import _ from 'lodash'; import flatten from '../../../core/utils/flatten'; import TimeSeries from '../../../core/time_series2'; import TableModel from '../../../core/table_model'; var transformers = {}; transformers['timeseries_to_rows'] = { description: 'Time series to rows', getColumns: function() { return []; }, transform: function(data, panel, model) { model.columns = [ {text: 'Time', type: 'date'}, {text: 'Metric'}, {text: 'Value'}, ]; for (var i = 0; i < data.length; i++) { var series = data[i]; for (var y = 0; y < series.datapoints.length; y++) { var dp = series.datapoints[y]; model.rows.push([dp[1], series.target, dp[0]]); } } }, }; transformers['timeseries_to_columns'] = { description: 'Time series to columns', getColumns: function() { return []; }, transform: function(data, panel, model) { model.columns.push({text: 'Time', type: 'date'}); // group by time var points = {}; for (let i = 0; i < data.length; i++) { var series = data[i]; model.columns.push({text: series.target}); for (var y = 0; y < series.datapoints.length; y++) { var dp = series.datapoints[y]; var timeKey = dp[1].toString(); if (!points[timeKey]) { points[timeKey] = {time: dp[1]}; points[timeKey][i] = dp[0]; } else { points[timeKey][i] = dp[0]; } } } for (var time in points) { var point = points[time]; var values = [point.time]; for (let i = 0; i < data.length; i++) { var value = point[i]; values.push(value); } model.rows.push(values); } } }; transformers['timeseries_aggregations'] = { description: 'Time series aggregations', getColumns: function() { return [ {text: 'Avg', value: 'avg'}, {text: 'Min', value: 'min'}, {text: 'Max', value: 'max'}, {text: 'Total', value: 'total'}, {text: 'Current', value: 'current'}, {text: 'Count', value: 'count'}, ]; }, transform: function(data, panel, model) { var i, y; model.columns.push({text: 'Metric'}); for (i = 0; i < panel.columns.length; i++) { model.columns.push({text: panel.columns[i].text}); } for (i = 0; i < data.length; i++) { var series = new TimeSeries({ datapoints: data[i].datapoints, alias: data[i].target, }); series.getFlotPairs('connected'); var cells = [series.alias]; for (y = 0; y < panel.columns.length; y++) { cells.push(series.stats[panel.columns[y].value]); } model.rows.push(cells); } } }; transformers['annotations'] = { description: 'Annotations', getColumns: function() { return []; }, transform: function(data, panel, model) { model.columns.push({text: 'Time', type: 'date'}); model.columns.push({text: 'Title'}); model.columns.push({text: 'Text'}); model.columns.push({text: 'Tags'}); if (!data || !data.annotations || data.annotations.length === 0) { return; } for (var i = 0; i < data.annotations.length; i++) { var evt = data.annotations[i]; model.rows.push([evt.time, evt.title, evt.text, evt.tags]); } } }; transformers['table'] = { description: 'Table', getColumns: function(data) { if (!data || data.length === 0) { return []; } return data[0].columns; }, transform: function(data, panel, model) { if (!data || data.length === 0) { return; } if (data[0].type !== 'table') { throw {message: 'Query result is not in table format, try using another transform.'}; } model.columns = data[0].columns; model.rows = data[0].rows; } }; transformers['json'] = { description: 'JSON Data', getColumns: function(data) { if (!data || data.length === 0) { return []; } var names: any = {}; for (var i = 0; i < data.length; i++) { var series = data[i]; if (series.type !== 'docs') { continue; } // only look at 100 docs var maxDocs = Math.min(series.datapoints.length, 100); for (var y = 0; y < maxDocs; y++) { var doc = series.datapoints[y]; var flattened = flatten(doc, null); for (var propName in flattened) { names[propName] = true; } } } return _.map(names, function(value, key) { return {text: key, value: key}; }); }, transform: function(data, panel, model) { var i, y, z; for (let column of panel.columns) { var tableCol: any = {text: column.text}; // if filterable data then set columns to filterable if (data.length > 0 && data[0].filterable) { tableCol.filterable = true; } model.columns.push(tableCol); } if (model.columns.length === 0) { model.columns.push({text: 'JSON'}); } for (i = 0; i < data.length; i++) { var series = data[i]; for (y = 0; y < series.datapoints.length; y++) { var dp = series.datapoints[y]; var values = []; if (_.isObject(dp) && panel.columns.length > 0) { var flattened = flatten(dp, null); for (z = 0; z < panel.columns.length; z++) { values.push(flattened[panel.columns[z].value]); } } else { values.push(JSON.stringify(dp)); } model.rows.push(values); } } } }; function transformDataToTable(data, panel) { var model = new TableModel(); if (!data || data.length === 0) { return model; } var transformer = transformers[panel.transform]; if (!transformer) { throw {message: 'Transformer ' + panel.transform + ' not found'}; } transformer.transform(data, panel, model); return model; } export {transformers, transformDataToTable};