mirror of
https://github.com/grafana/grafana.git
synced 2025-02-25 18:55:37 -06:00
Chore: Remove unused code from prometheus datasource (#76776)
* Remove unused code * More cleaning * Delete more * betterer * Small import fixes * Fix unit test * Fix unit test * uncomment * Have template_srv from @grafana/runtime
This commit is contained in:
parent
6b13064cf6
commit
f3fe63e87e
@ -6461,8 +6461,7 @@ exports[`better eslint`] = {
|
||||
],
|
||||
"public/app/plugins/datasource/prometheus/components/PromQueryField.tsx:5381": [
|
||||
[0, 0, 0, "Unexpected any. Specify a different type.", "0"],
|
||||
[0, 0, 0, "Unexpected any. Specify a different type.", "1"],
|
||||
[0, 0, 0, "Do not use any type assertions.", "2"]
|
||||
[0, 0, 0, "Unexpected any. Specify a different type.", "1"]
|
||||
],
|
||||
"public/app/plugins/datasource/prometheus/components/PrometheusMetricsBrowser.tsx:5381": [
|
||||
[0, 0, 0, "Styles should be written using objects.", "0"],
|
||||
@ -6589,8 +6588,7 @@ exports[`better eslint`] = {
|
||||
[0, 0, 0, "Unexpected any. Specify a different type.", "2"],
|
||||
[0, 0, 0, "Unexpected any. Specify a different type.", "3"],
|
||||
[0, 0, 0, "Unexpected any. Specify a different type.", "4"],
|
||||
[0, 0, 0, "Unexpected any. Specify a different type.", "5"],
|
||||
[0, 0, 0, "Do not use any type assertions.", "6"]
|
||||
[0, 0, 0, "Do not use any type assertions.", "5"]
|
||||
],
|
||||
"public/app/plugins/datasource/prometheus/language_utils.ts:5381": [
|
||||
[0, 0, 0, "Unexpected any. Specify a different type.", "0"],
|
||||
|
@ -1,23 +1,9 @@
|
||||
import { cx } from '@emotion/css';
|
||||
import { LanguageMap, languages as prismLanguages } from 'prismjs';
|
||||
import React, { ReactNode } from 'react';
|
||||
import { Plugin } from 'slate';
|
||||
import { Editor } from 'slate-react';
|
||||
|
||||
import { isDataFrame, QueryEditorProps, QueryHint, TimeRange, toLegacyResponseData } from '@grafana/data';
|
||||
import { reportInteraction } from '@grafana/runtime/src';
|
||||
import {
|
||||
BracesPlugin,
|
||||
DOMUtil,
|
||||
Icon,
|
||||
SlatePrism,
|
||||
SuggestionsState,
|
||||
TypeaheadInput,
|
||||
TypeaheadOutput,
|
||||
Themeable2,
|
||||
withTheme2,
|
||||
clearButtonStyles,
|
||||
} from '@grafana/ui';
|
||||
import { reportInteraction } from '@grafana/runtime';
|
||||
import { Icon, Themeable2, withTheme2, clearButtonStyles } from '@grafana/ui';
|
||||
import { LocalStorageValueProvider } from 'app/core/components/LocalStorageValueProvider';
|
||||
import {
|
||||
CancelablePromise,
|
||||
@ -32,7 +18,6 @@ import { PromOptions, PromQuery } from '../types';
|
||||
import { PrometheusMetricsBrowser } from './PrometheusMetricsBrowser';
|
||||
import { MonacoQueryFieldWrapper } from './monaco-query-field/MonacoQueryFieldWrapper';
|
||||
|
||||
export const RECORDING_RULES_GROUP = '__recording_rules__';
|
||||
const LAST_USED_LABELS_KEY = 'grafana.datasources.prometheus.browser.labels';
|
||||
|
||||
function getChooserText(metricsLookupDisabled: boolean, hasSyntax: boolean, hasMetrics: boolean) {
|
||||
@ -51,33 +36,6 @@ function getChooserText(metricsLookupDisabled: boolean, hasSyntax: boolean, hasM
|
||||
return 'Metrics browser';
|
||||
}
|
||||
|
||||
export function willApplySuggestion(suggestion: string, { typeaheadContext, typeaheadText }: SuggestionsState): string {
|
||||
// Modify suggestion based on context
|
||||
switch (typeaheadContext) {
|
||||
case 'context-labels': {
|
||||
const nextChar = DOMUtil.getNextCharacter();
|
||||
if (!nextChar || nextChar === '}' || nextChar === ',') {
|
||||
suggestion += '=';
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case 'context-label-values': {
|
||||
// Always add quotes and remove existing ones instead
|
||||
if (!typeaheadText.match(/^(!?=~?"|")/)) {
|
||||
suggestion = `"${suggestion}`;
|
||||
}
|
||||
if (DOMUtil.getNextCharacter() !== '"') {
|
||||
suggestion = `${suggestion}"`;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
}
|
||||
return suggestion;
|
||||
}
|
||||
|
||||
interface PromQueryFieldProps extends QueryEditorProps<PrometheusDatasource, PromQuery, PromOptions>, Themeable2 {
|
||||
ExtraFieldElement?: ReactNode;
|
||||
'data-testid'?: string;
|
||||
@ -90,23 +48,11 @@ interface PromQueryFieldState {
|
||||
}
|
||||
|
||||
class PromQueryField extends React.PureComponent<PromQueryFieldProps, PromQueryFieldState> {
|
||||
plugins: Array<Plugin<Editor>>;
|
||||
declare languageProviderInitializationPromise: CancelablePromise<any>;
|
||||
|
||||
constructor(props: PromQueryFieldProps, context: React.Context<any>) {
|
||||
super(props, context);
|
||||
|
||||
this.plugins = [
|
||||
BracesPlugin(),
|
||||
SlatePrism(
|
||||
{
|
||||
onlyIn: (node) => 'type' in node && node.type === 'code_block',
|
||||
getSyntax: (node) => 'promql',
|
||||
},
|
||||
{ ...(prismLanguages as LanguageMap), promql: this.props.datasource.languageProvider.syntax }
|
||||
),
|
||||
];
|
||||
|
||||
this.state = {
|
||||
labelBrowserVisible: false,
|
||||
syntaxLoaded: false,
|
||||
@ -255,26 +201,6 @@ class PromQueryField extends React.PureComponent<PromQueryFieldProps, PromQueryF
|
||||
this.setState({ syntaxLoaded: true });
|
||||
};
|
||||
|
||||
onTypeahead = async (typeahead: TypeaheadInput): Promise<TypeaheadOutput> => {
|
||||
const {
|
||||
datasource: { languageProvider },
|
||||
} = this.props;
|
||||
|
||||
if (!languageProvider) {
|
||||
return { suggestions: [] };
|
||||
}
|
||||
|
||||
const { history } = this.props;
|
||||
const { prefix, text, value, wrapperClasses, labelKey } = typeahead;
|
||||
|
||||
const result = await languageProvider.provideCompletionItems(
|
||||
{ text, value, prefix, wrapperClasses, labelKey },
|
||||
{ history }
|
||||
);
|
||||
|
||||
return result;
|
