|
||||
// level=unknown
|
||||
const resultAFrame1 = createFrame({ app: 'app01' }, [100, 200, 300], [5, 5, 5]);
|
||||
// level=error
|
||||
const resultAFrame2 = createFrame({ app: 'app01', level: 'error' }, [100, 200, 300], [0, 1, 0]);
|
||||
// level=unknown
|
||||
const resultBFrame1 = createFrame({ app: 'app02' }, [100, 200, 300], [1, 2, 3]);
|
||||
// level=error
|
||||
const resultBFrame2 = createFrame({ app: 'app02', level: 'error' }, [100, 200, 300], [1, 1, 1]);
|
||||
|
||||
datasource = new MockObservableDataSourceApi('loki', [
|
||||
{
|
||||
data: [resultAFrame1, resultAFrame2],
|
||||
},
|
||||
{
|
||||
data: [resultBFrame1, resultBFrame2],
|
||||
},
|
||||
]);
|
||||
}
|
||||
|
||||
function setupErrorResponse() {
|
||||
datasource = new MockObservableDataSourceApi('loki', [], undefined, 'Error message');
|
||||
}
|
||||
|
||||
it('aggregates data frames by level', async () => {
|
||||
setup(setupMultipleResults);
|
||||
|
||||
await expect(volumeProvider).toEmitValuesWith((received) => {
|
||||
expect(received).toMatchObject([
|
||||
{ state: LoadingState.Loading, error: undefined, data: [] },
|
||||
{
|
||||
state: LoadingState.Done,
|
||||
error: undefined,
|
||||
data: [
|
||||
{
|
||||
fields: createExpectedFields('unknown', [100, 200, 300], [6, 7, 8]),
|
||||
},
|
||||
{
|
||||
fields: createExpectedFields('error', [100, 200, 300], [1, 2, 1]),
|
||||
},
|
||||
],
|
||||
},
|
||||
]);
|
||||
});
|
||||
});
|
||||
|
||||
it('returns error', async () => {
|
||||
setup(setupErrorResponse);
|
||||
|
||||
await expect(volumeProvider).toEmitValuesWith((received) => {
|
||||
expect(received).toMatchObject([
|
||||
{ state: LoadingState.Loading, error: undefined, data: [] },
|
||||
{
|
||||
state: LoadingState.Error,
|
||||
error: 'Error message',
|
||||
data: [],
|
||||
},
|
||||
'Error message',
|
||||
]);
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -6,11 +6,15 @@ import {
|
||||
AbsoluteTimeRange,
|
||||
DataFrame,
|
||||
DataQuery,
|
||||
DataQueryRequest,
|
||||
DataQueryResponse,
|
||||
DataSourceApi,
|
||||
dateTime,
|
||||
dateTimeFormat,
|
||||
dateTimeFormatTimeAgo,
|
||||
FieldCache,
|
||||
FieldColorModeId,
|
||||
FieldConfig,
|
||||
FieldType,
|
||||
FieldWithIndex,
|
||||
findCommonLabels,
|
||||
@@ -18,19 +22,24 @@ import {
|
||||
getLogLevel,
|
||||
getLogLevelFromKey,
|
||||
Labels,
|
||||
LoadingState,
|
||||
LogLevel,
|
||||
LogRowModel,
|
||||
LogsDedupStrategy,
|
||||
LogsMetaItem,
|
||||
LogsMetaKind,
|
||||
LogsModel,
|
||||
MutableDataFrame,
|
||||
rangeUtil,
|
||||
ScopedVars,
|
||||
sortInAscendingOrder,
|
||||
textUtil,
|
||||
TimeRange,
|
||||
toDataFrame,
|
||||
} from '@grafana/data';
|
||||
import { getThemeColor } from 'app/core/utils/colors';
|
||||
import { SIPrefix } from '@grafana/data/src/valueFormats/symbolFormatters';
|
||||
import { Observable, throwError, timeout } from 'rxjs';
|
||||
|
||||
export const LIMIT_LABEL = 'Line limit';
|
||||
export const COMMON_LABELS = 'Common labels';
|
||||
@@ -45,6 +54,11 @@ export const LogLevelColor = {
|
||||
[LogLevel.unknown]: getThemeColor('#8e8e8e', '#dde4ed'),
|
||||
};
|
||||
|
||||
const SECOND = 1000;
|
||||
const MINUTE = 60 * SECOND;
|
||||
const HOUR = 60 * MINUTE;
|
||||
const DAY = 24 * HOUR;
|
||||
|
||||
const isoDateRegexp = /\d{4}-[01]\d-[0-3]\dT[0-2]\d:[0-5]\d:[0-6]\d[,\.]\d+([+-][0-2]\d:[0-5]\d|Z)/g;
|
||||
function isDuplicateRow(row: LogRowModel, other: LogRowModel, strategy?: LogsDedupStrategy): boolean {
|
||||
switch (strategy) {
|
||||
@@ -510,3 +524,194 @@ function adjustMetaInfo(logsModel: LogsModel, visibleRangeMs?: number, requested
|
||||
|
||||
