grafana/pkg/tsdb/elasticsearch/response_parser_test.go
2024-07-19 09:26:10 +02:00

3740 lines
97 KiB
Go

package elasticsearch
import (
"context"
"encoding/json"
"flag"
"fmt"
"testing"
"time"
"github.com/grafana/grafana-plugin-sdk-go/backend"
"github.com/grafana/grafana-plugin-sdk-go/backend/log"
"github.com/grafana/grafana-plugin-sdk-go/data"
"github.com/grafana/grafana-plugin-sdk-go/experimental"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
es "github.com/grafana/grafana/pkg/tsdb/elasticsearch/client"
)
var update = flag.Bool("update", true, "update golden files")
func TestProcessLogsResponse(t *testing.T) {
t.Run("Simple log query response", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [{ "type": "logs"}],
"bucketAggs": [
{
"type": "date_histogram",
"settings": { "interval": "auto" },
"id": "2"
}
],
"key": "Q-1561369883389-0.7611823271062786-0",
"query": "hello AND message"
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {},
"hits": {
"hits": [
{
"_id": "fdsfs",
"_type": "_doc",
"_index": "mock-index",
"_source": {
"testtime": "06/24/2019",
"host": "djisaodjsoad",
"number": 1,
"line": "hello, i am a message",
"level": "debug",
"fields": { "lvl": "debug" }
},
"highlight": {
"message": [
"@HIGHLIGHT@hello@/HIGHLIGHT@, i am a @HIGHLIGHT@message@/HIGHLIGHT@"
]
},
"fields": {
"testtime": [ "2019-06-24T09:51:19.765Z" ]
}
},
{
"_id": "kdospaidopa",
"_type": "_doc",
"_index": "mock-index",
"_source": {
"testtime": "06/24/2019",
"host": "dsalkdakdop",
"number": 2,
"line": "hello, i am also message",
"level": "error",
"fields": { "lvl": "info" }
},
"highlight": {
"message": [
"@HIGHLIGHT@hello@/HIGHLIGHT@, i am a @HIGHLIGHT@message@/HIGHLIGHT@"
]
},
"fields": {
"testtime": [ "2019-06-24T09:52:19.765Z" ]
}
}
]
}
}
]
}
`)
t.Run("creates correct data frame fields", func(t *testing.T) {
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 1)
logsFrame := frames[0]
meta := logsFrame.Meta
require.Equal(t, map[string]any{"searchWords": []string{"hello", "message"}, "limit": 500}, meta.Custom)
require.Equal(t, data.VisTypeLogs, string(meta.PreferredVisualization))
logsFieldMap := make(map[string]*data.Field)
for _, field := range logsFrame.Fields {
logsFieldMap[field.Name] = field
}
require.Contains(t, logsFieldMap, "testtime")
require.Equal(t, data.FieldTypeNullableTime, logsFieldMap["testtime"].Type())
require.Contains(t, logsFieldMap, "host")
require.Equal(t, data.FieldTypeNullableString, logsFieldMap["host"].Type())
require.Contains(t, logsFieldMap, "line")
require.Equal(t, data.FieldTypeNullableString, logsFieldMap["line"].Type())
require.Contains(t, logsFieldMap, "number")
require.Equal(t, data.FieldTypeNullableFloat64, logsFieldMap["number"].Type())
require.Contains(t, logsFieldMap, "_source")
require.Equal(t, data.FieldTypeNullableString, logsFieldMap["_source"].Type())
requireStringAt(t, "fdsfs", logsFieldMap["_id"], 0)
requireStringAt(t, "kdospaidopa", logsFieldMap["_id"], 1)
requireStringAt(t, "_doc", logsFieldMap["_type"], 0)
requireStringAt(t, "_doc", logsFieldMap["_type"], 1)
requireStringAt(t, "mock-index", logsFieldMap["_index"], 0)
requireStringAt(t, "mock-index", logsFieldMap["_index"], 1)
actualJson1 := logsFieldMap["_source"].At(0).(*string)
actualJson2 := logsFieldMap["_source"].At(1).(*string)
expectedJson1 := `
{
"fields.lvl": "debug",
"host": "djisaodjsoad",
"level": "debug",
"line": "hello, i am a message",
"number": 1,
"testtime": "06/24/2019",
"line": "hello, i am a message"
}
`
expectedJson2 := `
{
"testtime": "06/24/2019",
"host": "dsalkdakdop",
"number": 2,
"line": "hello, i am also message",
"level": "error",
"fields.lvl": "info"
}`
require.JSONEq(t, expectedJson1, *actualJson1)
require.JSONEq(t, expectedJson2, *actualJson2)
})
t.Run("creates correct level field", func(t *testing.T) {
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.True(t, len(frames) > 0)
requireFrameLength(t, frames[0], 2)
fieldMap := make(map[string]*data.Field)
for _, field := range frames[0].Fields {
fieldMap[field.Name] = field
}
require.Contains(t, fieldMap, "level")
field := fieldMap["level"]
requireStringAt(t, "debug", field, 0)
requireStringAt(t, "error", field, 1)
})
t.Run("gets correct time field from fields", func(t *testing.T) {
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 1)
logsFrame := frames[0]
logsFieldMap := make(map[string]*data.Field)
for _, field := range logsFrame.Fields {
logsFieldMap[field.Name] = field
}
t0 := time.Date(2019, time.June, 24, 9, 51, 19, 765000000, time.UTC)
t1 := time.Date(2019, time.June, 24, 9, 52, 19, 765000000, time.UTC)
require.Contains(t, logsFieldMap, "testtime")
require.Equal(t, data.FieldTypeNullableTime, logsFieldMap["testtime"].Type())
require.Equal(t, &t0, logsFieldMap["testtime"].At(0))
require.Equal(t, &t1, logsFieldMap["testtime"].At(1))
})
})
t.Run("Empty response", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [{ "type": "logs", "id": "2" }],
"bucketAggs": [],
"key": "Q-1561369883389-0.7611823271062786-0",
"query": "hello AND message"
}
]
`)
response := []byte(`
{
"responses": [
{
"hits": { "hits": [] },
"aggregations": {},
"status": 200
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 1)
})
t.Run("Log query with nested fields", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "logs" }]
}`,
}
response := `{
"responses":[
{
"hits":{
"total":{
"value":109,
"relation":"eq"
},
"max_score":null,
"hits":[
{
"_index":"logs-2023.02.08",
"_id":"GB2UMYYBfCQ-FCMjayJa",
"_score":null,
"_source":{
"@timestamp":"2023-02-08T15:10:55.830Z",
"line":"log text [479231733]",
"counter":"109",
"float":58.253758485091,
"label":"val1",
"lvl":"info",
"location":"17.089705232090438, 41.62861966340297",
"nested": {
"field": {
"double_nested": "value"
}
},
"shapes":[
{
"type":"triangle"
},
{
"type":"square"
}
],
"xyz": null
},
"sort":[
1675869055830,
4
]
},
{
"_index":"logs-2023.02.08",
"_id":"Fx2UMYYBfCQ-FCMjZyJ_",
"_score":null,
"_source":{
"@timestamp":"2023-02-08T15:10:54.835Z",
"line":"log text with ANSI \u001b[31mpart of the text\u001b[0m [493139080]",
"counter":"108",
"float":54.5977098233944,
"label":"val1",
"lvl":"info",
"location":"19.766305918490463, 40.42639175509792",
"nested": {
"field": {
"double_nested": "value"
}
},
"shapes":[
{
"type":"triangle"
},
{
"type":"square"
}
],
"xyz": "def"
},
"sort":[
1675869054835,
7
]
}
]
},
"status":200
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.Len(t, dataframes, 1)
frame := dataframes[0]
require.Equal(t, 17, len(frame.Fields))
// Fields have the correct length
require.Equal(t, 2, frame.Fields[0].Len())
// First field is timeField
require.Equal(t, data.FieldTypeNullableTime, frame.Fields[0].Type())
// Second is log line
require.Equal(t, data.FieldTypeNullableString, frame.Fields[1].Type())
require.Equal(t, "line", frame.Fields[1].Name)
// Correctly renames lvl field to level
require.Equal(t, "level", frame.Fields[11].Name)
// Correctly uses string types
require.Equal(t, data.FieldTypeNullableString, frame.Fields[1].Type())