||||
};
|
||||
|
||||
render() {
|
||||
const {
|
||||
datasource,
|
||||
|
@ -18,7 +18,7 @@ import {
|
||||
toDataFrame,
|
||||
VariableHide,
|
||||
} from '@grafana/data';
|
||||
import { TemplateSrv } from 'app/features/templating/template_srv';
|
||||
import { TemplateSrv } from '@grafana/runtime';
|
||||
import { QueryOptions } from 'app/types';
|
||||
|
||||
import {
|
||||
@ -39,6 +39,7 @@ jest.mock('@grafana/runtime', () => ({
|
||||
getBackendSrv: () => ({
|
||||
fetch: fetchMock,
|
||||
}),
|
||||
getTemplateSrv: () => templateSrvStub,
|
||||
}));
|
||||
|
||||
const replaceMock = jest.fn().mockImplementation((a: string, ...rest: unknown[]) => a);
|
||||
|
@ -38,9 +38,10 @@ import {
|
||||
getBackendSrv,
|
||||
isFetchError,
|
||||
toDataQueryResponse,
|
||||
getTemplateSrv,
|
||||
TemplateSrv,
|
||||
} from '@grafana/runtime';
|
||||
import { safeStringifyValue } from 'app/core/utils/explore';
|
||||
import { getTemplateSrv, TemplateSrv } from 'app/features/templating/template_srv';
|
||||
|
||||
import { addLabelToQuery } from './add_label_to_query';
|
||||
import { AnnotationQueryEditor } from './components/AnnotationQueryEditor';
|
||||
|
@ -1,14 +1,10 @@
|
||||
import { Editor as SlateEditor } from 'slate';
|
||||
import Plain from 'slate-plain-serializer';
|
||||
|
||||
import { AbstractLabelOperator, dateTime, HistoryItem, TimeRange } from '@grafana/data';
|
||||
import { SearchFunctionType } from '@grafana/ui';
|
||||
import { AbstractLabelOperator, dateTime, TimeRange } from '@grafana/data';
|
||||
|
||||
import { Label } from './components/monaco-query-field/monaco-completion-provider/situation';
|
||||
import { PrometheusDatasource } from './datasource';
|
||||
import LanguageProvider from './language_provider';
|
||||
import { getClientCacheDurationInMinutes, getPrometheusTime, getRangeSnapInterval } from './language_utils';
|
||||
import { PrometheusCacheLevel, PromQuery } from './types';
|
||||
import { PrometheusCacheLevel } from './types';
|
||||
|
||||
const now = new Date(1681300293392).getTime();
|
||||
const timeRangeDurationSeconds = 1;
|
||||
@ -332,516 +328,7 @@ describe('Language completion provider', () => {
|
||||
});
|
||||
});
|
||||
|
||||
describe('empty query suggestions', () => {
|
||||
it('returns no suggestions on empty context', async () => {
|
||||
const instance = new LanguageProvider(defaultDatasource);
|
||||
const value = Plain.deserialize('');
|
||||
const result = await instance.provideCompletionItems({ text: '', prefix: '', value, wrapperClasses: [] });
|
||||
expect(result.context).toBeUndefined();
|
||||
expect(result.suggestions).toMatchObject([]);
|
||||
});
|
||||
|
||||
it('returns no suggestions with metrics on empty context even when metrics were provided', async () => {
|
||||
const instance = new LanguageProvider(defaultDatasource);
|
||||
instance.metrics = ['foo', 'bar'];
|
||||
const value = Plain.deserialize('');
|
||||
const result = await instance.provideCompletionItems({ text: '', prefix: '', value, wrapperClasses: [] });
|
||||
expect(result.context).toBeUndefined();
|
||||
expect(result.suggestions).toMatchObject([]);
|
||||
});
|
||||
|
||||
it('returns history on empty context when history was provided', async () => {
|
||||
const instance = new LanguageProvider(defaultDatasource);
|
||||
const value = Plain.deserialize('');
|
||||
const history: Array<HistoryItem<PromQuery>> = [
|
||||
{
|
||||
ts: 0,
|
||||
query: { refId: '1', expr: 'metric' },
|
||||
},
|
||||
];
|
||||
const result = await instance.provideCompletionItems(
|
||||
{ text: '', prefix: '', value, wrapperClasses: [] },
|
||||
{ history }
|
||||
);
|
||||
expect(result.context).toBeUndefined();
|
||||
|
||||
expect(result.suggestions).toMatchObject([
|
||||
{
|
||||
label: 'History',
|
||||
items: [
|
||||
{
|
||||
label: 'metric',
|
||||
},
|
||||
],
|
||||
},
|
||||
]);
|
||||
});
|
||||
});
|
||||
|
||||
describe('range suggestions', () => {
|
||||
it('returns range suggestions in range context', async () => {
|
||||
const instance = new LanguageProvider(defaultDatasource);
|
||||
const value = Plain.deserialize('1');
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '1',
|
||||
prefix: '1',
|
||||
value,
|
||||
wrapperClasses: ['context-range'],
|
||||
});
|
||||
expect(result.context).toBe('context-range');
|
||||
expect(result.suggestions).toMatchObject([
|
||||
{
|
||||
items: [
|
||||
{ label: '$__interval', sortValue: '$__interval' },
|
||||
{ label: '$__rate_interval', sortValue: '$__rate_interval' },
|
||||
{ label: '$__range', sortValue: '$__range' },
|
||||
{ label: '1m', sortValue: '00:01:00' },
|
||||
{ label: '5m', sortValue: '00:05:00' },
|
||||
{ label: '10m', sortValue: '00:10:00' },
|
||||
{ label: '30m', sortValue: '00:30:00' },
|
||||
{ label: '1h', sortValue: '01:00:00' },
|
||||
{ label: '1d', sortValue: '24:00:00' },
|
||||
],
|
||||
label: 'Range vector',
|
||||
},
|
||||
]);
|
||||
});
|
||||
});
|
||||
|
||||
describe('metric suggestions', () => {
|
||||
it('returns history, metrics and function suggestions in an uknown context ', async () => {
|
||||
const instance = new LanguageProvider(defaultDatasource);
|
||||
instance.metrics = ['foo', 'bar'];
|
||||
const history: Array<HistoryItem<PromQuery>> = [
|
||||
{
|
||||
ts: 0,
|
||||
query: { refId: '1', expr: 'metric' },
|
||||
},
|
||||
];
|
||||
let value = Plain.deserialize('m');
|
||||
value = value.setSelection({ anchor: { offset: 1 }, focus: { offset: 1 } });
|
||||
// Even though no metric with `m` is present, we still get metric completion items, filtering is done by the consumer
|
||||
const result = await instance.provideCompletionItems(
|
||||
{ text: 'm', prefix: 'm', value, wrapperClasses: [] },
|
||||
{ history }
|
||||
);
|
||||