return logsModelMeta;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns field configuration used to render logs volume bars
|
||||
*/
|
||||
function getLogVolumeFieldConfig(level: LogLevel, oneLevelDetected: boolean) {
|
||||
const name = oneLevelDetected && level === LogLevel.unknown ? 'logs' : level;
|
||||
const color = LogLevelColor[level];
|
||||
return {
|
||||
displayNameFromDS: name,
|
||||
color: {
|
||||
mode: FieldColorModeId.Fixed,
|
||||
fixedColor: color,
|
||||
},
|
||||
custom: {
|
||||
drawStyle: GraphDrawStyle.Bars,
|
||||
barAlignment: BarAlignment.Center,
|
||||
lineColor: color,
|
||||
pointColor: color,
|
||||
fillColor: color,
|
||||
lineWidth: 1,
|
||||
fillOpacity: 100,
|
||||
stacking: {
|
||||
mode: StackingMode.Normal,
|
||||
group: 'A',
|
||||
},
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Take multiple data frames, sum up values and group by level.
|
||||
* Return a list of data frames, each representing single level.
|
||||
*/
|
||||
export function aggregateRawLogsVolume(
|
||||
rawLogsVolume: DataFrame[],
|
||||
extractLevel: (dataFrame: DataFrame) => LogLevel
|
||||
): DataFrame[] {
|
||||
const logsVolumeByLevelMap: Partial<Record<LogLevel, DataFrame[]>> = {};
|
||||
rawLogsVolume.forEach((dataFrame) => {
|
||||
const level = extractLevel(dataFrame);
|
||||
if (!logsVolumeByLevelMap[level]) {
|
||||
logsVolumeByLevelMap[level] = [];
|
||||
}
|
||||
logsVolumeByLevelMap[level]!.push(dataFrame);
|
||||
});
|
||||
|
||||
return Object.keys(logsVolumeByLevelMap).map((level: string) => {
|
||||
return aggregateFields(
|
||||
logsVolumeByLevelMap[level as LogLevel]!,
|
||||
getLogVolumeFieldConfig(level as LogLevel, Object.keys(logsVolumeByLevelMap).length === 1)
|
||||
);
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Aggregate multiple data frames into a single data frame by adding values.
|
||||
* Multiple data frames for the same level are passed here to get a single
|
||||
* data frame for a given level. Aggregation by level happens in aggregateRawLogsVolume()
|
||||
*/
|
||||
function aggregateFields(dataFrames: DataFrame[], config: FieldConfig): DataFrame {
|
||||
const aggregatedDataFrame = new MutableDataFrame();
|
||||
if (!dataFrames.length) {
|
||||
return aggregatedDataFrame;
|
||||
}
|
||||
|
||||
const totalLength = dataFrames[0].length;
|
||||
const timeField = new FieldCache(dataFrames[0]).getFirstFieldOfType(FieldType.time);
|
||||
|
||||
if (!timeField) {
|
||||
return aggregatedDataFrame;
|
||||
}
|
||||
|
||||
aggregatedDataFrame.addField({ name: 'Time', type: FieldType.time }, totalLength);
|
||||
aggregatedDataFrame.addField({ name: 'Value', type: FieldType.number, config }, totalLength);
|
||||
|
||||
dataFrames.forEach((dataFrame) => {
|
||||
dataFrame.fields.forEach((field) => {
|
||||
if (field.type === FieldType.number) {
|
||||
for (let pointIndex = 0; pointIndex < totalLength; pointIndex++) {
|
||||
const currentValue = aggregatedDataFrame.get(pointIndex).Value;
|
||||
const valueToAdd = field.values.get(pointIndex);
|
||||
const totalValue =
|
||||
currentValue === null && valueToAdd === null ? null : (currentValue || 0) + (valueToAdd || 0);
|
||||
aggregatedDataFrame.set(pointIndex, { Value: totalValue, Time: timeField.values.get(pointIndex) });
|
||||
}
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
return aggregatedDataFrame;
|
||||
}
|
||||
|
||||
const LOGS_VOLUME_QUERY_DEFAULT_TIMEOUT = 60000;
|
||||
|
||||
type LogsVolumeQueryOptions<T extends DataQuery> = {
|
||||
timeout?: number;
|
||||
extractLevel: (dataFrame: DataFrame) => LogLevel;
|
||||
targets: T[];
|
||||
range: TimeRange;
|
||||
};
|
||||
|
||||
/**
|
||||
* Creates an observable, which makes requests to get logs volume and aggregates results.