// Correctly detects float64 types
require.Equal(t, data.FieldTypeNullableFloat64, frame.Fields[7].Type())
// Correctly detects json types
require.Equal(t, data.FieldTypeNullableJSON, frame.Fields[8].Type())
// Correctly flattens fields
require.Equal(t, "nested.field.double_nested", frame.Fields[13].Name)
require.Equal(t, data.FieldTypeNullableString, frame.Fields[13].Type())
// Correctly detects type even if first value is null
require.Equal(t, data.FieldTypeNullableString, frame.Fields[16].Type())
})
t.Run("Log query with highlight", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "logs" }]
}`,
}
response := `{
"responses":[
{
"hits":{
"total":{
"value":109,
"relation":"eq"
},
"max_score":null,
"hits":[
{
"_index":"logs-2023.02.08",
"_id":"GB2UMYYBfCQ-FCMjayJa",
"_score":null,
"highlight": {
"line": [
"@HIGHLIGHT@hello@/HIGHLIGHT@, i am a @HIGHLIGHT@message@/HIGHLIGHT@"
],
"duplicated": ["@HIGHLIGHT@hello@/HIGHLIGHT@"]
},
"_source":{
"@timestamp":"2023-02-08T15:10:55.830Z",
"line":"log text [479231733]"
}
},
{
"_index":"logs-2023.02.08",
"_id":"GB2UMYYBfCQ-FCMjayJa",
"_score":null,
"highlight": {
"line": [
"@HIGHLIGHT@hello@/HIGHLIGHT@, i am a @HIGHLIGHT@message@/HIGHLIGHT@"
],
"duplicated": ["@HIGHLIGHT@hello@/HIGHLIGHT@"]
},
"_source":{
"@timestamp":"2023-02-08T15:10:55.830Z",
"line":"log text [479231733]"
}
}
]
},
"status":200
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.Len(t, dataframes, 1)
frame := dataframes[0]
customMeta := frame.Meta.Custom
require.Equal(t, map[string]any{
"searchWords": []string{"hello", "message"},
"limit": 500,
}, customMeta)
})
}
func TestProcessRawDataResponse(t *testing.T) {
t.Run("Simple raw data query", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "raw_data" }]
}`,
}
response := `{
"responses":[
{
"hits":{
"total":{
"value":109,
"relation":"eq"
},
"max_score":null,
"hits":[
{
"_index":"logs-2023.02.08",
"_id":"GB2UMYYBfCQ-FCMjayJa",
"_score":null,
"_source":{
"@timestamp":"2023-02-08T15:10:55.830Z",
"line":"log text [479231733]",
"counter":"109",
"float":58.253758485091,
"label":"val1",
"level":"info",
"location":"17.089705232090438, 41.62861966340297",
"nested": {
"field": {
"double_nested": "value"
}
},
"shapes":[
{
"type":"triangle"
},
{
"type":"square"
}
],
"xyz": null
},
"sort":[
1675869055830,
4
]
},
{
"_index":"logs-2023.02.08",
"_id":"Fx2UMYYBfCQ-FCMjZyJ_",
"_score":null,
"_source":{
"@timestamp":"2023-02-08T15:10:54.835Z",
"line":"log text with ANSI \u001b[31mpart of the text\u001b[0m [493139080]",
"counter":"108",
"float":54.5977098233944,
"label":"val1",
"level":"info",
"location":"19.766305918490463, 40.42639175509792",
"nested": {
"field": {
"double_nested": "value"
}
},
"shapes":[
{
"type":"triangle"
},
{
"type":"square"
}
],
"xyz": "def"
},
"sort":[
1675869054835,
7
]
}
]
},
"status":200
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.Len(t, dataframes, 1)
frame := dataframes[0]
require.Equal(t, 15, len(frame.Fields))
// Fields have the correct length
require.Equal(t, 2, frame.Fields[0].Len())
// First field is timeField
require.Equal(t, data.FieldTypeNullableTime, frame.Fields[0].Type())
// Correctly uses string types
require.Equal(t, data.FieldTypeNullableString, frame.Fields[1].Type())
// Correctly detects float64 types
require.Equal(t, data.FieldTypeNullableFloat64, frame.Fields[5].Type())
// Correctly detects json types
require.Equal(t, data.FieldTypeNullableJSON, frame.Fields[6].Type())
// Correctly flattens fields
require.Equal(t, "nested.field.double_nested", frame.Fields[11].Name)
require.Equal(t, data.FieldTypeNullableString, frame.Fields[11].Type())
// Correctly detects type even if first value is null
require.Equal(t, data.FieldTypeNullableString, frame.Fields[14].Type())
})
t.Run("Raw data query filterable fields", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [{ "type": "raw_data", "id": "1" }],
"bucketAggs": []
}
]
`)
response := []byte(`
{
"responses": [
{
"hits": {
"total": { "relation": "eq", "value": 1 },
"hits": [
{
"_id": "1",
"_type": "_doc",
"_index": "index",
"_source": { "sourceProp": "asd" }
}
]
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.True(t, len(frames) > 0)
for _, field := range frames[0].Fields {
trueValue := true
filterableConfig := data.FieldConfig{Filterable: &trueValue}
// we need to test that the only changed setting is `filterable`
require.Equal(t, filterableConfig, *field.Config)
}
})
t.Run("gets correct time field from fields", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [{ "type": "raw_data", "id": "1" }]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {},
"hits": {
"hits": [
{
"_id": "fdsfs",
"_type": "_doc",
"_index": "mock-index",
"_source": {
"testtime": "06/24/2019",
"host": "djisaodjsoad",
"number": 1,
"line": "hello, i am a message",
"level": "debug",
"fields": { "lvl": "debug" }
},
"highlight": {
"message": [
"@HIGHLIGHT@hello@/HIGHLIGHT@, i am a @HIGHLIGHT@message@/HIGHLIGHT@"
]
},
"fields": {
"testtime": [ "2019-06-24T09:51:19.765Z" ]
}
},
{
"_id": "kdospaidopa",
"_type": "_doc",
"_index": "mock-index",
"_source": {
"testtime": "06/24/2019",
"host": "dsalkdakdop",
"number": 2,
"line": "hello, i am also message",
"level": "error",
"fields": { "lvl": "info" }
},
"highlight": {
"message": [
"@HIGHLIGHT@hello@/HIGHLIGHT@, i am a @HIGHLIGHT@message@/HIGHLIGHT@"
]
},
"fields": {
"testtime": [ "2019-06-24T09:52:19.765Z" ]
}
}
]
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 1)
logsFrame := frames[0]
logsFieldMap := make(map[string]*data.Field)
for _, field := range logsFrame.Fields {
logsFieldMap[field.Name] = field
}
t0 := time.Date(2019, time.June, 24, 9, 51, 19, 765000000, time.UTC)
t1 := time.Date(2019, time.June, 24, 9, 52, 19, 765000000, time.UTC)
require.Contains(t, logsFieldMap, "testtime")
require.Equal(t, data.FieldTypeNullableTime, logsFieldMap["testtime"].Type())
require.Equal(t, &t0, logsFieldMap["testtime"].At(0))
require.Equal(t, &t1, logsFieldMap["testtime"].At(1))
})
}
func TestProcessRawDocumentResponse(t *testing.T) {
t.Run("Simple raw document query", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [{ "type": "raw_document", "id": "1" }],
"bucketAggs": []
}
]
`)
response := []byte(`
{
"responses": [
{
"hits": {
"total": 100,
"hits": [
{
"_id": "1",
"_type": "type",
"_index": "index",
"_source": { "sourceProp": "asd" },
"fields": { "fieldProp": "field" }
},
{
"_source": { "sourceProp": "asd2" },
"fields": { "fieldProp": "field2" }
}
]
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 1)
fields := frames[0].Fields
require.Len(t, fields, 1)
f := fields[0]
require.Equal(t, data.FieldTypeNullableJSON, f.Type())
require.Equal(t, 2, f.Len())
v := f.At(0).(*json.RawMessage)
var jsonData map[string]any
err = json.Unmarshal(*v, &jsonData)
require.NoError(t, err)
require.Equal(t, "asd", jsonData["sourceProp"])
require.Equal(t, "field", jsonData["fieldProp"])
})
t.Run("More complex raw document query", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "raw_document" }]