expect(result.context).toBeUndefined();
|
||||
expect(result.suggestions).toMatchObject([
|
||||
{
|
||||
label: 'History',
|
||||
items: [
|
||||
{
|
||||
label: 'metric',
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
label: 'Functions',
|
||||
},
|
||||
{
|
||||
label: 'Metrics',
|
||||
},
|
||||
]);
|
||||
});
|
||||
|
||||
it('returns no suggestions directly after a binary operator', async () => {
|
||||
const instance = new LanguageProvider(defaultDatasource);
|
||||
instance.metrics = ['foo', 'bar'];
|
||||
const value = Plain.deserialize('*');
|
||||
const result = await instance.provideCompletionItems({ text: '*', prefix: '', value, wrapperClasses: [] });
|
||||
expect(result.context).toBeUndefined();
|
||||
expect(result.suggestions).toMatchObject([]);
|
||||
});
|
||||
|
||||
it('returns metric suggestions with prefix after a binary operator', async () => {
|
||||
const instance = new LanguageProvider(defaultDatasource);
|
||||
instance.metrics = ['foo', 'bar'];
|
||||
const value = Plain.deserialize('foo + b');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(7).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: 'foo + b',
|
||||
prefix: 'b',
|
||||
value: valueWithSelection,
|
||||
wrapperClasses: [],
|
||||
});
|
||||
expect(result.context).toBeUndefined();
|
||||
expect(result.suggestions).toMatchObject([
|
||||
{
|
||||
label: 'Functions',
|
||||
},
|
||||
{
|
||||
label: 'Metrics',
|
||||
},
|
||||
]);
|
||||
});
|
||||
|
||||
it('returns no suggestions at the beginning of a non-empty function', async () => {
|
||||
const instance = new LanguageProvider(defaultDatasource);
|
||||
const value = Plain.deserialize('sum(up)');
|
||||
const ed = new SlateEditor({ value });
|
||||
|
||||
const valueWithSelection = ed.moveForward(4).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '',
|
||||
prefix: '',
|
||||
value: valueWithSelection,
|
||||
wrapperClasses: [],
|
||||
});
|
||||
expect(result.context).toBeUndefined();
|
||||
expect(result.suggestions.length).toEqual(0);
|
||||
});
|
||||
});
|
||||
|
||||
describe('label suggestions', () => {
|
||||
it('returns default label suggestions on label context and no metric', async () => {
|
||||
const instance = new LanguageProvider(defaultDatasource);
|
||||
const value = Plain.deserialize('{}');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(1).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '',
|
||||
prefix: '',
|
||||
wrapperClasses: ['context-labels'],
|
||||
value: valueWithSelection,
|
||||
});
|
||||
expect(result.context).toBe('context-labels');
|
||||
expect(result.suggestions).toEqual([
|
||||
{
|
||||
items: [{ label: 'job' }, { label: 'instance' }],
|
||||
label: 'Labels',
|
||||
searchFunctionType: SearchFunctionType.Fuzzy,
|
||||
},
|
||||
]);
|
||||
});
|
||||
|
||||
it('returns label suggestions on label context and metric', async () => {
|
||||
const datasources: PrometheusDatasource = {
|
||||
...defaultDatasource,
|
||||
metadataRequest: () => ({ data: { data: [{ __name__: 'metric', bar: 'bazinga' }] } }),
|
||||
} as unknown as PrometheusDatasource;
|
||||
const instance = new LanguageProvider(datasources);
|
||||
const value = Plain.deserialize('metric{}');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(7).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '',
|
||||
prefix: '',
|
||||
wrapperClasses: ['context-labels'],
|
||||
value: valueWithSelection,
|
||||
});
|
||||
expect(result.context).toBe('context-labels');
|
||||
expect(result.suggestions).toEqual([
|
||||
{ items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy },
|
||||
]);
|
||||
});
|
||||
|
||||
it('returns label suggestions on label context but leaves out labels that already exist', async () => {
|
||||
const testDatasource: PrometheusDatasource = {
|
||||
...defaultDatasource,
|
||||
metadataRequest: () => ({
|
||||
data: {
|
||||
data: [
|
||||
{
|
||||
__name__: 'metric',
|
||||
bar: 'asdasd',
|
||||
job1: 'dsadsads',
|
||||
job2: 'fsfsdfds',
|
||||
job3: 'dsadsad',
|
||||
},
|
||||
],
|
||||
},
|
||||
}),
|
||||
} as unknown as PrometheusDatasource;
|
||||
const instance = new LanguageProvider(testDatasource);
|
||||
const value = Plain.deserialize('{job1="foo",job2!="foo",job3=~"foo",__name__="metric",}');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(54).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '',
|
||||
prefix: '',
|
||||
wrapperClasses: ['context-labels'],
|
||||
value: valueWithSelection,
|
||||
});
|
||||
expect(result.context).toBe('context-labels');
|
||||
expect(result.suggestions).toEqual([
|
||||
{ items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy },
|
||||
]);
|
||||
});
|
||||
|
||||
it('returns label value suggestions inside a label value context after a negated matching operator', async () => {
|
||||
const instance = new LanguageProvider({
|
||||
...defaultDatasource,
|
||||
metadataRequest: () => {
|
||||
return { data: { data: ['value1', 'value2'] } };
|
||||
},
|
||||
} as unknown as PrometheusDatasource);
|
||||
const value = Plain.deserialize('{job!=}');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(6).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '!=',
|
||||
prefix: '',
|
||||
wrapperClasses: ['context-labels'],
|
||||
labelKey: 'job',
|
||||
value: valueWithSelection,
|
||||
});
|
||||
expect(result.context).toBe('context-label-values');
|
||||
expect(result.suggestions).toEqual([
|
||||
{
|
||||
items: [{ label: 'value1' }, { label: 'value2' }],
|
||||
label: 'Label values for "job"',
|
||||
searchFunctionType: SearchFunctionType.Fuzzy,
|
||||
},
|
||||
]);
|
||||
});
|
||||
|
||||
it('returns a refresher on label context and unavailable metric', async () => {
|
||||
jest.spyOn(console, 'warn').mockImplementation(() => {});
|
