import { Editor as SlateEditor } from 'slate'; import Plain from 'slate-plain-serializer'; import { AbstractLabelOperator, dateTime, HistoryItem, TimeRange } from '@grafana/data'; import { config } from '@grafana/runtime'; import { SearchFunctionType } from '@grafana/ui'; import { Label } from './components/monaco-query-field/monaco-completion-provider/situation'; import { PrometheusDatasource } from './datasource'; import LanguageProvider from './language_provider'; import { getClientCacheDurationInMinutes, getPrometheusTime, getRangeSnapInterval } from './language_utils'; import { PrometheusCacheLevel, PromQuery } from './types'; const now = new Date(1681300293392).getTime(); const timeRangeDurationSeconds = 1; const toPrometheusTime = getPrometheusTime(dateTime(now), false); const fromPrometheusTime = getPrometheusTime(dateTime(now - timeRangeDurationSeconds * 1000), false); const toPrometheusTimeString = toPrometheusTime.toString(10); const fromPrometheusTimeString = fromPrometheusTime.toString(10); const getTimeRangeParams = (override?: Partial<{ start: string; end: string }>): { start: string; end: string } => ({ start: fromPrometheusTimeString, end: toPrometheusTimeString, ...override, }); const getMockQuantizedTimeRangeParams = (override?: Partial): TimeRange => ({ from: dateTime(fromPrometheusTime * 1000), to: dateTime(toPrometheusTime * 1000), raw: { from: `now-${timeRangeDurationSeconds}s`, to: 'now', }, ...override, }); describe('Language completion provider', () => { const defaultDatasource: PrometheusDatasource = { metadataRequest: () => ({ data: { data: [] } }), getTimeRangeParams: getTimeRangeParams, interpolateString: (string: string) => string, hasLabelsMatchAPISupport: () => false, getQuantizedTimeRangeParams: () => getRangeSnapInterval(PrometheusCacheLevel.None, getMockQuantizedTimeRangeParams()), getDaysToCacheMetadata: () => 1, getAdjustedInterval: () => getRangeSnapInterval(PrometheusCacheLevel.None, getMockQuantizedTimeRangeParams()), cacheLevel: PrometheusCacheLevel.None, } as unknown as PrometheusDatasource; describe('cleanText', () => { const cleanText = new LanguageProvider(defaultDatasource).cleanText; it('does not remove metric or label keys', () => { expect(cleanText('foo')).toBe('foo'); expect(cleanText('foo_bar')).toBe('foo_bar'); }); it('keeps trailing space but removes leading', () => { expect(cleanText('foo ')).toBe('foo '); expect(cleanText(' foo')).toBe('foo'); }); it('removes label syntax', () => { expect(cleanText('foo="bar')).toBe('bar'); expect(cleanText('foo!="bar')).toBe('bar'); expect(cleanText('foo=~"bar')).toBe('bar'); expect(cleanText('foo!~"bar')).toBe('bar'); expect(cleanText('{bar')).toBe('bar'); }); it('removes previous operators', () => { expect(cleanText('foo + bar')).toBe('bar'); expect(cleanText('foo+bar')).toBe('bar'); expect(cleanText('foo - bar')).toBe('bar'); expect(cleanText('foo * bar')).toBe('bar'); expect(cleanText('foo / bar')).toBe('bar'); expect(cleanText('foo % bar')).toBe('bar'); expect(cleanText('foo ^ bar')).toBe('bar'); expect(cleanText('foo and bar')).toBe('bar'); expect(cleanText('foo or bar')).toBe('bar'); expect(cleanText('foo unless bar')).toBe('bar'); expect(cleanText('foo == bar')).toBe('bar'); expect(cleanText('foo != bar')).toBe('bar'); expect(cleanText('foo > bar')).toBe('bar'); expect(cleanText('foo < bar')).toBe('bar'); expect(cleanText('foo >= bar')).toBe('bar'); expect(cleanText('foo <= bar')).toBe('bar'); expect(cleanText('memory')).toBe('memory'); }); it('removes aggregation syntax', () => { expect(cleanText('(bar')).toBe('bar'); expect(cleanText('(foo,bar')).toBe('bar'); expect(cleanText('(foo, bar')).toBe('bar'); }); it('removes range syntax', () => { expect(cleanText('[1m')).toBe('1m'); }); }); // @todo clean up prometheusResourceBrowserCache feature flag describe('getSeriesLabelsDeprecatedLRU', () => { beforeEach(() => { config.featureToggles.prometheusResourceBrowserCache = false; }); it('should call labels endpoint', () => { const languageProvider = new LanguageProvider({ ...defaultDatasource, hasLabelsMatchAPISupport: () => true, } as PrometheusDatasource); const getSeriesLabels = languageProvider.getSeriesLabels; const requestSpy = jest.spyOn(languageProvider, 'request'); const labelName = 