|
||||
*/
|
||||
export function queryLogsVolume<T extends DataQuery>(
|
||||
datasource: DataSourceApi<T, any, any>,
|
||||
logsVolumeRequest: DataQueryRequest<T>,
|
||||
options: LogsVolumeQueryOptions<T>
|
||||
): Observable<DataQueryResponse> {
|
||||
const intervalInfo = getIntervalInfo(logsVolumeRequest.scopedVars);
|
||||
logsVolumeRequest.interval = intervalInfo.interval;
|
||||
logsVolumeRequest.scopedVars.__interval = { value: intervalInfo.interval, text: intervalInfo.interval };
|
||||
if (intervalInfo.intervalMs !== undefined) {
|
||||
logsVolumeRequest.intervalMs = intervalInfo.intervalMs;
|
||||
logsVolumeRequest.scopedVars.__interval_ms = { value: intervalInfo.intervalMs, text: intervalInfo.intervalMs };
|
||||
}
|
||||
|
||||
return new Observable((observer) => {
|
||||
let rawLogsVolume: DataFrame[] = [];
|
||||
observer.next({
|
||||
state: LoadingState.Loading,
|
||||
error: undefined,
|
||||
data: [],
|
||||
});
|
||||
|
||||
const subscription = (datasource.query(logsVolumeRequest) as Observable<DataQueryResponse>)
|
||||
.pipe(
|
||||
timeout({
|
||||
each: options.timeout || LOGS_VOLUME_QUERY_DEFAULT_TIMEOUT,
|
||||
with: () => throwError(new Error('Request timed-out. Please make your query more specific and try again.')),
|
||||
})
|
||||
)
|
||||
.subscribe({
|
||||
complete: () => {
|
||||
const aggregatedLogsVolume = aggregateRawLogsVolume(rawLogsVolume, options.extractLevel);
|
||||
if (aggregatedLogsVolume[0]) {
|
||||
aggregatedLogsVolume[0].meta = {
|
||||
custom: {
|
||||
targets: options.targets,
|
||||
absoluteRange: { from: options.range.from.valueOf(), to: options.range.to.valueOf() },
|
||||
},
|
||||
};
|
||||
}
|
||||
observer.next({
|
||||
state: LoadingState.Done,
|
||||
error: undefined,
|
||||
data: aggregatedLogsVolume,
|
||||
});
|
||||
observer.complete();
|
||||
},
|
||||
next: (dataQueryResponse: DataQueryResponse) => {
|
||||
rawLogsVolume = rawLogsVolume.concat(dataQueryResponse.data.map(toDataFrame));
|
||||
},
|
||||
error: (error) => {
|
||||
observer.next({
|
||||
state: LoadingState.Error,
|
||||
error: error,
|
||||
data: [],
|
||||
});
|
||||
observer.error(error);
|
||||
},
|
||||
});
|
||||
return () => {
|
||||
subscription?.unsubscribe();
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
function getIntervalInfo(scopedVars: ScopedVars): { interval: string; intervalMs?: number } {
|
||||
if (scopedVars.__interval) {
|
||||
let intervalMs: number = scopedVars.__interval_ms.value;
|
||||
let interval = '';
|
||||
if (intervalMs > HOUR) {
|
||||
intervalMs = DAY;
|
||||
interval = '1d';
|
||||
} else if (intervalMs > MINUTE) {
|
||||
intervalMs = HOUR;
|
||||
interval = '1h';
|
||||
} else if (intervalMs > SECOND) {
|
||||
intervalMs = MINUTE;
|
||||
interval = '1m';
|
||||
} else {
|
||||
intervalMs = SECOND;
|
||||
interval = '1s';
|
||||
}
|
||||
|
||||
return { interval, intervalMs };
|
||||
} else {
|
||||
return { interval: '$__interval' };
|
||||
}
|
||||
}
|
||||
|
||||
@@ -12,10 +12,13 @@ import {
|
||||
DataSourceApi,
|
||||
DataSourceInstanceSettings,
|
||||
DataSourceWithLogsContextSupport,
|
||||
DataSourceWithLogsVolumeSupport,
|
||||
DateTime,
|
||||
dateTime,
|
||||
Field,
|
||||
getDefaultTimeRange,
|
||||
getLogLevelFromKey,
|
||||
LogLevel,
|
||||
LogRowModel,
|
||||
MetricFindValue,
|
||||
ScopedVars,
|
||||
@@ -42,6 +45,7 @@ import {
|
||||
isBucketAggregationWithField,
|
||||
} from './components/QueryEditor/BucketAggregationsEditor/aggregations';
|
||||
import { coerceESVersion, getScriptValue } from './utils';
|
||||
import { queryLogsVolume } from 'app/core/logs_model';
|
||||
|
||||
// Those are metadata fields as defined in https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-fields.html#_identity_metadata_fields.