||||
const instance = new LanguageProvider(defaultDatasource);
|
||||
const value = Plain.deserialize('metric{}');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(7).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '',
|
||||
prefix: '',
|
||||
wrapperClasses: ['context-labels'],
|
||||
value: valueWithSelection,
|
||||
});
|
||||
expect(result.context).toBeUndefined();
|
||||
expect(result.suggestions).toEqual([]);
|
||||
expect(console.warn).toHaveBeenCalledWith('Server did not return any values for selector = {__name__="metric"}');
|
||||
});
|
||||
|
||||
it('returns label values on label context when given a metric and a label key', async () => {
|
||||
const instance = new LanguageProvider({
|
||||
...defaultDatasource,
|
||||
metadataRequest: () => simpleMetricLabelsResponse,
|
||||
} as unknown as PrometheusDatasource);
|
||||
const value = Plain.deserialize('metric{bar=ba}');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(13).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '=ba',
|
||||
prefix: 'ba',
|
||||
wrapperClasses: ['context-labels'],
|
||||
labelKey: 'bar',
|
||||
value: valueWithSelection,
|
||||
});
|
||||
expect(result.context).toBe('context-label-values');
|
||||
expect(result.suggestions).toEqual([
|
||||
{ items: [{ label: 'baz' }], label: 'Label values for "bar"', searchFunctionType: SearchFunctionType.Fuzzy },
|
||||
]);
|
||||
});
|
||||
|
||||
it('returns label suggestions on aggregation context and metric w/ selector', async () => {
|
||||
const instance = new LanguageProvider({
|
||||
...defaultDatasource,
|
||||
metadataRequest: () => simpleMetricLabelsResponse,
|
||||
} as unknown as PrometheusDatasource);
|
||||
const value = Plain.deserialize('sum(metric{foo="xx"}) by ()');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(26).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '',
|
||||
prefix: '',
|
||||
wrapperClasses: ['context-aggregation'],
|
||||
value: valueWithSelection,
|
||||
});
|
||||
expect(result.context).toBe('context-aggregation');
|
||||
expect(result.suggestions).toEqual([
|
||||
{ items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy },
|
||||
]);
|
||||
});
|
||||
|
||||
it('returns label suggestions on aggregation context and metric w/o selector', async () => {
|
||||
const instance = new LanguageProvider({
|
||||
...defaultDatasource,
|
||||
metadataRequest: () => simpleMetricLabelsResponse,
|
||||
} as unknown as PrometheusDatasource);
|
||||
const value = Plain.deserialize('sum(metric) by ()');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(16).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '',
|
||||
prefix: '',
|
||||
wrapperClasses: ['context-aggregation'],
|
||||
value: valueWithSelection,
|
||||
});
|
||||
expect(result.context).toBe('context-aggregation');
|
||||
expect(result.suggestions).toEqual([
|
||||
{ items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy },
|
||||
]);
|
||||
});
|
||||
|
||||
it('returns label suggestions inside a multi-line aggregation context', async () => {
|
||||
const instance = new LanguageProvider({
|
||||
...defaultDatasource,
|
||||
metadataRequest: () => simpleMetricLabelsResponse,
|
||||
} as unknown as PrometheusDatasource);
|
||||
const value = Plain.deserialize('sum(\nmetric\n)\nby ()');
|
||||
const aggregationTextBlock = value.document.getBlocks().get(3);
|
||||
const ed = new SlateEditor({ value });
|
||||
ed.moveToStartOfNode(aggregationTextBlock);
|
||||
const valueWithSelection = ed.moveForward(4).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '',
|
||||
prefix: '',
|
||||
wrapperClasses: ['context-aggregation'],
|
||||
value: valueWithSelection,
|
||||
});
|
||||
expect(result.context).toBe('context-aggregation');
|
||||
expect(result.suggestions).toEqual([
|
||||
{
|
||||
items: [{ label: 'bar' }],
|
||||
label: 'Labels',
|
||||
searchFunctionType: SearchFunctionType.Fuzzy,
|
||||
},
|
||||
]);
|
||||
});
|
||||
|
||||
it('returns label suggestions inside an aggregation context with a range vector', async () => {
|
||||
const instance = new LanguageProvider({
|
||||
...defaultDatasource,
|
||||
metadataRequest: () => simpleMetricLabelsResponse,
|
||||
} as unknown as PrometheusDatasource);
|
||||
const value = Plain.deserialize('sum(rate(metric[1h])) by ()');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(26).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '',
|
||||
prefix: '',
|
||||
wrapperClasses: ['context-aggregation'],
|
||||
value: valueWithSelection,
|
||||
});
|
||||
expect(result.context).toBe('context-aggregation');
|
||||
expect(result.suggestions).toEqual([
|
||||
{
|
||||
items: [{ label: 'bar' }],
|
||||
label: 'Labels',
|
||||
searchFunctionType: SearchFunctionType.Fuzzy,
|
||||
},
|
||||
]);
|
||||
});
|
||||
|
||||
it('returns label suggestions inside an aggregation context with a range vector and label', async () => {
|
||||
const instance = new LanguageProvider({
|
||||
...defaultDatasource,
|
||||
metadataRequest: () => simpleMetricLabelsResponse,
|
||||
} as unknown as PrometheusDatasource);
|
||||
const value = Plain.deserialize('sum(rate(metric{label1="value"}[1h])) by ()');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(42).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '',
|
||||
prefix: '',
|
||||
wrapperClasses: ['context-aggregation'],
|
||||
value: valueWithSelection,
|
||||
});
|
||||
expect(result.context).toBe('context-aggregation');
|
||||
expect(result.suggestions).toEqual([
|
||||
{
|
||||
items: [{ label: 'bar' }],
|
||||
label: 'Labels',
|
||||
searchFunctionType: SearchFunctionType.Fuzzy,
|
||||
},
|
||||
]);
|
||||
});
|
||||
|
||||
it('returns no suggestions inside an unclear aggregation context using alternate syntax', async () => {
|
||||