'job'; const labelValue = 'grafana'; getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]); expect(requestSpy).toHaveBeenCalled(); expect(requestSpy).toHaveBeenCalledWith(`/api/v1/labels`, [], { end: toPrometheusTimeString, 'match[]': '{job="grafana"}', start: fromPrometheusTimeString, }); }); it('should call series endpoint', () => { const languageProvider = new LanguageProvider({ ...defaultDatasource, getAdjustedInterval: () => getRangeSnapInterval(PrometheusCacheLevel.None, getMockQuantizedTimeRangeParams()), } as PrometheusDatasource); const getSeriesLabels = languageProvider.getSeriesLabels; const requestSpy = jest.spyOn(languageProvider, 'request'); const labelName = 'job'; const labelValue = 'grafana'; getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]); expect(requestSpy).toHaveBeenCalled(); expect(requestSpy).toHaveBeenCalledWith('/api/v1/series', [], { end: toPrometheusTimeString, 'match[]': '{job="grafana"}', start: fromPrometheusTimeString, }); }); }); describe('getSeriesLabels', () => { beforeEach(() => { config.featureToggles.prometheusResourceBrowserCache = true; }); it('should call labels endpoint', () => { const languageProvider = new LanguageProvider({ ...defaultDatasource, hasLabelsMatchAPISupport: () => true, } as PrometheusDatasource); const getSeriesLabels = languageProvider.getSeriesLabels; const requestSpy = jest.spyOn(languageProvider, 'request'); const labelName = 'job'; const labelValue = 'grafana'; getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]); expect(requestSpy).toHaveBeenCalled(); expect(requestSpy).toHaveBeenCalledWith( `/api/v1/labels`, [], { end: toPrometheusTimeString, 'match[]': '{job="grafana"}', start: fromPrometheusTimeString, }, undefined ); }); it('should call series endpoint', () => { const languageProvider = new LanguageProvider({ ...defaultDatasource, getAdjustedInterval: () => getRangeSnapInterval(PrometheusCacheLevel.None, getMockQuantizedTimeRangeParams()), } as PrometheusDatasource); const getSeriesLabels = languageProvider.getSeriesLabels; const requestSpy = jest.spyOn(languageProvider, 'request'); const labelName = 'job'; const labelValue = 'grafana'; getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]); expect(requestSpy).toHaveBeenCalled(); expect(requestSpy).toHaveBeenCalledWith( '/api/v1/series', [], { end: toPrometheusTimeString, 'match[]': '{job="grafana"}', start: fromPrometheusTimeString, }, undefined ); }); it('should call labels endpoint with quantized start', () => { const timeSnapMinutes = getClientCacheDurationInMinutes(PrometheusCacheLevel.Low); const languageProvider = new LanguageProvider({ ...defaultDatasource, hasLabelsMatchAPISupport: () => true, cacheLevel: PrometheusCacheLevel.Low, getAdjustedInterval: () => getRangeSnapInterval(PrometheusCacheLevel.Low, getMockQuantizedTimeRangeParams()), getCacheDurationInMinutes: () => timeSnapMinutes, } as PrometheusDatasource); const getSeriesLabels = languageProvider.getSeriesLabels; const requestSpy = jest.spyOn(languageProvider, 'request'); const labelName = 'job'; const labelValue = 'grafana'; getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]); expect(requestSpy).toHaveBeenCalled(); expect(requestSpy).toHaveBeenCalledWith( `/api/v1/labels`, [], { end: ( dateTime(fromPrometheusTime * 1000) .add(timeSnapMinutes, 'minute') .startOf('minute') .valueOf() / 1000 ).toString(), 'match[]': '{job="grafana"}', start: ( dateTime(toPrometheusTime * 1000) .startOf('minute') .valueOf() / 1000 ).toString(), }, { headers: { 'X-Grafana-Cache': `private, max-age=${timeSnapMinutes * 60}` } } ); }); }); describe('getSeriesValues', () => { it('should call old series endpoint and should use match[] parameter', () => { const languageProvider = new LanguageProvider({ ...defaultDatasource, } as PrometheusDatasource); const getSeriesValues = languageProvider.getSeriesValues; const requestSpy = jest.spyOn(languageProvider, 'request'); getSeriesValues('job', '{job="grafana"}'); expect(requestSpy).toHaveBeenCalled(); expect(requestSpy).toHaveBeenCalledWith( '/api/v1/series', [], { end: toPrometheusTimeString, 'match[]': '{job="grafana"}', start: fromPrometheusTimeString, }, undefined ); }); it('should call new series endpoint and should use match[] parameter', () => { const