}`,
}
response := `{
"responses":[
{
"hits":{
"total":{
"value":109,
"relation":"eq"
},
"max_score":null,
"hits":[
{
"_index":"logs-2023.02.08",
"_id":"GB2UMYYBfCQ-FCMjayJa",
"_score":null,
"fields": {
"test_field":"A"
},
"_source":{
"@timestamp":"2023-02-08T15:10:55.830Z",
"line":"log text [479231733]",
"counter":"109",
"float":58.253758485091,
"label":"val1",
"level":"info",
"location":"17.089705232090438, 41.62861966340297",
"nested": {
"field": {
"double_nested": "value"
}
}
}
},
{
"_index":"logs-2023.02.08",
"_id":"Fx2UMYYBfCQ-FCMjZyJ_",
"_score":null,
"fields": {
"test_field":"A"
},
"_source":{
"@timestamp":"2023-02-08T15:10:54.835Z",
"line":"log text with ANSI \u001b[31mpart of the text\u001b[0m [493139080]",
"counter":"108",
"float":54.5977098233944,
"label":"val1",
"level":"info",
"location":"19.766305918490463, 40.42639175509792",
"nested": {
"field": {
"double_nested": "value1"
}
}
}
}
]
},
"status":200
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.Len(t, dataframes, 1)
frame := dataframes[0]
require.Equal(t, 1, len(frame.Fields))
//Fields have the correct length
require.Equal(t, 2, frame.Fields[0].Len())
// The only field is the raw document
require.Equal(t, data.FieldTypeNullableJSON, frame.Fields[0].Type())
require.Equal(t, "A", frame.Fields[0].Name)
})
}
func TestProcessBuckets(t *testing.T) {
t.Run("Percentiles", func(t *testing.T) {
t.Run("Percentiles without date histogram", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [
{
"type": "percentiles",
"field": "value",
"settings": { "percents": ["75", "90"] },
"id": "1"
}
],
"bucketAggs": [{ "type": "terms", "field": "id", "id": "3" }]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"3": {
"buckets": [
{
"1": { "values": { "90": 5.5, "75": 3.3 } },
"doc_count": 10,
"key": "id1"
},
{
"1": { "values": { "75": 2.3, "90": 4.5 } },
"doc_count": 15,
"key": "id2"
}
]
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 1)
requireFrameLength(t, frames[0], 2)
require.Len(t, frames[0].Fields, 3)
f1 := frames[0].Fields[0]
f2 := frames[0].Fields[1]
f3 := frames[0].Fields[2]
require.Equal(t, "id", f1.Name)
require.Equal(t, "p75 value", f2.Name)
require.Equal(t, "p90 value", f3.Name)
requireStringAt(t, "id1", f1, 0)
requireStringAt(t, "id2", f1, 1)
requireFloatAt(t, 3.3, f2, 0)
requireFloatAt(t, 2.3, f2, 1)
requireFloatAt(t, 5.5, f3, 0)
requireFloatAt(t, 4.5, f3, 1)
})
t.Run("percentiles 2 frames", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [
{
"type": "percentiles",
"settings": { "percents": ["75", "90"] },
"id": "1",
"field": "@value"
}
],
"bucketAggs": [
{ "type": "date_histogram", "field": "@timestamp", "id": "3" }
]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"3": {
"buckets": [
{
"1": { "values": { "75": 3.3, "90": 5.5 } },
"doc_count": 10,
"key": 1000
},
{
"1": { "values": { "75": 2.3, "90": 4.5 } },
"doc_count": 15,
"key": 2000
}
]
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 2)
requireFrameLength(t, frames[0], 2)
requireTimeSeriesName(t, "p75 @value", frames[0])
requireTimeSeriesName(t, "p90 @value", frames[1])
requireNumberValue(t, 3.3, frames[0], 0)
requireTimeValue(t, 1000, frames[0], 0)
requireNumberValue(t, 4.5, frames[1], 1)
})
t.Run("With percentiles", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "percentiles", "settings": { "percents": [75, 90] }, "id": "1" }],
"bucketAggs": [{ "type": "date_histogram", "field": "@timestamp", "id": "3" }]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"3": {
"buckets": [
{
"1": { "values": { "75": 3.3, "90": 5.5 } },
"doc_count": 10,
"key": 1000
},
{
"1": { "values": { "75": 2.3, "90": 4.5 } },
"doc_count": 15,
"key": 2000
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 2)
frame := dataframes[0]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "p75")
frame = dataframes[1]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "p90")
})
})
t.Run("Histograms", func(t *testing.T) {
t.Run("Histogram simple", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [{ "type": "count", "id": "1" }],
"bucketAggs": [{ "type": "histogram", "field": "bytes", "id": "3" }]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"3": {
"buckets": [
{ "doc_count": 1, "key": 1000 },
{ "doc_count": 3, "key": 2000 },
{ "doc_count": 2, "key": 1000 }
]
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 1)
requireFrameLength(t, frames[0], 3)
fields := frames[0].Fields
require.Len(t, fields, 2)
field1 := fields[0]
field2 := fields[1]
require.Equal(t, "bytes", field1.Name)
trueValue := true
filterableConfig := data.FieldConfig{Filterable: &trueValue}
// we need to test that the only changed setting is `filterable`
require.Equal(t, filterableConfig, *field1.Config)
require.Equal(t, "Count", field2.Name)
// we need to test that the fieldConfig is "empty"
require.Nil(t, field2.Config)
})
t.Run("Histogram response", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "count", "id": "1" }],
"bucketAggs": [{ "type": "histogram", "field": "bytes", "id": "3" }]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"3": {
"buckets": [{ "doc_count": 1, "key": 1000 }, { "doc_count": 3, "key": 2000 }, { "doc_count": 2, "key": 3000 }]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 1)
})
})
t.Run("Terms", func(t *testing.T) {
t.Run("Terms with two bucket_script", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [
{ "id": "1", "type": "sum", "field": "@value" },
{ "id": "3", "type": "max", "field": "@value" },
{
"id": "4",
"pipelineVariables": [{ "name": "var1", "pipelineAgg": "1" }, { "name": "var2", "pipelineAgg": "3" }],
"settings": { "script": "params.var1 * params.var2" },
"type": "bucket_script"
},
{
"id": "5",
"pipelineVariables": [{ "name": "var1", "pipelineAgg": "1" }, { "name": "var2", "pipelineAgg": "3" }],
"settings": { "script": "params.var1 * params.var2 * 2" },
"type": "bucket_script"
}
],
"bucketAggs": [{ "type": "terms", "field": "@timestamp", "id": "2" }]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"1": { "value": 2 },
"3": { "value": 3 },
"4": { "value": 6 },
"5": { "value": 24 },
"doc_count": 60,
"key": 1000
},
{
"1": { "value": 3 },
"3": { "value": 4 },
"4": { "value": 12 },
"5": { "value": 48 },
"doc_count": 60,
"key": 2000
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 1)
frame := dataframes[0]
require.Len(t, frame.Fields, 5)
require.Equal(t, frame.Fields[0].Name, "@timestamp")
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, "Sum")
require.Equal(t, frame.Fields[1].Len(), 2)
require.Equal(t, frame.Fields[2].Name, "Max")
require.Equal(t, frame.Fields[2].Len(), 2)
require.Equal(t, frame.Fields[3].Name, "params.var1 * params.var2")
require.Equal(t, frame.Fields[3].Len(), 2)
require.Equal(t, frame.Fields[4].Name, "params.var1 * params.var2 * 2")
require.Equal(t, frame.Fields[4].Len(), 2)
require.Nil(t, frame.Fields[1].Config)
})
t.Run("With max and multiple terms agg", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [
{
"type": "max",
"field": "counter",
"id": "1"
}
],
"bucketAggs": [{ "type": "terms", "field": "label", "id": "2" }, { "type": "terms", "field": "level", "id": "3" }]
}`,
}
response := `{
"responses": [{
"aggregations": {
"2": {
"buckets": [
{
"key": "val3",
"3": {
"buckets": [
{ "key": "info", "1": { "value": "299" } }, { "key": "error", "1": {"value": "300"} }
]
}
},
{
"key": "val2",
"3": {
"buckets": [
{"key": "info", "1": {"value": "300"}}, {"key": "error", "1": {"value": "298"} }
]
}
},
{
"key": "val1",
"3": {
"buckets": [
{"key": "info", "1": {"value": "299"}}, {"key": "error", "1": {"value": "296"} }
]
}
}
]
}
}
}]
}`
result, err := parseTestResponse(targets, response, false)
assert.Nil(t, err)
assert.Len(t, result.Responses, 1)
frames := result.Responses["A"].Frames
require.Len(t, frames, 1)
requireFrameLength(t, frames[0], 6)
require.Len(t, frames[0].Fields, 3)
f1 := frames[0].Fields[0]
f2 := frames[0].Fields[1]
f3 := frames[0].Fields[2]
require.Equal(t, "label", f1.Name)
require.Equal(t, "level", f2.Name)
require.Equal(t, "Max", f3.Name)
requireStringAt(t, "val3", f1, 0)
requireStringAt(t, "val3", f1, 1)
requireStringAt(t, "val2", f1, 2)
requireStringAt(t, "val2", f1, 3)
requireStringAt(t, "val1", f1, 4)
requireStringAt(t, "val1", f1, 5)
requireStringAt(t, "info", f2, 0)
requireStringAt(t, "error", f2, 1)
requireStringAt(t, "info", f2, 2)
requireStringAt(t, "error", f2, 3)
requireStringAt(t, "info", f2, 4)
requireStringAt(t, "error", f2, 5)
requireFloatAt(t, 299, f3, 0)
requireFloatAt(t, 300, f3, 1)
requireFloatAt(t, 300, f3, 2)
requireFloatAt(t, 298, f3, 3)
requireFloatAt(t, 299, f3, 4)
requireFloatAt(t, 296, f3, 5)
})
t.Run("Terms agg without date histogram", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [
{ "type": "avg", "id": "1", "field": "@value" },
{ "type": "count", "id": "3" }
],
"bucketAggs": [{ "id": "2", "type": "terms", "field": "host" }]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{ "1": { "value": 1000 }, "key": "server-1", "doc_count": 369 },
{ "1": { "value": 2000 }, "key": "server-2", "doc_count": 200 }
]
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 1)
frame1 := frames[0]
requireFrameLength(t, frame1, 2)
require.Len(t, frame1.Fields, 3)
f1 := frame1.Fields[0]
f2 := frame1.Fields[1]
f3 := frame1.Fields[2]
requireStringAt(t, "server-1", f1, 0)
requireStringAt(t, "server-2", f1, 1)
requireFloatAt(t, 1000.0, f2, 0)
requireFloatAt(t, 2000.0, f2, 1)
requireFloatAt(t, 369.0, f3, 0)
requireFloatAt(t, 200.0, f3, 1)
})
})
t.Run("Top metrics", func(t *testing.T) {
t.Run("Top metrics 2 frames", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [
{
"type": "top_metrics",
"settings": {
"order": "top",
"orderBy": "@timestamp",
"metrics": ["@value", "@anotherValue"]
},
"id": "1"
}
],
"bucketAggs": [{ "type": "date_histogram", "id": "2" }]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"1": {
"top": [
{
"sort": ["2021-01-01T00:00:00.000Z"],
"metrics": { "@value": 1, "@anotherValue": 2 }
}
]
},
"key": 1609459200000,
"key_as_string": "2021-01-01T00:00:00.000Z"
},
{
"1": {
"top": [
{
"sort": ["2021-01-01T00:00:10.000Z"],
"metrics": { "@value": 1, "@anotherValue": 2 }
}
]
},
"key": 1609459210000,
"key_as_string": "2021-01-01T00:00:10.000Z"
}
]
}
}
}
]
}
`)
time1, err := time.Parse(time.RFC3339, "2021-01-01T00:00:00.000Z")
require.NoError(t, err)
time2, err := time.Parse(time.RFC3339, "2021-01-01T00:00:10.000Z")
require.NoError(t, err)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 2)
frame1 := frames[0]
frame2 := frames[1]
requireTimeSeriesName(t, "Top Metrics @value", frame1)
requireFrameLength(t, frame1, 2)
requireTimeValue(t, time1.UTC().UnixMilli(), frame1, 0)
requireTimeValue(t, time2.UTC().UnixMilli(), frame1, 1)
requireNumberValue(t, 1, frame1, 0)
requireNumberValue(t, 1, frame1, 1)
requireTimeSeriesName(t, "Top Metrics @anotherValue", frame2)
requireFrameLength(t, frame2, 2)
requireTimeValue(t, time1.UTC().UnixMilli(), frame2, 0)
requireTimeValue(t, time2.UTC().UnixMilli(), frame2, 1)
requireNumberValue(t, 2, frame2, 0)
requireNumberValue(t, 2, frame2, 1)
})
t.Run("With top_metrics and date_histogram agg", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [
{
"type": "top_metrics",
"settings": {
"order": "desc",
"orderBy": "@timestamp",
"metrics": ["@value", "@anotherValue"]
},
"id": "1"
}
],
"bucketAggs": [{ "type": "date_histogram", "field": "@timestamp", "id": "3" }]
}`,
}
response := `{
"responses": [{
"aggregations": {
"3": {
"buckets": [
{
"key": 1609459200000,
"key_as_string": "2021-01-01T00:00:00.000Z",
"1": {
"top": [
{ "sort": ["2021-01-01T00:00:00.000Z"], "metrics": { "@value": 1, "@anotherValue": 2 } }
]
}
},
{
"key": 1609459210000,
"key_as_string": "2021-01-01T00:00:10.000Z",
"1": {
"top": [
{ "sort": ["2021-01-01T00:00:10.000Z"], "metrics": { "@value": 1, "@anotherValue": 2 } }
]
}
}
]
}
}
}]
}`
result, err := parseTestResponse(targets, response, false)
assert.Nil(t, err)
assert.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
assert.NotNil(t, queryRes)
dataframes := queryRes.Frames
assert.NoError(t, err)
assert.Len(t, dataframes, 2)
frame := dataframes[0]
assert.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "Top Metrics @value")
v, _ := frame.FloatAt(0, 0)
assert.Equal(t, 1609459200000., v)
v, _ = frame.FloatAt(1, 0)
assert.Equal(t, 1., v)
v, _ = frame.FloatAt(0, 1)
assert.Equal(t, 1609459210000., v)
v, _ = frame.FloatAt(1, 1)
assert.Equal(t, 1., v)
frame = dataframes[1]
l, _ := frame.MarshalJSON()
fmt.Println(string(l))
assert.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "Top Metrics @anotherValue")
v, _ = frame.FloatAt(0, 0)
assert.Equal(t, 1609459200000., v)
v, _ = frame.FloatAt(1, 0)
assert.Equal(t, 2., v)
v, _ = frame.FloatAt(0, 1)
assert.Equal(t, 1609459210000., v)
v, _ = frame.FloatAt(1, 1)
assert.Equal(t, 2., v)
})
t.Run("With top_metrics and terms agg", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [
{
"type": "top_metrics",
"settings": {
"order": "desc",
"orderBy": "@timestamp",
"metrics": ["@value", "@anotherValue"]
},
"id": "1"
}
],
"bucketAggs": [{ "type": "terms", "field": "id", "id": "3" }]
}`,
}
response := `{
"responses": [{
"aggregations": {
"3": {
"buckets": [
{
"key": "id1",
"1": {
"top": [
{ "sort": [10], "metrics": { "@value": 10, "@anotherValue": 2 } }
]
}
},
{
"key": "id2",
"1": {
"top": [
{ "sort": [5], "metrics": { "@value": 5, "@anotherValue": 2 } }
]
}
}
]
}
}
}]
}`
result, err := parseTestResponse(targets, response, false)
assert.Nil(t, err)
assert.Len(t, result.Responses, 1)
frames := result.Responses["A"].Frames
require.Len(t, frames, 1)
requireFrameLength(t, frames[0], 2)
require.Len(t, frames[0].Fields, 3)
f1 := frames[0].Fields[0]
f2 := frames[0].Fields[1]
f3 := frames[0].Fields[2]
require.Equal(t, "id", f1.Name)
require.Equal(t, "Top Metrics @value", f2.Name)
require.Equal(t, "Top Metrics @anotherValue", f3.Name)
requireStringAt(t, "id1", f1, 0)
requireStringAt(t, "id2", f1, 1)