const instance = new LanguageProvider(defaultDatasource);
|
||||
const value = Plain.deserialize('sum by ()');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(8).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '',
|
||||
prefix: '',
|
||||
wrapperClasses: ['context-aggregation'],
|
||||
value: valueWithSelection,
|
||||
});
|
||||
expect(result.context).toBe('context-aggregation');
|
||||
expect(result.suggestions).toEqual([]);
|
||||
});
|
||||
|
||||
it('returns label suggestions inside an aggregation context using alternate syntax', async () => {
|
||||
const instance = new LanguageProvider({
|
||||
...defaultDatasource,
|
||||
metadataRequest: () => simpleMetricLabelsResponse,
|
||||
} as unknown as PrometheusDatasource);
|
||||
const value = Plain.deserialize('sum by () (metric)');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(8).value;
|
||||
const result = await instance.provideCompletionItems({
|
||||
text: '',
|
||||
prefix: '',
|
||||
wrapperClasses: ['context-aggregation'],
|
||||
value: valueWithSelection,
|
||||
});
|
||||
expect(result.context).toBe('context-aggregation');
|
||||
expect(result.suggestions).toEqual([
|
||||
{
|
||||
items: [{ label: 'bar' }],
|
||||
label: 'Labels',
|
||||
searchFunctionType: SearchFunctionType.Fuzzy,
|
||||
},
|
||||
]);
|
||||
});
|
||||
|
||||
it('does not re-fetch default labels', async () => {
|
||||
const testDatasource: PrometheusDatasource = {
|
||||
...defaultDatasource,
|
||||
metadataRequest: jest.fn(() => ({ data: { data: [] } })),
|
||||
interpolateString: (string: string) => string,
|
||||
getQuantizedTimeRangeParams: getMockQuantizedTimeRangeParams,
|
||||
} as unknown as PrometheusDatasource;
|
||||
|
||||
const mockedMetadataRequest = jest.mocked(testDatasource.metadataRequest);
|
||||
|
||||
const instance = new LanguageProvider(testDatasource);
|
||||
const value = Plain.deserialize('{}');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(1).value;
|
||||
const args = {
|
||||
text: '',
|
||||
prefix: '',
|
||||
wrapperClasses: ['context-labels'],
|
||||
value: valueWithSelection,
|
||||
};
|
||||
const promise1 = instance.provideCompletionItems(args);
|
||||
// one call for 2 default labels job, instance
|
||||
expect(mockedMetadataRequest.mock.calls.length).toBe(2);
|
||||
const promise2 = instance.provideCompletionItems(args);
|
||||
expect(mockedMetadataRequest.mock.calls.length).toBe(2);
|
||||
await Promise.all([promise1, promise2]);
|
||||
expect(mockedMetadataRequest.mock.calls.length).toBe(2);
|
||||
});
|
||||
});
|
||||
describe('disabled metrics lookup', () => {
|
||||
it('does not issue any metadata requests when lookup is disabled', async () => {
|
||||
jest.spyOn(console, 'warn').mockImplementation(() => {});
|
||||
const datasource: PrometheusDatasource = {
|
||||
metadataRequest: jest.fn(() => ({ data: { data: ['foo', 'bar'] as string[] } })),
|
||||
lookupsDisabled: true,
|
||||
} as unknown as PrometheusDatasource;
|
||||
const mockedMetadataRequest = jest.mocked(datasource.metadataRequest);
|
||||
const instance = new LanguageProvider(datasource);
|
||||
const value = Plain.deserialize('{}');
|
||||
const ed = new SlateEditor({ value });
|
||||
const valueWithSelection = ed.moveForward(1).value;
|
||||
const args = {
|
||||
text: '',
|
||||
prefix: '',
|
||||
wrapperClasses: ['context-labels'],
|
||||
value: valueWithSelection,
|
||||
};
|
||||
|
||||
expect(mockedMetadataRequest.mock.calls.length).toBe(0);
|
||||
await instance.start();
|
||||
expect(mockedMetadataRequest.mock.calls.length).toBe(0);
|
||||
await instance.provideCompletionItems(args);
|
||||
expect(mockedMetadataRequest.mock.calls.length).toBe(0);
|
||||
expect(console.warn).toHaveBeenCalledWith('Server did not return any values for selector = {}');
|
||||
});
|
||||
it('issues metadata requests when lookup is not disabled', async () => {
|
||||
const datasource: PrometheusDatasource = {
|
||||
...defaultDatasource,
|
||||
@ -904,14 +391,3 @@ describe('Language completion provider', () => {
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
const simpleMetricLabelsResponse = {
|
||||
data: {
|
||||
data: [
|
||||
{
|
||||
__name__: 'metric',
|
||||
bar: 'baz',
|
||||
},
|
||||
],
|
||||
},
|
||||
};
|
||||
|
@ -1,48 +1,33 @@
|
||||
import { chain, difference, once } from 'lodash';
|
||||
import { once } from 'lodash';
|
||||
import Prism from 'prismjs';
|
||||
import { Value } from 'slate';
|
||||
|
||||
import {
|
||||
AbstractLabelMatcher,
|
||||
AbstractLabelOperator,
|
||||
AbstractQuery,
|
||||
dateTime,
|
||||
getDefaultTimeRange,
|
||||
HistoryItem,
|
||||
LanguageProvider,
|
||||
TimeRange,
|
||||
} from '@grafana/data';
|
||||
import { BackendSrvRequest } from '@grafana/runtime';
|
||||
import { CompletionItem, CompletionItemGroup, SearchFunctionType, TypeaheadInput, TypeaheadOutput } from '@grafana/ui';
|
||||
|
||||
import { Label } from './components/monaco-query-field/monaco-completion-provider/situation';
|
||||
import { PrometheusDatasource } from './datasource';
|
||||
import {
|
||||
addLimitInfo,
|
||||
extractLabelMatchers,
|
||||
fixSummariesMetadata,
|
||||
parseSelector,
|
||||
processHistogramMetrics,
|
||||
processLabels,
|
||||
toPromLikeQuery,
|
||||
} from './language_utils';
|
||||
import PromqlSyntax, { FUNCTIONS, RATE_RANGES } from './promql';
|
||||
import PromqlSyntax from './promql';
|
||||
import { PrometheusCacheLevel, PromMetricsMetadata, PromQuery } from './types';
|
||||
|
||||
const DEFAULT_KEYS = ['job', 'instance'];
|
||||
const EMPTY_SELECTOR = '{}';
|
||||
const HISTORY_ITEM_COUNT = 5;
|
||||
const HISTORY_COUNT_CUTOFF = 1000 * 60 * 60 * 24; // 24h
|
||||
// Max number of items (metrics, labels, values) that we display as suggestions. Prevents from running out of memory.