languageProvider = new LanguageProvider({ ...defaultDatasource, hasLabelsMatchAPISupport: () => true, } as PrometheusDatasource); const getSeriesValues = languageProvider.getSeriesValues; const requestSpy = jest.spyOn(languageProvider, 'request'); const labelName = 'job'; const labelValue = 'grafana'; getSeriesValues(labelName, `{${labelName}="${labelValue}"}`); expect(requestSpy).toHaveBeenCalled(); expect(requestSpy).toHaveBeenCalledWith( `/api/v1/label/${labelName}/values`, [], { end: toPrometheusTimeString, 'match[]': `{${labelName}="${labelValue}"}`, start: fromPrometheusTimeString, }, undefined ); }); it('should call old series endpoint and should use match[] parameter and interpolate the template variables', () => { const languageProvider = new LanguageProvider({ ...defaultDatasource, interpolateString: (string: string) => string.replace(/\$/, 'interpolated-'), } as PrometheusDatasource); const getSeriesValues = languageProvider.getSeriesValues; const requestSpy = jest.spyOn(languageProvider, 'request'); getSeriesValues('job', '{instance="$instance", job="grafana"}'); expect(requestSpy).toHaveBeenCalled(); expect(requestSpy).toHaveBeenCalledWith( '/api/v1/series', [], { end: toPrometheusTimeString, 'match[]': '{instance="interpolated-instance", job="grafana"}', start: fromPrometheusTimeString, }, undefined ); }); }); describe('fetchSeries', () => { it('should use match[] parameter', () => { const languageProvider = new LanguageProvider(defaultDatasource); const fetchSeries = languageProvider.fetchSeries; const requestSpy = jest.spyOn(languageProvider, 'request'); fetchSeries('{job="grafana"}'); expect(requestSpy).toHaveBeenCalled(); expect(requestSpy).toHaveBeenCalledWith( '/api/v1/series', {}, { end: toPrometheusTimeString, 'match[]': '{job="grafana"}', start: fromPrometheusTimeString }, undefined ); }); }); describe('fetchSeriesLabels', () => { it('should interpolate variable in series', () => { const languageProvider = new LanguageProvider({ ...defaultDatasource, interpolateString: (string: string) => string.replace(/\$/, 'interpolated-'), } as PrometheusDatasource); const fetchSeriesLabels = languageProvider.fetchSeriesLabels; const requestSpy = jest.spyOn(languageProvider, 'request'); fetchSeriesLabels('$metric'); expect(requestSpy).toHaveBeenCalled(); expect(requestSpy).toHaveBeenCalledWith( '/api/v1/series', [], { end: toPrometheusTimeString, 'match[]': 'interpolated-metric', start: fromPrometheusTimeString, }, undefined ); }); }); describe('fetchLabelValues', () => { it('should interpolate variable in series', () => { const languageProvider = new LanguageProvider({ ...defaultDatasource, interpolateString: (string: string) => string.replace(/\$/, 'interpolated-'), } as PrometheusDatasource); const fetchLabelValues = languageProvider.fetchLabelValues; const requestSpy = jest.spyOn(languageProvider, 'request'); fetchLabelValues('$job'); expect(requestSpy).toHaveBeenCalled(); expect(requestSpy).toHaveBeenCalledWith( '/api/v1/label/interpolated-job/values', [], { end: toPrometheusTimeString, start: fromPrometheusTimeString, }, undefined ); }); }); describe('empty query suggestions', () => { it('returns no suggestions on empty context', async () => { const instance = new LanguageProvider(defaultDatasource); const value = Plain.deserialize(''); const result = await instance.provideCompletionItems({ text: '', prefix: '', value, wrapperClasses: [] }); expect(result.context).toBeUndefined(); expect(result.suggestions).toMatchObject([]); }); it('returns no suggestions with metrics on empty context even when metrics were provided', async () => { const instance = new LanguageProvider(defaultDatasource); instance.metrics = ['foo', 'bar']; const value = Plain.deserialize(''); const result = await instance.provideCompletionItems({ text: '', prefix: '', value, wrapperClasses: [] }); expect(result.context).toBeUndefined(); expect(result.suggestions).toMatchObject([]); }); it('returns history on empty context when history was provided', async () => { const instance = new LanguageProvider(defaultDatasource); const value = Plain.deserialize(''); const history: Array> = [ { ts: 0, query: { refId: '1', expr: 'metric' }, }, ]; const result = await instance.provideCompletionItems( { text: '', prefix: '', value, wrapperClasses: [] }, { history } ); expect(result.context).toBeUndefined(); expect(result.suggestions).toMatchObject([ { label: 'History', items: [ { label: 'metric', }, ], }, ]); }); }); describe('range suggestions', () => { it('returns range suggestions in range context', async () => { const instance = new LanguageProvider(defaultDatasource); const value = Plain.deserialize('1'); const result = await instance.provideCompletionItems({ text: '1', prefix: '1', value, wrapperClasses: ['context-range'], }); expect(result.context).toBe('context-range'); expect(result.suggestions).toMatchObject([ { items: [ { label: '$__interval', sortValue: '$__interval' }, { label: '$__rate_interval', sortValue: '$__rate_interval' }, { label: '$__range', sortValue: '$__range' }, { label: '1m', sortValue: '00:01:00' }, { label: '5m', sortValue: '00:05:00' }, { label: '10m', sortValue: '00:10:00' }, { label: '30m', sortValue: '00:30:00' }, { label: '1h', sortValue: '01:00:00' }, { label: '1d', sortValue: '24:00:00' }, ], label: 'Range vector', }, ]); }); }); describe('metric suggestions', () => { it('returns history, metrics and function suggestions in an uknown context ', async () => { const instance = new LanguageProvider(defaultDatasource); instance.metrics = ['foo', 'bar']; const history: Array> = [ { ts: 0, query: { refId: '1', expr: 'metric' }, }, ]; let value = Plain.deserialize('m'); value = value.setSelection({ anchor: { offset: 1 }, focus: { offset: 1 } }); // Even though no metric with `m` is present, we still get metric completion items, filtering is done by the consumer const result = await instance.provideCompletionItems( { text: 'm', prefix: 'm', value, wrapperClasses: [] }, { history } ); expect(result.context).toBeUndefined(); expect(result.suggestions).toMatchObject([ { label: 'History', items: [ { label: 'metric', }, ], }, { label: 'Functions', }, { label: 'Metrics', }, ]); }); it('returns no suggestions directly after a binary operator', async () => { const instance = new LanguageProvider(defaultDatasource); instance.metrics = ['foo', 'bar']; const value = Plain.deserialize('*'); const result = await instance.provideCompletionItems({ text: '*', prefix: '', value, wrapperClasses: [] }); expect(result.context).toBeUndefined(); expect(result.suggestions).toMatchObject([]); }); it('returns metric suggestions with prefix after a binary operator', async () => { const instance = new LanguageProvider(defaultDatasource); instance.metrics = ['foo', 'bar']; const value = Plain.deserialize('foo + b'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(7).value; const result = await instance.provideCompletionItems({ text: 'foo + b', prefix: 'b', value: valueWithSelection, wrapperClasses: [], }); expect(result.context).toBeUndefined(); expect(result.suggestions).toMatchObject([ { label: 'Functions', }, { label: 'Metrics', }, ]); }); it('returns no suggestions at the beginning of a non-empty function', async () => { const instance = new LanguageProvider(defaultDatasource); const value = Plain.deserialize('sum(up)'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(4).value; const result = await instance.provideCompletionItems({ text: '', prefix: '', value: valueWithSelection, wrapperClasses: [], }); expect(result.context).toBeUndefined(); expect(result.suggestions.length).toEqual(0); }); }); describe('label suggestions', () => { it('returns default label suggestions on label context and no metric', async () => { const instance = new LanguageProvider(defaultDatasource); const value = Plain.deserialize('{}'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(1).value; const result = await instance.provideCompletionItems({ text: '', prefix: '', wrapperClasses: ['context-labels'], value: valueWithSelection, }); expect(result.context).toBe('context-labels'); expect(result.suggestions).toEqual([ { items: [{ label: 'job' }, { label: 'instance' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy, }, ]); }); it('returns label suggestions on label context and metric', async () => { const datasources: PrometheusDatasource = { ...defaultDatasource, metadataRequest: () => ({ data: { data: [{ __name__: 'metric', bar: 'bazinga' }] } }), } as unknown as PrometheusDatasource; const instance = new LanguageProvider(datasources); const value = Plain.deserialize('metric{}'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(7).value; const result = await instance.provideCompletionItems({ text: '', prefix: '', wrapperClasses: ['context-labels'], value: valueWithSelection, }); expect(result.context).toBe('context-labels'); expect(result.suggestions).toEqual([ { items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy }, ]); }); it('returns label suggestions on label context but leaves out labels that already exist', async () => { const testDatasource: PrometheusDatasource = { ...defaultDatasource, metadataRequest: () => ({ data: { data: [ { __name__: 'metric', bar: 'asdasd', job1: 'dsadsads', job2: 'fsfsdfds', job3: 'dsadsad', }, ], }, }), } as unknown as PrometheusDatasource; const instance = new LanguageProvider(testDatasource); const value = Plain.deserialize('{job1="foo",job2!="foo",job3=~"foo",__name__="metric",}'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(54).value; const result = await instance.provideCompletionItems({ text: '', prefix: '', wrapperClasses: ['context-labels'], value: valueWithSelection, }); expect(result.context).toBe('context-labels'); expect(result.suggestions).toEqual([ { items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy }, ]); }); it('returns label value suggestions inside a label value context after a negated matching operator', async () => { const instance = new LanguageProvider({ ...defaultDatasource, metadataRequest: () => { return { data: { data: ['value1', 'value2'] } }; }, } as unknown as PrometheusDatasource); const value = Plain.deserialize('{job!=}'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(6).value; const result = await instance.provideCompletionItems({ text: '!=', prefix: '', wrapperClasses: ['context-labels'], labelKey: 'job', value: valueWithSelection, }); expect(result.context).toBe('context-label-values'); expect(result.suggestions).toEqual([ { items: [{ label: 'value1' }, { label: 'value2' }], label: 'Label values for "job"', searchFunctionType: SearchFunctionType.Fuzzy, }, ]); }); it('returns a refresher on label context and unavailable metric', async () => { jest.spyOn(console, 'warn').mockImplementation(() => {}); const instance = new LanguageProvider(defaultDatasource); const value = Plain.deserialize('metric{}'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(7).value; const result = await instance.provideCompletionItems({ text: '', prefix: '', wrapperClasses: ['context-labels'], value: valueWithSelection, }); expect(result.context).toBeUndefined(); expect(result.suggestions).toEqual([]); expect(console.warn).toHaveBeenCalledWith('Server did not return any values for selector = {__name__="metric"}'); }); it('returns label values on label context when given a metric and a label key', async () => { const instance = new LanguageProvider({ ...defaultDatasource, metadataRequest: () => simpleMetricLabelsResponse, } as unknown as PrometheusDatasource); const value = Plain.deserialize('metric{bar=ba}'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(13).value; const result = await instance.provideCompletionItems({ text: '=ba', prefix: 'ba', wrapperClasses: ['context-labels'], labelKey: 'bar', value: valueWithSelection, }); expect(result.context).toBe('context-label-values'); expect(result.suggestions).toEqual([ { items: [{ label: 'baz' }], label: 'Label values for "bar"', searchFunctionType: SearchFunctionType.Fuzzy }, ]); }); it('returns label suggestions on aggregation context and metric w/ selector', async () => { const instance = new LanguageProvider({ ...defaultDatasource, metadataRequest: () => simpleMetricLabelsResponse, } as unknown as PrometheusDatasource); const value = Plain.deserialize('sum(metric{foo="xx"}) by ()'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(26).value; const result = await instance.provideCompletionItems({ text: '', prefix: '', wrapperClasses: ['context-aggregation'], value: valueWithSelection, }); expect(result.context).toBe('context-aggregation'); expect(result.suggestions).toEqual([ { items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy }, ]); }); it('returns label suggestions on aggregation context and metric w/o selector', async () => { const