|
||||
// custom fields can start with underscores, therefore is not safe to exclude anything that starts with one.
|
||||
@@ -59,7 +63,7 @@ const ELASTIC_META_FIELDS = [
|
||||
|
||||
export class ElasticDatasource
|
||||
extends DataSourceApi<ElasticsearchQuery, ElasticsearchOptions>
|
||||
implements DataSourceWithLogsContextSupport {
|
||||
implements DataSourceWithLogsContextSupport, DataSourceWithLogsVolumeSupport<ElasticsearchQuery> {
|
||||
basicAuth?: string;
|
||||
withCredentials?: boolean;
|
||||
url: string;
|
||||
@@ -557,6 +561,60 @@ export class ElasticDatasource
|
||||
return logResponse;
|
||||
};
|
||||
|
||||
getLogsVolumeDataProvider(request: DataQueryRequest<ElasticsearchQuery>): Observable<DataQueryResponse> | undefined {
|
||||
const isLogsVolumeAvailable = request.targets.some((target) => {
|
||||
return target.metrics?.length === 1 && target.metrics[0].type === 'logs';
|
||||
});
|
||||
if (!isLogsVolumeAvailable) {
|
||||
return undefined;
|
||||
}
|
||||
const logsVolumeRequest = cloneDeep(request);
|
||||
logsVolumeRequest.targets = logsVolumeRequest.targets.map((target) => {
|
||||
const bucketAggs: BucketAggregation[] = [];
|
||||
const timeField = this.timeField ?? '@timestamp';
|
||||
|
||||
if (this.logLevelField) {
|
||||
bucketAggs.push({
|
||||
id: '2',
|
||||
type: 'terms',
|
||||
settings: {
|
||||
min_doc_count: '0',
|
||||
size: '0',
|
||||
order: 'desc',
|
||||
orderBy: '_count',
|
||||
missing: LogLevel.unknown,
|
||||
},
|
||||
field: this.logLevelField,
|
||||
});
|
||||
}
|
||||
bucketAggs.push({
|
||||
id: '3',
|
||||
type: 'date_histogram',
|
||||
settings: {
|
||||
interval: 'auto',
|
||||
min_doc_count: '0',
|
||||
trimEdges: '0',
|
||||
},
|
||||
field: timeField,
|
||||
});
|
||||
|
||||
const logsVolumeQuery: ElasticsearchQuery = {
|
||||
refId: target.refId,
|
||||
query: target.query,
|
||||
metrics: [{ type: 'count', id: '1' }],
|
||||
timeField,
|
||||
bucketAggs,
|
||||
};
|
||||
return logsVolumeQuery;
|
||||
});
|
||||
|
||||
return queryLogsVolume(this, logsVolumeRequest, {
|
||||
range: request.range,
|
||||
targets: request.targets,
|
||||
extractLevel: (dataFrame) => getLogLevelFromKey(dataFrame.name || ''),
|
||||
});
|
||||
}
|
||||
|
||||
query(options: DataQueryRequest<ElasticsearchQuery>): Observable<DataQueryResponse> {
|
||||
let payload = '';
|
||||
const targets = this.interpolateVariablesInQueries(cloneDeep(options.targets), options.scopedVars);
|
||||
|
||||
@@ -1,113 +0,0 @@
|
||||
import { MockObservableDataSourceApi } from '../../../../../test/mocks/datasource_srv';
|
||||
import { createLokiLogsVolumeProvider } from './logsVolumeProvider';
|
||||
import LokiDatasource from '../datasource';
|
||||
import { DataQueryRequest, DataQueryResponse, FieldType, LoadingState, toDataFrame } from '@grafana/data';
|
||||
import { LokiQuery } from '../types';
|
||||
import { Observable } from 'rxjs';
|
||||
|
||||
function createFrame(labels: object, timestamps: number[], values: number[]) {
|
||||
return toDataFrame({
|
||||
fields: [
|
||||
{ name: 'Time', type: FieldType.time, values: timestamps },
|
||||
{
|
||||
name: 'Number',
|
||||
type: FieldType.number,
|
||||
values,
|
||||
labels,
|
||||
},
|
||||
],
|
||||
});
|
||||
}
|
||||
|
||||
function createExpectedFields(levelName: string, timestamps: number[], values: number[]) {
|
||||
return [
|
||||
{ name: 'Time', values: { buffer: timestamps } },
|
||||
{
|
||||
name: 'Value',
|
||||
config: { displayNameFromDS: levelName },
|
||||
values: { buffer: values },
|
||||
},
|
||||
];
|
||||
}
|
||||
|
||||
describe('LokiLogsVolumeProvider', () => {
|
||||