|
||||
export const SUGGESTIONS_LIMIT = 10000;
|
||||
|
||||
const wrapLabel = (label: string): CompletionItem => ({ label });
|
||||
|
||||
const setFunctionKind = (suggestion: CompletionItem): CompletionItem => {
|
||||
suggestion.kind = 'function';
|
||||
return suggestion;
|
||||
};
|
||||
|
||||
const buildCacheHeaders = (durationInSeconds: number) => {
|
||||
return {
|
||||
headers: {
|
||||
@ -51,32 +36,6 @@ const buildCacheHeaders = (durationInSeconds: number) => {
|
||||
};
|
||||
};
|
||||
|
||||
export function addHistoryMetadata(item: CompletionItem, history: any[]): CompletionItem {
|
||||
const cutoffTs = Date.now() - HISTORY_COUNT_CUTOFF;
|
||||
const historyForItem = history.filter((h) => h.ts > cutoffTs && h.query === item.label);
|
||||
const count = historyForItem.length;
|
||||
const recent = historyForItem[0];
|
||||
let hint = `Queried ${count} times in the last 24h.`;
|
||||
|
||||
if (recent) {
|
||||
const lastQueried = dateTime(recent.ts).fromNow();
|
||||
hint = `${hint} Last queried ${lastQueried}.`;
|
||||
}
|
||||
|
||||
return {
|
||||
...item,
|
||||
documentation: hint,
|
||||
};
|
||||
}
|
||||
|
||||
function addMetricsMetadata(metric: string, metadata?: PromMetricsMetadata): CompletionItem {
|
||||
const item: CompletionItem = { label: metric };
|
||||
if (metadata && metadata[metric]) {
|
||||
item.documentation = getMetadataString(metric, metadata);
|
||||
}
|
||||
return item;
|
||||
}
|
||||
|
||||
export function getMetadataString(metric: string, metadata: PromMetricsMetadata): string | undefined {
|
||||
if (!metadata[metric]) {
|
||||
return undefined;
|
||||
@ -102,10 +61,6 @@ export function getMetadataType(metric: string, metadata: PromMetricsMetadata):
|
||||
const PREFIX_DELIMITER_REGEX =
|
||||
/(="|!="|=~"|!~"|\{|\[|\(|\+|-|\/|\*|%|\^|\band\b|\bor\b|\bunless\b|==|>=|!=|<=|>|<|=|~|,)/;
|
||||
|
||||
interface AutocompleteContext {
|
||||
history?: Array<HistoryItem<PromQuery>>;
|
||||
}
|
||||
|
||||
const secondsInDay = 86400;
|
||||
export default class PromQlLanguageProvider extends LanguageProvider {
|
||||
histogramMetrics: string[];
|
||||
@ -188,279 +143,6 @@ export default class PromQlLanguageProvider extends LanguageProvider {
|
||||
return this.labelKeys;
|
||||
}
|
||||
|
||||
provideCompletionItems = async (
|
||||
{ prefix, text, value, labelKey, wrapperClasses }: TypeaheadInput,
|
||||
context: AutocompleteContext = {}
|
||||
): Promise<TypeaheadOutput> => {
|
||||
const emptyResult: TypeaheadOutput = { suggestions: [] };
|
||||
|
||||
if (!value) {
|
||||
return emptyResult;
|
||||
}
|
||||
|
||||
// Local text properties
|
||||
const empty = value.document.text.length === 0;
|
||||
const selectedLines = value.document.getTextsAtRange(value.selection);
|
||||
const currentLine = selectedLines.size === 1 ? selectedLines.first().getText() : null;
|
||||
|
||||
const nextCharacter = currentLine ? currentLine[value.selection.anchor.offset] : null;
|
||||
|
||||
// Syntax spans have 3 classes by default. More indicate a recognized token
|
||||
const tokenRecognized = wrapperClasses.length > 3;
|
||||
// Non-empty prefix, but not inside known token
|
||||
const prefixUnrecognized = prefix && !tokenRecognized;
|
||||
|
||||
// Prevent suggestions in `function(|suffix)`
|
||||
const noSuffix = !nextCharacter || nextCharacter === ')';
|
||||
|
||||
// Prefix is safe if it does not immediately follow a complete expression and has no text after it
|
||||
const safePrefix = prefix && !text.match(/^[\]})\s]+$/) && noSuffix;
|
||||
|
||||
// About to type next operand if preceded by binary operator
|
||||
const operatorsPattern = /[+\-*/^%]/;
|
||||
const isNextOperand = text.match(operatorsPattern);
|
||||
|
||||
// Determine candidates by CSS context
|
||||
if (wrapperClasses.includes('context-range')) {
|
||||
// Suggestions for metric[|]
|
||||
return this.getRangeCompletionItems();
|
||||
} else if (wrapperClasses.includes('context-labels')) {
|
||||
// Suggestions for metric{|} and metric{foo=|}, as well as metric-independent label queries like {|}
|
||||
return this.getLabelCompletionItems({ prefix, text, value, labelKey, wrapperClasses });
|
||||
} else if (wrapperClasses.includes('context-aggregation')) {
|
||||
// Suggestions for sum(metric) by (|)
|
||||
return this.getAggregationCompletionItems(value);
|
||||
} else if (empty) {
|
||||
// Suggestions for empty query field
|
||||
return this.getEmptyCompletionItems(context);
|
||||
} else if (prefixUnrecognized && noSuffix && !isNextOperand) {
|
||||
// Show term suggestions in a couple of scenarios
|
||||
return this.getBeginningCompletionItems(context);
|
||||
} else if (prefixUnrecognized && safePrefix) {
|
||||