instance = new LanguageProvider({ ...defaultDatasource, metadataRequest: () => simpleMetricLabelsResponse, } as unknown as PrometheusDatasource); const value = Plain.deserialize('sum(metric) by ()'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(16).value; const result = await instance.provideCompletionItems({ text: '', prefix: '', wrapperClasses: ['context-aggregation'], value: valueWithSelection, }); expect(result.context).toBe('context-aggregation'); expect(result.suggestions).toEqual([ { items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy }, ]); }); it('returns label suggestions inside a multi-line aggregation context', async () => { const instance = new LanguageProvider({ ...defaultDatasource, metadataRequest: () => simpleMetricLabelsResponse, } as unknown as PrometheusDatasource); const value = Plain.deserialize('sum(\nmetric\n)\nby ()'); const aggregationTextBlock = value.document.getBlocks().get(3); const ed = new SlateEditor({ value }); ed.moveToStartOfNode(aggregationTextBlock); const valueWithSelection = ed.moveForward(4).value; const result = await instance.provideCompletionItems({ text: '', prefix: '', wrapperClasses: ['context-aggregation'], value: valueWithSelection, }); expect(result.context).toBe('context-aggregation'); expect(result.suggestions).toEqual([ { items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy, }, ]); }); it('returns label suggestions inside an aggregation context with a range vector', async () => { const instance = new LanguageProvider({ ...defaultDatasource, metadataRequest: () => simpleMetricLabelsResponse, } as unknown as PrometheusDatasource); const value = Plain.deserialize('sum(rate(metric[1h])) by ()'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(26).value; const result = await instance.provideCompletionItems({ text: '', prefix: '', wrapperClasses: ['context-aggregation'], value: valueWithSelection, }); expect(result.context).toBe('context-aggregation'); expect(result.suggestions).toEqual([ { items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy, }, ]); }); it('returns label suggestions inside an aggregation context with a range vector and label', async () => { const instance = new LanguageProvider({ ...defaultDatasource, metadataRequest: () => simpleMetricLabelsResponse, } as unknown as PrometheusDatasource); const value = Plain.deserialize('sum(rate(metric{label1="value"}[1h])) by ()'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(42).value; const result = await instance.provideCompletionItems({ text: '', prefix: '', wrapperClasses: ['context-aggregation'], value: valueWithSelection, }); expect(result.context).toBe('context-aggregation'); expect(result.suggestions).toEqual([ { items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy, }, ]); }); it('returns no suggestions inside an unclear aggregation context using alternate syntax', async () => { const instance = new LanguageProvider(defaultDatasource); const value = Plain.deserialize('sum by ()'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(8).value; const result = await instance.provideCompletionItems({ text: '', prefix: '', wrapperClasses: ['context-aggregation'], value: valueWithSelection, }); expect(result.context).toBe('context-aggregation'); expect(result.suggestions).toEqual([]); }); it('returns label suggestions inside an aggregation context using alternate syntax', async () => { const instance = new LanguageProvider({ ...defaultDatasource, metadataRequest: () => simpleMetricLabelsResponse, } as unknown as PrometheusDatasource); const value = Plain.deserialize('sum by () (metric)'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(8).value; const result = await instance.provideCompletionItems({ text: '', prefix: '', wrapperClasses: ['context-aggregation'], value: valueWithSelection, }); expect(result.context).toBe('context-aggregation'); expect(result.suggestions).toEqual([ { items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy, }, ]); }); it('does not re-fetch default labels', async () => { const testDatasource: PrometheusDatasource = { ...defaultDatasource, metadataRequest: jest.fn(() => ({ data: { data: [] } })), interpolateString: (string: string) => string, getQuantizedTimeRangeParams: getMockQuantizedTimeRangeParams, } as