let volumeProvider: Observable<DataQueryResponse>,
|
||||
datasource: MockObservableDataSourceApi,
|
||||
request: DataQueryRequest<LokiQuery>;
|
||||
|
||||
function setup(datasourceSetup: () => void) {
|
||||
datasourceSetup();
|
||||
request = ({
|
||||
targets: [{ expr: '{app="app01"}' }, { expr: '{app="app02"}' }],
|
||||
range: { from: 0, to: 1 },
|
||||
scopedVars: {
|
||||
__interval_ms: {
|
||||
value: 1000,
|
||||
},
|
||||
},
|
||||
} as unknown) as DataQueryRequest<LokiQuery>;
|
||||
volumeProvider = createLokiLogsVolumeProvider((datasource as unknown) as LokiDatasource, request);
|
||||
}
|
||||
|
||||
function setupMultipleResults() {
|
||||
// level=unknown
|
||||
const resultAFrame1 = createFrame({ app: 'app01' }, [100, 200, 300], [5, 5, 5]);
|
||||
// level=error
|
||||
const resultAFrame2 = createFrame({ app: 'app01', level: 'error' }, [100, 200, 300], [0, 1, 0]);
|
||||
// level=unknown
|
||||
const resultBFrame1 = createFrame({ app: 'app02' }, [100, 200, 300], [1, 2, 3]);
|
||||
// level=error
|
||||
const resultBFrame2 = createFrame({ app: 'app02', level: 'error' }, [100, 200, 300], [1, 1, 1]);
|
||||
|
||||
datasource = new MockObservableDataSourceApi('loki', [
|
||||
{
|
||||
data: [resultAFrame1, resultAFrame2],
|
||||
},
|
||||
{
|
||||
data: [resultBFrame1, resultBFrame2],
|
||||
},
|
||||
]);
|
||||
}
|
||||
|
||||
function setupErrorResponse() {
|
||||
datasource = new MockObservableDataSourceApi('loki', [], undefined, 'Error message');
|
||||
}
|
||||
|
||||
it('aggregates data frames by level', async () => {
|
||||
setup(setupMultipleResults);
|
||||
|
||||
await expect(volumeProvider).toEmitValuesWith((received) => {
|
||||
expect(received).toMatchObject([
|
||||
{ state: LoadingState.Loading, error: undefined, data: [] },
|
||||
{
|
||||
state: LoadingState.Done,
|
||||
error: undefined,
|
||||
data: [
|
||||
{
|
||||
fields: createExpectedFields('unknown', [100, 200, 300], [6, 7, 8]),
|
||||
},
|
||||
{
|
||||
fields: createExpectedFields('error', [100, 200, 300], [1, 2, 1]),
|
||||
},
|
||||
],
|
||||
},
|
||||
]);
|
||||
});
|
||||
});
|
||||
|
||||
it('returns error', async () => {
|
||||
setup(setupErrorResponse);
|
||||
|
||||
await expect(volumeProvider).toEmitValuesWith((received) => {
|
||||
expect(received).toMatchObject([
|
||||
{ state: LoadingState.Loading, error: undefined, data: [] },
|
||||
{
|
||||
state: LoadingState.Error,
|
||||
error: 'Error message',
|
||||
data: [],
|
||||
},
|
||||
'Error message',
|
||||
]);
|
||||
});
|
||||
});
|
||||
});
|
||||
@@ -1,236 +0,0 @@
|
||||
import {
|
||||
DataFrame,
|
||||
DataQueryRequest,
|
||||
DataQueryResponse,
|
||||
FieldCache,
|
||||
FieldColorModeId,
|
||||
FieldConfig,
|
||||
FieldType,
|
||||
getLogLevelFromKey,
|
||||
Labels,
|
||||
LoadingState,
|
||||
LogLevel,
|
||||
MutableDataFrame,
|
||||
ScopedVars,
|
||||
toDataFrame,
|
||||
} from '@grafana/data';
|
||||
import { LokiQuery } from '../types';
|
||||
import { Observable, throwError, timeout } from 'rxjs';
|
||||
import { cloneDeep } from 'lodash';
|
||||
import LokiDatasource, { isMetricsQuery } from '../datasource';
|
||||
import { LogLevelColor } from '../../../../core/logs_model';
|
||||
import { BarAlignment, GraphDrawStyle, StackingMode } from '@grafana/schema';
|
||||
|
||||
const SECOND = 1000;
|
||||
const MINUTE = 60 * SECOND;
|
||||
const HOUR = 60 * MINUTE;
|
||||
const DAY = 24 * HOUR;
|
||||
|
||||
/**
|
||||
* Logs volume query may be expensive as it requires counting all logs in the selected range. If such query
|
||||
* takes too much time it may need be made more specific to limit number of logs processed under the hood.