requireFloatAt(t, 10, f2, 0)
requireFloatAt(t, 5, f2, 1)
requireFloatAt(t, 2, f3, 0)
requireFloatAt(t, 2, f3, 1)
})
})
t.Run("Group by", func(t *testing.T) {
t.Run("Simple group by 1 metric 2 frames", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [{ "type": "count", "id": "1" }],
"bucketAggs": [
{ "type": "terms", "field": "host", "id": "2" },
{ "type": "date_histogram", "field": "@timestamp", "id": "3" }
]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"3": {
"buckets": [
{ "doc_count": 1, "key": 1000 },
{ "doc_count": 3, "key": 2000 }
]
},
"doc_count": 4,
"key": "server1"
},
{
"3": {
"buckets": [
{ "doc_count": 2, "key": 1000 },
{ "doc_count": 8, "key": 2000 }
]
},
"doc_count": 10,
"key": "server2"
}
]
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 2)
requireFrameLength(t, frames[0], 2)
requireTimeSeriesName(t, "server1", frames[0])
requireTimeSeriesName(t, "server2", frames[1])
})
t.Run("Single group with alias pattern 3 frames", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [{ "type": "count", "id": "1" }],
"alias": "{{term @host}} {{metric}} and {{not_exist}} {{@host}}",
"bucketAggs": [
{ "type": "terms", "field": "@host", "id": "2" },
{ "type": "date_histogram", "field": "@timestamp", "id": "3" }
]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"3": {
"buckets": [
{ "doc_count": 1, "key": 1000 },
{ "doc_count": 3, "key": 2000 }
]
},
"doc_count": 4,
"key": "server1"
},
{
"3": {
"buckets": [
{ "doc_count": 2, "key": 1000 },
{ "doc_count": 8, "key": 2000 }
]
},
"doc_count": 10,
"key": "server2"
},
{
"3": {
"buckets": [
{ "doc_count": 2, "key": 1000 },
{ "doc_count": 8, "key": 2000 }
]
},
"doc_count": 10,
"key": 0
}
]
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 3)
requireFrameLength(t, frames[0], 2)
requireTimeSeriesName(t, "server1 Count and {{not_exist}} server1", frames[0])
requireTimeSeriesName(t, "server2 Count and {{not_exist}} server2", frames[1])
requireTimeSeriesName(t, "0 Count and {{not_exist}} 0", frames[2])
})
t.Run("Single group by query one metric", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "count", "id": "1" }],
"bucketAggs": [
{ "type": "terms", "field": "host", "id": "2" },
{ "type": "date_histogram", "field": "@timestamp", "id": "3" }
]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"3": {
"buckets": [{ "doc_count": 1, "key": 1000 }, { "doc_count": 3, "key": 2000 }]
},
"doc_count": 4,
"key": "server1"
},
{
"3": {
"buckets": [{ "doc_count": 2, "key": 1000 }, { "doc_count": 8, "key": 2000 }]
},
"doc_count": 10,
"key": "server2"
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 2)
frame := dataframes[0]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "server1")
frame = dataframes[1]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "server2")
})
t.Run("Single group by query one metric with true keepLabelsInResponse", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "count", "id": "1" }],
"bucketAggs": [
{ "type": "terms", "field": "host", "id": "2" },
{ "type": "date_histogram", "field": "@timestamp", "id": "3" }
]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"3": {
"buckets": [{ "doc_count": 1, "key": 1000 }, { "doc_count": 3, "key": 2000 }]
},
"doc_count": 4,
"key": "server1"
},
{
"3": {
"buckets": [{ "doc_count": 2, "key": 1000 }, { "doc_count": 8, "key": 2000 }]
},
"doc_count": 10,
"key": "server2"
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, true)
require.NoError(t, err)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 2)
frame := dataframes[0]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
require.Equal(t, frame.Fields[1].Labels, data.Labels{"host": "server1"})
assert.Equal(t, frame.Fields[1].Config.DisplayNameFromDS, "server1")
frame = dataframes[1]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
require.Equal(t, frame.Fields[1].Labels, data.Labels{"host": "server2"})
assert.Equal(t, frame.Fields[1].Config.DisplayNameFromDS, "server2")
})
t.Run("Single group by query two metrics", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "count", "id": "1" }, { "type": "avg", "field": "@value", "id": "4" }],
"bucketAggs": [
{ "type": "terms", "field": "host", "id": "2" },
{ "type": "date_histogram", "field": "@timestamp", "id": "3" }
]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"3": {
"buckets": [
{ "4": { "value": 10 }, "doc_count": 1, "key": 1000 },
{ "4": { "value": 12 }, "doc_count": 3, "key": 2000 }
]
},
"doc_count": 4,
"key": "server1"
},
{
"3": {
"buckets": [
{ "4": { "value": 20 }, "doc_count": 1, "key": 1000 },
{ "4": { "value": 32 }, "doc_count": 3, "key": 2000 }
]
},
"doc_count": 10,
"key": "server2"
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 4)
frame := dataframes[0]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "server1 Count")
frame = dataframes[1]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "server1 Average @value")
frame = dataframes[2]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "server2 Count")
frame = dataframes[3]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "server2 Average @value")
})
t.Run("Simple group by 2 metrics 4 frames", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [
{ "type": "count", "id": "1" },
{ "type": "avg", "field": "@value", "id": "4" }
],
"bucketAggs": [
{ "type": "terms", "field": "host", "id": "2" },
{ "type": "date_histogram", "field": "@timestamp", "id": "3" }
]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"3": {
"buckets": [
{ "4": { "value": 10 }, "doc_count": 1, "key": 1000 },
{ "4": { "value": 12 }, "doc_count": 3, "key": 2000 }
]
},
"doc_count": 4,
"key": "server1"
},
{
"3": {
"buckets": [
{ "4": { "value": 20 }, "doc_count": 1, "key": 1000 },
{ "4": { "value": 32 }, "doc_count": 3, "key": 2000 }
]
},
"doc_count": 10,
"key": "server2"
}
]
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 4)
requireFrameLength(t, frames[0], 2)
requireTimeSeriesName(t, "server1 Count", frames[0])
requireTimeSeriesName(t, "server1 Average @value", frames[1])
requireTimeSeriesName(t, "server2 Count", frames[2])
requireTimeSeriesName(t, "server2 Average @value", frames[3])
})
t.Run("Single group by with alias pattern", func(t *testing.T) {
targets := map[string]string{
"A": `{
"alias": "{{term @host}} {{metric}} and {{not_exist}} {{@host}}",
"metrics": [{ "type": "count", "id": "1" }],
"bucketAggs": [
{ "type": "terms", "field": "@host", "id": "2" },
{ "type": "date_histogram", "field": "@timestamp", "id": "3" }
]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"3": {
"buckets": [{ "doc_count": 1, "key": 1000 }, { "doc_count": 3, "key": 2000 }]
},
"doc_count": 4,
"key": "server1"
},
{
"3": {
"buckets": [{ "doc_count": 2, "key": 1000 }, { "doc_count": 8, "key": 2000 }]
},
"doc_count": 10,
"key": "server2"
},
{
"3": {
"buckets": [{ "doc_count": 2, "key": 1000 }, { "doc_count": 8, "key": 2000 }]
},
"doc_count": 10,
"key": 0
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 3)