// Show term suggestions in a couple of scenarios
|
||||
return this.getTermCompletionItems();
|
||||
}
|
||||
|
||||
return emptyResult;
|
||||
};
|
||||
|
||||
getBeginningCompletionItems = (context: AutocompleteContext): TypeaheadOutput => {
|
||||
return {
|
||||
suggestions: [...this.getEmptyCompletionItems(context).suggestions, ...this.getTermCompletionItems().suggestions],
|
||||
};
|
||||
};
|
||||
|
||||
getEmptyCompletionItems = (context: AutocompleteContext): TypeaheadOutput => {
|
||||
const { history } = context;
|
||||
const suggestions: CompletionItemGroup[] = [];
|
||||
|
||||
if (history && history.length) {
|
||||
const historyItems = chain(history)
|
||||
.map((h) => h.query.expr)
|
||||
.filter()
|
||||
.uniq()
|
||||
.take(HISTORY_ITEM_COUNT)
|
||||
.map(wrapLabel)
|
||||
.map((item) => addHistoryMetadata(item, history))
|
||||
.value();
|
||||
|
||||
suggestions.push({
|
||||
searchFunctionType: SearchFunctionType.Prefix,
|
||||
skipSort: true,
|
||||
label: 'History',
|
||||
items: historyItems,
|
||||
});
|
||||
}
|
||||
|
||||
return { suggestions };
|
||||
};
|
||||
|
||||
getTermCompletionItems = (): TypeaheadOutput => {
|
||||
const { metrics, metricsMetadata } = this;
|
||||
const suggestions: CompletionItemGroup[] = [];
|
||||
|
||||
suggestions.push({
|
||||
searchFunctionType: SearchFunctionType.Prefix,
|
||||
label: 'Functions',
|
||||
items: FUNCTIONS.map(setFunctionKind),
|
||||
});
|
||||
|
||||
if (metrics && metrics.length) {
|
||||
suggestions.push({
|
||||
label: 'Metrics',
|
||||
items: metrics.map((m) => addMetricsMetadata(m, metricsMetadata)),
|
||||
searchFunctionType: SearchFunctionType.Fuzzy,
|
||||
});
|
||||
}
|
||||
|
||||
return { suggestions };
|
||||
};
|
||||
|
||||
getRangeCompletionItems(): TypeaheadOutput {
|
||||
return {
|
||||
context: 'context-range',
|
||||
suggestions: [
|
||||
{
|
||||
label: 'Range vector',
|
||||
items: [...RATE_RANGES],
|
||||
},
|
||||
],
|
||||
};
|
||||
}
|
||||
|
||||
getAggregationCompletionItems = async (value: Value): Promise<TypeaheadOutput> => {
|
||||
const suggestions: CompletionItemGroup[] = [];
|
||||
|
||||
// Stitch all query lines together to support multi-line queries
|
||||
let queryOffset;
|
||||
const queryText = value.document.getBlocks().reduce((text, block) => {
|
||||
if (text === undefined) {
|
||||
return '';
|
||||
}
|
||||
if (!block) {
|
||||
return text;
|
||||
}
|
||||
|
||||
const blockText = block?.getText();
|
||||
|
||||
if (value.anchorBlock.key === block.key) {
|
||||
// Newline characters are not accounted for but this is irrelevant
|
||||
// for the purpose of extracting the selector string
|
||||
queryOffset = value.selection.anchor.offset + text.length;
|
||||
}
|
||||
|
||||
return text + blockText;
|
||||
}, '');
|
||||
|
||||
// Try search for selector part on the left-hand side, such as `sum (m) by (l)`
|
||||
const openParensAggregationIndex = queryText.lastIndexOf('(', queryOffset);
|
||||
let openParensSelectorIndex = queryText.lastIndexOf('(', openParensAggregationIndex - 1);
|
||||
let closeParensSelectorIndex = queryText.indexOf(')', openParensSelectorIndex);
|
||||
|
||||
// Try search for selector part of an alternate aggregation clause, such as `sum by (l) (m)`
|
||||
if (openParensSelectorIndex === -1) {
|
||||
const closeParensAggregationIndex = queryText.indexOf(')', queryOffset);
|
||||
closeParensSelectorIndex = queryText.indexOf(')', closeParensAggregationIndex + 1);
|
||||
openParensSelectorIndex = queryText.lastIndexOf('(', closeParensSelectorIndex);
|
||||
}
|
||||
|
||||
const result = {
|
||||
suggestions,
|
||||
context: 'context-aggregation',
|
||||
};
|
||||
|
||||
// Suggestions are useless for alternative aggregation clauses without a selector in context
|
||||
if (openParensSelectorIndex === -1) {
|
||||
return result;
|
||||
}
|
||||
|
||||
// Range vector syntax not accounted for by subsequent parse so discard it if present
|
||||
const selectorString = queryText
|
||||
.slice(openParensSelectorIndex + 1, closeParensSelectorIndex)
|
||||
.replace(/\[[^\]]+\]$/, '');
|
||||
|
||||
const selector = parseSelector(selectorString, selectorString.length - 2).selector;
|
||||
|
||||
const series = await this.getSeries(selector);
|
||||
const labelKeys = Object.keys(series);
|
||||
if (labelKeys.length > 0) {
|
||||
const limitInfo = addLimitInfo(labelKeys);
|
||||
suggestions.push({
|
||||
label: `Labels${limitInfo}`,
|
||||
items: labelKeys.map(wrapLabel),
|
||||
searchFunctionType: SearchFunctionType.Fuzzy,
|
||||
});
|
||||
}
|
||||
return result;
|
||||
};
|
||||
|
||||
getLabelCompletionItems = async ({
|
||||
text,
|
||||
wrapperClasses,
|
||||
labelKey,
|
||||
value,
|
||||