|
||||
*/
|
||||
const TIMEOUT = 10 * SECOND;
|
||||
|
||||
export function createLokiLogsVolumeProvider(
|
||||
datasource: LokiDatasource,
|
||||
dataQueryRequest: DataQueryRequest<LokiQuery>
|
||||
): Observable<DataQueryResponse> {
|
||||
const logsVolumeRequest = cloneDeep(dataQueryRequest);
|
||||
const intervalInfo = getIntervalInfo(dataQueryRequest.scopedVars);
|
||||
logsVolumeRequest.targets = logsVolumeRequest.targets
|
||||
.filter((target) => target.expr && !isMetricsQuery(target.expr))
|
||||
.map((target) => {
|
||||
return {
|
||||
...target,
|
||||
instant: false,
|
||||
expr: `sum by (level) (count_over_time(${target.expr}[${intervalInfo.interval}]))`,
|
||||
};
|
||||
});
|
||||
logsVolumeRequest.interval = intervalInfo.interval;
|
||||
if (intervalInfo.intervalMs !== undefined) {
|
||||
logsVolumeRequest.intervalMs = intervalInfo.intervalMs;
|
||||
}
|
||||
|
||||
return new Observable((observer) => {
|
||||
let rawLogsVolume: DataFrame[] = [];
|
||||
observer.next({
|
||||
state: LoadingState.Loading,
|
||||
error: undefined,
|
||||
data: [],
|
||||
});
|
||||
|
||||
const subscription = datasource
|
||||
.query(logsVolumeRequest)
|
||||
.pipe(
|
||||
timeout({
|
||||
each: TIMEOUT,
|
||||
with: () =>
|
||||
throwError(
|
||||
new Error(
|
||||
'Request timed-out. Please try making your query more specific or narrow selected time range and try again.'
|
||||
)
|
||||
),
|
||||
})
|
||||
)
|
||||
.subscribe({
|
||||
complete: () => {
|
||||
const aggregatedLogsVolume = aggregateRawLogsVolume(rawLogsVolume);
|
||||
if (aggregatedLogsVolume[0]) {
|
||||
aggregatedLogsVolume[0].meta = {
|
||||
custom: {
|
||||
targets: dataQueryRequest.targets,
|
||||
absoluteRange: { from: dataQueryRequest.range.from.valueOf(), to: dataQueryRequest.range.to.valueOf() },
|
||||
},
|
||||
};
|
||||
}
|
||||
observer.next({
|
||||
state: LoadingState.Done,
|
||||
error: undefined,
|
||||
data: aggregatedLogsVolume,
|
||||
});
|
||||
observer.complete();
|
||||
},
|
||||
next: (dataQueryResponse: DataQueryResponse) => {
|
||||
rawLogsVolume = rawLogsVolume.concat(dataQueryResponse.data.map(toDataFrame));
|
||||
},
|
||||
error: (error) => {
|
||||
observer.next({
|
||||
state: LoadingState.Error,
|
||||
error: error,
|
||||
data: [],
|
||||
});
|
||||
observer.error(error);
|
||||
},
|
||||
});
|
||||
return () => {
|
||||
subscription?.unsubscribe();
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Add up values for the same level and create a single data frame for each level
|
||||
*/
|
||||
function aggregateRawLogsVolume(rawLogsVolume: DataFrame[]): DataFrame[] {
|
||||
const logsVolumeByLevelMap: { [level in LogLevel]?: DataFrame[] } = {};
|
||||
let levels = 0;
|
||||
rawLogsVolume.forEach((dataFrame) => {
|
||||
let valueField;
|
||||
try {
|
||||
valueField = new FieldCache(dataFrame).getFirstFieldOfType(FieldType.number);
|
||||
} catch {}
|
||||
// If value field doesn't exist skip the frame (it may happen with instant queries)
|
||||
if (!valueField) {
|
||||
return;
|
||||
}
|
||||
const level: LogLevel = valueField.labels ? getLogLevelFromLabels(valueField.labels) : LogLevel.unknown;
|
||||
if (!logsVolumeByLevelMap[level]) {
|
||||
logsVolumeByLevelMap[level] = [];
|
||||
levels++;
|
||||
}
|
||||
logsVolumeByLevelMap[level]!.push(dataFrame);
|
||||
});
|
||||
|
||||
return Object.keys(logsVolumeByLevelMap).map((level: string) => {