frame := dataframes[0]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "server1 Count and {{not_exist}} server1")
frame = dataframes[1]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "server2 Count and {{not_exist}} server2")
frame = dataframes[2]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "0 Count and {{not_exist}} 0")
})
})
t.Run("Extended stats", func(t *testing.T) {
t.Run("Extended stats 4 frames", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [
{
"type": "extended_stats",
"meta": { "max": true, "std_deviation_bounds_upper": true },
"id": "1",
"field": "@value"
}
],
"bucketAggs": [
{ "type": "terms", "field": "host", "id": "3" },
{ "type": "date_histogram", "id": "4" }
]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"3": {
"buckets": [
{
"4": {
"buckets": [
{
"1": {
"max": 10.2,
"min": 5.5,
"std_deviation_bounds": { "upper": 3, "lower": -2 }
},
"doc_count": 10,
"key": 1000
}
]
},
"key": "server1"
},
{
"4": {
"buckets": [
{
"1": {
"max": 10.2,
"min": 5.5,
"std_deviation_bounds": { "upper": 3, "lower": -2 }
},
"doc_count": 10,
"key": 1000
}
]
},
"key": "server2"
}
]
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 4)
requireFrameLength(t, frames[0], 1)
requireTimeSeriesName(t, "server1 Max @value", frames[0])
requireTimeSeriesName(t, "server1 Std Dev Upper @value", frames[1])
requireNumberValue(t, 10.2, frames[0], 0)
requireNumberValue(t, 3, frames[1], 0)
})
t.Run("With extended stats", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "extended_stats", "meta": { "max": true, "std_deviation_bounds_upper": true, "std_deviation_bounds_lower": true }, "id": "1" }],
"bucketAggs": [
{ "type": "terms", "field": "host", "id": "3" },
{ "type": "date_histogram", "field": "@timestamp", "id": "4" }
]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"3": {
"buckets": [
{
"key": "server1",
"4": {
"buckets": [
{
"1": {
"max": 10.2,
"min": 5.5,
"std_deviation_bounds": { "upper": 3, "lower": -2 }
},
"doc_count": 10,
"key": 1000
}
]
}
},
{
"key": "server2",
"4": {
"buckets": [
{
"1": {
"max": 15.5,
"min": 3.4,
"std_deviation_bounds": { "upper": 4, "lower": -1 }
},
"doc_count": 10,
"key": 1000
}
]
}
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 6)
frame := dataframes[0]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 1)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 1)
assert.Equal(t, frame.Name, "server1 Max")
frame = dataframes[1]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 1)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 1)
assert.Equal(t, frame.Name, "server1 Std Dev Lower")
frame = dataframes[2]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 1)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 1)
assert.Equal(t, frame.Name, "server1 Std Dev Upper")
frame = dataframes[3]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 1)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 1)
assert.Equal(t, frame.Name, "server2 Max")
frame = dataframes[4]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 1)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 1)
assert.Equal(t, frame.Name, "server2 Std Dev Lower")
frame = dataframes[5]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 1)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 1)
assert.Equal(t, frame.Name, "server2 Std Dev Upper")
})
})
t.Run("Count", func(t *testing.T) {
t.Run("Simple query returns 1 frame", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [{ "type": "count", "id": "1" }],
"bucketAggs": [
{ "type": "date_histogram", "field": "@timestamp", "id": "2" }
]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{ "doc_count": 10, "key": 1000 },
{ "doc_count": 15, "key": 2000 }
]
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 1, "frame-count wrong")
frame := frames[0]
requireTimeSeriesName(t, "Count", frame)
requireFrameLength(t, frame, 2)
requireTimeValue(t, 1000, frame, 0)
requireNumberValue(t, 10, frame, 0)
})
t.Run("Simple count with date_histogram aggregation", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "count", "id": "1" }],
"bucketAggs": [{ "type": "date_histogram", "field": "@timestamp", "id": "2" }]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"doc_count": 10,
"key": 1000
},
{
"doc_count": 15,
"key": 2000
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.Len(t, dataframes, 1)
frame := dataframes[0]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "Count")
})
t.Run("Simple query count & avg aggregation", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "count", "id": "1" }, {"type": "avg", "field": "value", "id": "2" }],
"bucketAggs": [{ "type": "date_histogram", "field": "@timestamp", "id": "3" }]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"3": {
"buckets": [
{
"2": { "value": 88 },
"doc_count": 10,
"key": 1000
},
{
"2": { "value": 99 },
"doc_count": 15,
"key": 2000
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 2)
frame := dataframes[0]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "Count")
frame = dataframes[1]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "Average value")
})
})
t.Run("Avg", func(t *testing.T) {
t.Run("Query with duplicated avg metric creates unique field name", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{"type": "avg", "field": "value", "id": "1" }, {"type": "avg", "field": "value", "id": "4" }],
"bucketAggs": [{ "type": "terms", "field": "label", "id": "3" }]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"3": {
"buckets": [
{
"1": { "value": 88 },
"4": { "value": 88 },
"doc_count": 10,
"key": "val1"
},
{
"1": { "value": 99 },
"4": { "value": 99 },
"doc_count": 15,
"key": "val2"
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 1)
frame := dataframes[0]
require.Len(t, frame.Fields, 3)
require.Equal(t, frame.Fields[0].Name, "label")
require.Equal(t, frame.Fields[1].Name, "Average value 1")
require.Equal(t, frame.Fields[2].Name, "Average value 4")
})
})
t.Run("Multiple bucket agg", func(t *testing.T) {
t.Run("Date histogram with 2 filters agg", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [{ "type": "count", "id": "1" }],
"bucketAggs": [
{
"id": "2",
"type": "filters",
"settings": {
"filters": [
{ "query": "@metric:cpu", "label": "" },
{ "query": "@metric:logins.count", "label": "" }
]
}
},
{ "type": "date_histogram", "field": "@timestamp", "id": "3" }
]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"2": {
"buckets": {
"@metric:cpu": {
"3": {
"buckets": [
{ "doc_count": 1, "key": 1000 },
{ "doc_count": 3, "key": 2000 }
]
}
},
"@metric:logins.count": {
"3": {
"buckets": [
{ "doc_count": 2, "key": 1000 },
{ "doc_count": 8, "key": 2000 }
]
}
}
}
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 2)
requireFrameLength(t, frames[0], 2)
requireTimeSeriesName(t, "@metric:cpu", frames[0])
requireTimeSeriesName(t, "@metric:logins.count", frames[1])
})
t.Run("With two filters agg", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "count", "id": "1" }],
"bucketAggs": [
{
"type": "filters",