}: TypeaheadInput): Promise<TypeaheadOutput> => {
|
||||
if (!value) {
|
||||
return { suggestions: [] };
|
||||
}
|
||||
|
||||
const suggestions: CompletionItemGroup[] = [];
|
||||
const line = value.anchorBlock.getText();
|
||||
const cursorOffset = value.selection.anchor.offset;
|
||||
const suffix = line.substr(cursorOffset);
|
||||
const prefix = line.substr(0, cursorOffset);
|
||||
const isValueStart = text.match(/^(=|=~|!=|!~)/);
|
||||
const isValueEnd = suffix.match(/^"?[,}]|$/);
|
||||
// Detect cursor in front of value, e.g., {key=|"}
|
||||
const isPreValue = prefix.match(/(=|=~|!=|!~)$/) && suffix.match(/^"/);
|
||||
|
||||
// Don't suggest anything at the beginning or inside a value
|
||||
const isValueEmpty = isValueStart && isValueEnd;
|
||||
const hasValuePrefix = isValueEnd && !isValueStart;
|
||||
if ((!isValueEmpty && !hasValuePrefix) || isPreValue) {
|
||||
return { suggestions };
|
||||
}
|
||||
|
||||
// Get normalized selector
|
||||
let selector;
|
||||
let parsedSelector;
|
||||
try {
|
||||
parsedSelector = parseSelector(line, cursorOffset);
|
||||
selector = parsedSelector.selector;
|
||||
} catch {
|
||||
selector = EMPTY_SELECTOR;
|
||||
}
|
||||
|
||||
const containsMetric = selector.includes('__name__=');
|
||||
const existingKeys = parsedSelector ? parsedSelector.labelKeys : [];
|
||||
|
||||
let series: Record<string, string[]> = {};
|
||||
// Query labels for selector
|
||||
if (selector) {
|
||||
series = await this.getSeries(selector, !containsMetric);
|
||||
}
|
||||
|
||||
if (Object.keys(series).length === 0) {
|
||||
console.warn(`Server did not return any values for selector = ${selector}`);
|
||||
return { suggestions };
|
||||
}
|
||||
|
||||
let context: string | undefined;
|
||||
|
||||
if ((text && isValueStart) || wrapperClasses.includes('attr-value')) {
|
||||
// Label values
|
||||
if (labelKey && series[labelKey]) {
|
||||
context = 'context-label-values';
|
||||
const limitInfo = addLimitInfo(series[labelKey]);
|
||||
suggestions.push({
|
||||
label: `Label values for "${labelKey}"${limitInfo}`,
|
||||
items: series[labelKey].map(wrapLabel),
|
||||
searchFunctionType: SearchFunctionType.Fuzzy,
|
||||
});
|
||||
}
|
||||
} else {
|
||||
// Label keys
|
||||
const labelKeys = series ? Object.keys(series) : containsMetric ? null : DEFAULT_KEYS;
|
||||
|
||||
if (labelKeys) {
|
||||
const possibleKeys = difference(labelKeys, existingKeys);
|
||||
if (possibleKeys.length) {
|
||||
context = 'context-labels';
|
||||
const newItems = possibleKeys.map((key) => ({ label: key }));
|
||||
const limitInfo = addLimitInfo(newItems);
|
||||
const newSuggestion: CompletionItemGroup = {
|
||||
label: `Labels${limitInfo}`,
|
||||
items: newItems,
|
||||
searchFunctionType: SearchFunctionType.Fuzzy,
|
||||
};
|
||||
suggestions.push(newSuggestion);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return { context, suggestions };
|
||||
};
|
||||
|
||||
importFromAbstractQuery(labelBasedQuery: AbstractQuery): PromQuery {
|
||||
return toPromLikeQuery(labelBasedQuery);
|
||||
}
|
||||
|
@ -2,9 +2,8 @@ import 'whatwg-fetch'; // fetch polyfill needed backendSrv
|
||||
import { of } from 'rxjs';
|
||||
|
||||
import { DataSourceInstanceSettings, TimeRange, toUtc } from '@grafana/data';
|
||||
import { FetchResponse } from '@grafana/runtime';
|
||||
import { FetchResponse, TemplateSrv } from '@grafana/runtime';
|
||||
import { backendSrv } from 'app/core/services/backend_srv'; // will use the version in __mocks__
|
||||
import { TemplateSrv } from 'app/features/templating/template_srv';
|
||||
|
||||
import { PrometheusDatasource } from './datasource';
|
||||
import PrometheusMetricFindQuery from './metric_find_query';
|
||||
|
@ -11,6 +11,7 @@ import {
|
||||
QueryHint,
|
||||
TimeRange,
|
||||
} from '@grafana/data';
|
||||
import { TemplateSrv } from '@grafana/runtime';
|
||||
|
||||
import { PrometheusDatasource } from '../../datasource';
|
||||
import PromQlLanguageProvider from '../../language_provider';
|
||||
@ -317,7 +318,7 @@ function createDatasource(options?: Partial<DataSourceInstanceSettings<PromOptio
|
||||
meta: {} as DataSourcePluginMeta,
|
||||
...options,
|
||||
} as DataSourceInstanceSettings<PromOptions>,
|
||||
undefined,
|
||||
mockTemplateSrv(),
|
||||
languageProvider
|
||||
);
|
||||
return { datasource, languageProvider };
|
||||
@ -355,3 +356,9 @@ async function openLabelNameSelect(index = 0) {
|
||||
const { name } = getLabelSelects(index);
|
||||
await userEvent.click(name);
|
||||
}
|
||||
|
||||
function mockTemplateSrv(): TemplateSrv {
|
||||
return {
|
||||
getVariables: () => [],
|
||||
} as unknown as TemplateSrv;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user