|
||||
return aggregateFields(logsVolumeByLevelMap[level as LogLevel]!, getFieldConfig(level as LogLevel, levels));
|
||||
});
|
||||
}
|
||||
|
||||
function getFieldConfig(level: LogLevel, levels: number) {
|
||||
const name = levels === 1 && level === LogLevel.unknown ? 'logs' : level;
|
||||
const color = LogLevelColor[level];
|
||||
return {
|
||||
displayNameFromDS: name,
|
||||
color: {
|
||||
mode: FieldColorModeId.Fixed,
|
||||
fixedColor: color,
|
||||
},
|
||||
custom: {
|
||||
drawStyle: GraphDrawStyle.Bars,
|
||||
barAlignment: BarAlignment.Center,
|
||||
lineColor: color,
|
||||
pointColor: color,
|
||||
fillColor: color,
|
||||
lineWidth: 1,
|
||||
fillOpacity: 100,
|
||||
stacking: {
|
||||
mode: StackingMode.Normal,
|
||||
group: 'A',
|
||||
},
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a new data frame with a single field and values creating by adding field values
|
||||
* from all provided data frames
|
||||
*/
|
||||
function aggregateFields(dataFrames: DataFrame[], config: FieldConfig): DataFrame {
|
||||
const aggregatedDataFrame = new MutableDataFrame();
|
||||
if (!dataFrames.length) {
|
||||
return aggregatedDataFrame;
|
||||
}
|
||||
|
||||
const totalLength = dataFrames[0].length;
|
||||
const timeField = new FieldCache(dataFrames[0]).getFirstFieldOfType(FieldType.time);
|
||||
|
||||
if (!timeField) {
|
||||
return aggregatedDataFrame;
|
||||
}
|
||||
|
||||
aggregatedDataFrame.addField({ name: 'Time', type: FieldType.time }, totalLength);
|
||||
aggregatedDataFrame.addField({ name: 'Value', type: FieldType.number, config }, totalLength);
|
||||
|
||||
dataFrames.forEach((dataFrame) => {
|
||||
dataFrame.fields.forEach((field) => {
|
||||
if (field.type === FieldType.number) {
|
||||
for (let pointIndex = 0; pointIndex < totalLength; pointIndex++) {
|
||||
const currentValue = aggregatedDataFrame.get(pointIndex).Value;
|
||||
const valueToAdd = field.values.get(pointIndex);
|
||||
const totalValue =
|
||||
currentValue === null && valueToAdd === null ? null : (currentValue || 0) + (valueToAdd || 0);
|
||||
aggregatedDataFrame.set(pointIndex, { Value: totalValue, Time: timeField.values.get(pointIndex) });
|
||||
}
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
return aggregatedDataFrame;
|
||||
}
|
||||
|
||||
function getLogLevelFromLabels(labels: Labels): LogLevel {
|
||||
const labelNames = ['level', 'lvl', 'loglevel'];
|
||||
let levelLabel;
|
||||
for (let labelName of labelNames) {
|
||||
if (labelName in labels) {
|
||||
levelLabel = labelName;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return levelLabel ? getLogLevelFromKey(labels[levelLabel]) : LogLevel.unknown;
|
||||
}
|
||||
|
||||
function getIntervalInfo(scopedVars: ScopedVars): { interval: string; intervalMs?: number } {
|
||||
if (scopedVars.__interval) {
|
||||
let intervalMs: number = scopedVars.__interval_ms.value;
|
||||
let interval = '';
|
||||
if (intervalMs > HOUR) {
|
||||
intervalMs = DAY;
|
||||
interval = '1d';
|
||||
} else if (intervalMs > MINUTE) {
|
||||
intervalMs = HOUR;
|
||||
interval = '1h';
|
||||
} else if (intervalMs > SECOND) {
|
||||
intervalMs = MINUTE;
|
||||
interval = '1m';
|
||||
} else {
|
||||
intervalMs = SECOND;
|
||||
interval = '1s';
|
||||
}
|
||||
|
||||
return { interval, intervalMs };
|
||||
} else {
|
||||
return { interval: '$__interval' };
|
||||
}
|
||||
}
|
||||
@@ -21,7 +21,11 @@ import {