"id": "2",
"settings": {
"filters": [{ "query": "@metric:cpu" }, { "query": "@metric:logins.count" }]
}
},
{ "type": "date_histogram", "field": "@timestamp", "id": "3" }
]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"2": {
"buckets": {
"@metric:cpu": {
"3": {
"buckets": [{ "doc_count": 1, "key": 1000 }, { "doc_count": 3, "key": 2000 }]
}
},
"@metric:logins.count": {
"3": {
"buckets": [{ "doc_count": 2, "key": 1000 }, { "doc_count": 8, "key": 2000 }]
}
}
}
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 2)
frame := dataframes[0]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "@metric:cpu")
frame = dataframes[1]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "@metric:logins.count")
})
})
t.Run("With multiple metrics", func(t *testing.T) {
t.Run("Multiple metrics with the same type", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [
{ "type": "avg", "id": "1", "field": "test" },
{ "type": "avg", "id": "2", "field": "test2" }
],
"bucketAggs": [{ "id": "2", "type": "terms", "field": "host" }]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"1": { "value": 1000 },
"2": { "value": 3000 },
"key": "server-1",
"doc_count": 369
}
]
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.True(t, len(frames) > 0)
requireFrameLength(t, frames[0], 1)
require.Len(t, frames[0].Fields, 3)
requireStringAt(t, "server-1", frames[0].Fields[0], 0)
requireFloatAt(t, 1000.0, frames[0].Fields[1], 0)
requireFloatAt(t, 3000.0, frames[0].Fields[2], 0)
})
t.Run("Multiple metrics of same type", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "avg", "field": "test", "id": "1" }, { "type": "avg", "field": "test2", "id": "2" }],
"bucketAggs": [{ "type": "terms", "field": "host", "id": "2" }]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"1": { "value": 1000 },
"2": { "value": 3000 },
"key": "server-1",
"doc_count": 369
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 1)
frame := dataframes[0]
require.Len(t, frame.Fields, 3)
require.Equal(t, frame.Fields[0].Name, "host")
require.Equal(t, frame.Fields[0].Len(), 1)
require.Equal(t, frame.Fields[1].Name, "Average test")
require.Equal(t, frame.Fields[1].Len(), 1)
require.Equal(t, frame.Fields[2].Name, "Average test2")
require.Equal(t, frame.Fields[2].Len(), 1)
require.Nil(t, frame.Fields[1].Config)
})
t.Run("No group by time", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "avg", "id": "1" }, { "type": "count" }],
"bucketAggs": [{ "type": "terms", "field": "host", "id": "2" }]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"1": { "value": 1000 },
"key": "server-1",
"doc_count": 369
},
{
"1": { "value": 2000 },
"key": "server-2",
"doc_count": 200
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 1)
frame := dataframes[0]
require.Len(t, frame.Fields, 3)
require.Equal(t, frame.Fields[0].Name, "host")
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, "Average")
require.Equal(t, frame.Fields[1].Len(), 2)
require.Equal(t, frame.Fields[2].Name, "Count")
require.Equal(t, frame.Fields[2].Len(), 2)
require.Nil(t, frame.Fields[1].Config)
})
t.Run("With drop first and last aggregation (numeric)", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "avg", "id": "1" }, { "type": "count" }],
"bucketAggs": [
{
"type": "date_histogram",
"field": "@timestamp",
"id": "2",
"settings": { "trimEdges": 1 }
}
]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"1": { "value": 1000 },
"key": 1,
"doc_count": 369
},
{
"1": { "value": 2000 },
"key": 2,
"doc_count": 200
},
{
"1": { "value": 2000 },
"key": 3,
"doc_count": 200
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 2)
frame := dataframes[0]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 1)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 1)
assert.Equal(t, frame.Name, "Average")
frame = dataframes[1]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 1)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 1)
assert.Equal(t, frame.Name, "Count")
})
t.Run("With drop first and last aggregation (string)", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "avg", "id": "1" }, { "type": "count" }],
"bucketAggs": [
{
"type": "date_histogram",
"field": "@timestamp",
"id": "2",
"settings": { "trimEdges": "1" }
}
]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"1": { "value": 1000 },
"key": 1,
"doc_count": 369
},
{
"1": { "value": 2000 },
"key": 2,
"doc_count": 200
},
{
"1": { "value": 2000 },
"key": 3,
"doc_count": 200
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 2)
frame := dataframes[0]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 1)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 1)
assert.Equal(t, frame.Name, "Average")
frame = dataframes[1]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 1)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 1)
assert.Equal(t, frame.Name, "Count")
})
})
t.Run("Trim edges", func(t *testing.T) {
t.Run("Larger trimEdges value", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [{ "type": "count" }],
"bucketAggs": [
{
"type": "date_histogram",
"field": "@timestamp",
"id": "2",
"settings": { "trimEdges": "3" }
}
]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{ "key": 1000, "doc_count": 10},
{ "key": 2000, "doc_count": 20},
{ "key": 3000, "doc_count": 30},
{ "key": 4000, "doc_count": 40},
{ "key": 5000, "doc_count": 50},
{ "key": 6000, "doc_count": 60},
{ "key": 7000, "doc_count": 70},
{ "key": 8000, "doc_count": 80},
{ "key": 9000, "doc_count": 90}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
experimental.CheckGoldenJSONResponse(t, "testdata", "trimedges_string.golden", &queryRes, *update)
})
})
t.Run("Bucket script", func(t *testing.T) {
t.Run("With bucket_script", func(t *testing.T) {
targets := map[string]string{
"A": `{
"metrics": [
{ "id": "1", "type": "sum", "field": "@value" },
{ "id": "3", "type": "max", "field": "@value" },
{
"id": "4",
"pipelineVariables": [{ "name": "var1", "pipelineAgg": "1" }, { "name": "var2", "pipelineAgg": "3" }],
"settings": { "script": "params.var1 * params.var2" },
"type": "bucket_script"
}
],
"bucketAggs": [{ "type": "date_histogram", "field": "@timestamp", "id": "2" }]
}`,
}
response := `{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"1": { "value": 2 },
"3": { "value": 3 },
"4": { "value": 6 },
"doc_count": 60,
"key": 1000
},
{
"1": { "value": 3 },
"3": { "value": 4 },
"4": { "value": 12 },
"doc_count": 60,
"key": 2000
}
]
}
}
}
]
}`
result, err := parseTestResponse(targets, response, false)
require.NoError(t, err)
require.Len(t, result.Responses, 1)
queryRes := result.Responses["A"]
require.NotNil(t, queryRes)
dataframes := queryRes.Frames
require.NoError(t, err)
require.Len(t, dataframes, 3)
frame := dataframes[0]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "Sum @value")
frame = dataframes[1]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "Max @value")
frame = dataframes[2]
require.Len(t, frame.Fields, 2)
require.Equal(t, frame.Fields[0].Name, data.TimeSeriesTimeFieldName)