unknown as PrometheusDatasource; const mockedMetadataRequest = jest.mocked(testDatasource.metadataRequest); const instance = new LanguageProvider(testDatasource); const value = Plain.deserialize('{}'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(1).value; const args = { text: '', prefix: '', wrapperClasses: ['context-labels'], value: valueWithSelection, }; const promise1 = instance.provideCompletionItems(args); // one call for 2 default labels job, instance expect(mockedMetadataRequest.mock.calls.length).toBe(2); const promise2 = instance.provideCompletionItems(args); expect(mockedMetadataRequest.mock.calls.length).toBe(2); await Promise.all([promise1, promise2]); expect(mockedMetadataRequest.mock.calls.length).toBe(2); }); }); describe('disabled metrics lookup', () => { it('does not issue any metadata requests when lookup is disabled', async () => { jest.spyOn(console, 'warn').mockImplementation(() => {}); const datasource: PrometheusDatasource = { metadataRequest: jest.fn(() => ({ data: { data: ['foo', 'bar'] as string[] } })), lookupsDisabled: true, } as unknown as PrometheusDatasource; const mockedMetadataRequest = jest.mocked(datasource.metadataRequest); const instance = new LanguageProvider(datasource); const value = Plain.deserialize('{}'); const ed = new SlateEditor({ value }); const valueWithSelection = ed.moveForward(1).value; const args = { text: '', prefix: '', wrapperClasses: ['context-labels'], value: valueWithSelection, }; expect(mockedMetadataRequest.mock.calls.length).toBe(0); await instance.start(); expect(mockedMetadataRequest.mock.calls.length).toBe(0); await instance.provideCompletionItems(args); expect(mockedMetadataRequest.mock.calls.length).toBe(0); expect(console.warn).toHaveBeenCalledWith('Server did not return any values for selector = {}'); }); it('issues metadata requests when lookup is not disabled', async () => { const datasource: PrometheusDatasource = { ...defaultDatasource, metadataRequest: jest.fn(() => ({ data: { data: ['foo', 'bar'] as string[] } })), lookupsDisabled: false, } as unknown as PrometheusDatasource; const mockedMetadataRequest = jest.mocked(datasource.metadataRequest); const instance = new LanguageProvider(datasource); expect(mockedMetadataRequest.mock.calls.length).toBe(0); await instance.start(); expect(mockedMetadataRequest.mock.calls.length).toBeGreaterThan(0); }); it('doesnt blow up if metadata or fetchLabels rejects', async () => { jest.spyOn(console, 'error').mockImplementation(); const datasource: PrometheusDatasource = { ...defaultDatasource, metadataRequest: jest.fn(() => Promise.reject('rejected')), lookupsDisabled: false, } as unknown as PrometheusDatasource; const mockedMetadataRequest = jest.mocked(datasource.metadataRequest); const instance = new LanguageProvider(datasource); expect(mockedMetadataRequest.mock.calls.length).toBe(0); const result = await instance.start(); expect(result[0]).toBeUndefined(); expect(result[1]).toEqual([]); expect(mockedMetadataRequest.mock.calls.length).toBe(3); }); }); describe('Query imports', () => { it('returns empty queries', async () => { const instance = new LanguageProvider(defaultDatasource); const result = await instance.importFromAbstractQuery({ refId: 'bar', labelMatchers: [] }); expect(result).toEqual({ refId: 'bar', expr: '', range: true }); }); describe('exporting to abstract query', () => { it('exports labels with metric name', async () => { const instance = new LanguageProvider(defaultDatasource); const abstractQuery = instance.exportToAbstractQuery({ refId: 'bar', expr: 'metric_name{label1="value1", label2!="value2", label3=~"value3", label4!~"value4"}', instant: true, range: false, }); expect(abstractQuery).toMatchObject({ refId: 'bar', labelMatchers: [ { name: 'label1', operator: AbstractLabelOperator.Equal, value: 'value1' }, { name: 'label2', operator: AbstractLabelOperator.NotEqual, value: 'value2' }, { name: 'label3', operator: AbstractLabelOperator.EqualRegEx, value: 'value3' }, { name: 'label4', operator: AbstractLabelOperator.NotEqualRegEx, value: 'value4' }, { name: '__name__', operator: AbstractLabelOperator.Equal, value: 'metric_name' }, ], }); }); }); }); }); const simpleMetricLabelsResponse = { data: { data: [ { __name__: 'metric', bar: 'baz', }, ], }, };