|
||||
dateMath,
|
||||
DateTime,
|
||||
FieldCache,
|
||||
FieldType,
|
||||
getLogLevelFromKey,
|
||||
Labels,
|
||||
LoadingState,
|
||||
LogLevel,
|
||||
LogRowModel,
|
||||
QueryResultMeta,
|
||||
ScopedVars,
|
||||
@@ -54,13 +58,19 @@ import { serializeParams } from '../../../core/utils/fetch';
|
||||
import { RowContextOptions } from '@grafana/ui/src/components/Logs/LogRowContextProvider';
|
||||
import syntax from './syntax';
|
||||
import { DEFAULT_RESOLUTION } from './components/LokiOptionFields';
|
||||
import { createLokiLogsVolumeProvider } from './dataProviders/logsVolumeProvider';
|
||||
import { queryLogsVolume } from 'app/core/logs_model';
|
||||
|
||||
export type RangeQueryOptions = DataQueryRequest<LokiQuery> | AnnotationQueryRequest<LokiQuery>;
|
||||
export const DEFAULT_MAX_LINES = 1000;
|
||||
export const LOKI_ENDPOINT = '/loki/api/v1';
|
||||
const NS_IN_MS = 1000000;
|
||||
|
||||
/**
|
||||
* Loki's logs volume query may be expensive as it requires counting all logs in the selected range. If such query
|
||||
* takes too much time it may need be made more specific to limit number of logs processed under the hood.
|
||||
*/
|
||||
const LOGS_VOLUME_TIMEOUT = 10000;
|
||||
|
||||
const RANGE_QUERY_ENDPOINT = `${LOKI_ENDPOINT}/query_range`;
|
||||
const INSTANT_QUERY_ENDPOINT = `${LOKI_ENDPOINT}/query`;
|
||||
|
||||
@@ -109,7 +119,27 @@ export class LokiDatasource
|
||||
|
||||
getLogsVolumeDataProvider(request: DataQueryRequest<LokiQuery>): Observable<DataQueryResponse> | undefined {
|
||||
const isLogsVolumeAvailable = request.targets.some((target) => target.expr && !isMetricsQuery(target.expr));
|
||||
return isLogsVolumeAvailable ? createLokiLogsVolumeProvider(this, request) : undefined;
|
||||
if (!isLogsVolumeAvailable) {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
const logsVolumeRequest = cloneDeep(request);
|
||||
logsVolumeRequest.targets = logsVolumeRequest.targets
|
||||
.filter((target) => target.expr && !isMetricsQuery(target.expr))
|
||||
.map((target) => {
|
||||
return {
|
||||
...target,
|
||||
instant: false,
|
||||
expr: `sum by (level) (count_over_time(${target.expr}[$__interval]))`,
|
||||
};
|
||||
});
|
||||
|
||||
return queryLogsVolume(this, logsVolumeRequest, {
|
||||
timeout: LOGS_VOLUME_TIMEOUT,
|
||||
extractLevel,
|
||||
range: request.range,
|
||||
targets: request.targets,
|
||||
});
|
||||
}
|
||||
|
||||
query(options: DataQueryRequest<LokiQuery>): Observable<DataQueryResponse> {
|
||||
@@ -721,4 +751,24 @@ export function isMetricsQuery(query: string): boolean {
|
||||
});
|
||||
}
|
||||
|
||||
function extractLevel(dataFrame: DataFrame): LogLevel {
|
||||
let valueField;
|
||||
try {
|
||||
valueField = new FieldCache(dataFrame).getFirstFieldOfType(FieldType.number);
|
||||
} catch {}
|
||||
return valueField?.labels ? getLogLevelFromLabels(valueField.labels) : LogLevel.unknown;
|
||||
}
|
||||
|
||||
function getLogLevelFromLabels(labels: Labels): LogLevel {
|
||||
const labelNames = ['level', 'lvl', 'loglevel'];
|
||||
let levelLabel;
|
||||
for (let labelName of labelNames) {
|
||||
if (labelName in labels) {
|
||||
levelLabel = labelName;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return levelLabel ? getLogLevelFromKey(labels[levelLabel]) : LogLevel.unknown;
|
||||
}
|
||||
|
||||
export default LokiDatasource;
|
||||
|
||||
Reference in New Issue
Block a user