require.Equal(t, frame.Fields[0].Len(), 2)
require.Equal(t, frame.Fields[1].Name, data.TimeSeriesValueFieldName)
require.Equal(t, frame.Fields[1].Len(), 2)
assert.Equal(t, frame.Name, "Sum @value * Max @value")
})
t.Run("Two bucket_script", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [
{ "id": "1", "type": "sum", "field": "@value" },
{ "id": "3", "type": "max", "field": "@value" },
{
"id": "4",
"pipelineVariables": [
{ "name": "var1", "pipelineAgg": "1" },
{ "name": "var2", "pipelineAgg": "3" }
],
"settings": { "script": "params.var1 * params.var2" },
"type": "bucket_script"
},
{
"id": "5",
"pipelineVariables": [
{ "name": "var1", "pipelineAgg": "1" },
{ "name": "var2", "pipelineAgg": "3" }
],
"settings": { "script": "params.var1 * params.var2 * 4" },
"type": "bucket_script"
}
],
"bucketAggs": [{ "type": "terms", "field": "@timestamp", "id": "2" }]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"1": { "value": 2 },
"3": { "value": 3 },
"4": { "value": 6 },
"5": { "value": 24 },
"doc_count": 60,
"key": 1000
},
{
"1": { "value": 3 },
"3": { "value": 4 },
"4": { "value": 12 },
"5": { "value": 48 },
"doc_count": 60,
"key": 2000
}
]
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.True(t, len(frames) > 0)
requireFrameLength(t, frames[0], 2)
fields := frames[0].Fields
require.Len(t, fields, 5)
requireFloatAt(t, 1000.0, fields[0], 0)
requireFloatAt(t, 2000.0, fields[0], 1)
requireFloatAt(t, 2.0, fields[1], 0)
requireFloatAt(t, 3.0, fields[1], 1)
requireFloatAt(t, 3.0, fields[2], 0)
requireFloatAt(t, 4.0, fields[2], 1)
requireFloatAt(t, 6.0, fields[3], 0)
requireFloatAt(t, 12.0, fields[3], 1)
requireFloatAt(t, 24.0, fields[4], 0)
requireFloatAt(t, 48.0, fields[4], 1)
})
t.Run("Bucket script", func(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [
{ "id": "1", "type": "sum", "field": "@value" },
{ "id": "3", "type": "max", "field": "@value" },
{
"id": "4",
"pipelineVariables": [
{ "name": "var1", "pipelineAgg": "1" },
{ "name": "var2", "pipelineAgg": "3" }
],
"settings": { "script": "params.var1 * params.var2" },
"type": "bucket_script"
}
],
"bucketAggs": [
{ "type": "date_histogram", "field": "@timestamp", "id": "2" }
]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{
"1": { "value": 2 },
"3": { "value": 3 },
"4": { "value": 6 },
"doc_count": 60,
"key": 1000
},
{
"1": { "value": 3 },
"3": { "value": 4 },
"4": { "value": 12 },
"doc_count": 60,
"key": 2000
}
]
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 3)
requireFrameLength(t, frames[0], 2)
requireTimeSeriesName(t, "Sum @value", frames[0])
requireTimeSeriesName(t, "Max @value", frames[1])
requireTimeSeriesName(t, "Sum @value * Max @value", frames[2])
requireNumberValue(t, 2, frames[0], 0)
requireNumberValue(t, 3, frames[1], 0)
requireNumberValue(t, 6, frames[2], 0)
requireNumberValue(t, 3, frames[0], 1)
requireNumberValue(t, 4, frames[1], 1)
requireNumberValue(t, 12, frames[2], 1)
})
})
}
func TestParseResponse(t *testing.T) {
t.Run("Correctly matches refId to response", func(t *testing.T) {
require.NoError(t, nil)
query := []byte(`
[
{
"refId": "COUNT_GROUPBY_DATE_HISTOGRAM",
"metrics": [{ "type": "count", "id": "c_1" }],
"bucketAggs": [{ "type": "date_histogram", "field": "@timestamp", "id": "c_2" }]
},
{
"refId": "COUNT_GROUPBY_HISTOGRAM",
"metrics": [{ "type": "count", "id": "h_3" }],
"bucketAggs": [{ "type": "histogram", "field": "bytes", "id": "h_4" }]
},
{
"refId": "RAW_DOC",
"metrics": [{ "type": "raw_document", "id": "r_5" }],
"bucketAggs": []
},
{
"refId": "PERCENTILE",
"metrics": [
{
"type": "percentiles",
"settings": { "percents": ["75", "90"] },
"id": "p_1"
}
],
"bucketAggs": [{ "type": "date_histogram", "field": "@timestamp", "id": "p_3" }]
},
{
"refId": "EXTENDEDSTATS",
"metrics": [
{
"type": "extended_stats",
"meta": { "max": true, "std_deviation_bounds_upper": true },
"id": "e_1"
}
],
"bucketAggs": [
{ "type": "terms", "field": "host", "id": "e_3" },
{ "type": "date_histogram", "id": "e_4" }
]
},
{
"refId": "RAWDATA",
"metrics": [{ "type": "raw_data", "id": "6" }],
"bucketAggs": []
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"c_2": {
"buckets": [{"doc_count": 10, "key": 1000}]
}
}
},
{
"aggregations": {
"h_4": {
"buckets": [{ "doc_count": 1, "key": 1000 }]
}
}
},
{
"hits": {
"total": 2,
"hits": [
{
"_id": "5",
"_type": "type",
"_index": "index",
"_source": { "sourceProp": "asd" },
"fields": { "fieldProp": "field" }
},
{
"_source": { "sourceProp": "asd2" },
"fields": { "fieldProp": "field2" }
}
]
}
},
{
"aggregations": {
"p_3": {
"buckets": [
{
"p_1": { "values": { "75": 3.3, "90": 5.5 } },
"doc_count": 10,
"key": 1000
},
{
"p_1": { "values": { "75": 2.3, "90": 4.5 } },
"doc_count": 15,
"key": 2000
}
]
}
}
},
{
"aggregations": {
"e_3": {
"buckets": [
{
"key": "server1",
"e_4": {
"buckets": [
{
"e_1": {
"max": 10.2,
"min": 5.5,
"std_deviation_bounds": { "upper": 3, "lower": -2 }
},
"doc_count": 10,
"key": 1000
}
]
}
},
{
"key": "server2",
"e_4": {
"buckets": [
{
"e_1": {
"max": 10.2,
"min": 5.5,
"std_deviation_bounds": { "upper": 3, "lower": -2 }
},
"doc_count": 10,
"key": 1000
}
]
}
}
]
}
}
},
{
"hits": {
"total": {
"relation": "eq",
"value": 1
},
"hits": [
{
"_id": "6",
"_type": "_doc",
"_index": "index",
"_source": { "sourceProp": "asd" }
}
]
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
verifyFrames := func(name string, expectedLength int) {
r, found := result.response.Responses[name]
require.True(t, found, "not found: "+name)
require.NoError(t, r.Error)
require.Len(t, r.Frames, expectedLength, "length wrong for "+name)
}
verifyFrames("COUNT_GROUPBY_DATE_HISTOGRAM", 1)
verifyFrames("COUNT_GROUPBY_HISTOGRAM", 1)
verifyFrames("RAW_DOC", 1)
verifyFrames("PERCENTILE", 2)
verifyFrames("EXTENDEDSTATS", 4)
verifyFrames("RAWDATA", 1)
})
}
func TestLabelOrderInFieldName(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [{ "type": "count", "id": "1" }],
"bucketAggs": [
{ "type": "terms", "field": "f1", "id": "3" },
{ "type": "terms", "field": "f2", "id": "4" },
{ "type": "date_histogram", "field": "@timestamp", "id": "2" }
]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"3": {
"buckets": [
{
"key": "val3",
"4": {
"buckets": [
{
"key": "info",
"2": {"buckets": [{ "key_as_string": "1675086600000", "key": 1675086600000, "doc_count": 5 }]}
},
{
"key": "error",
"2": {"buckets": [{ "key_as_string": "1675086600000", "key": 1675086600000, "doc_count": 2 }]}
}
]
}
},
{
"key": "val2",
"4": {
"buckets": [
{
"key": "info",
"2": {"buckets": [{ "key_as_string": "1675086600000", "key": 1675086600000, "doc_count": 6 }]}
},
{
"key": "error",
"2": {"buckets": [{ "key_as_string": "1675086600000", "key": 1675086600000, "doc_count": 1 }]}
}
]
}
},
{
"key": "val1",
"4": {
"buckets": [
{
"key": "info",
"2": {"buckets": [{ "key_as_string": "1675086600000", "key": 1675086600000, "doc_count": 6 }]}
},
{
"key": "error",
"2": {"buckets": [{ "key_as_string": "1675086600000", "key": 1675086600000, "doc_count": 2 }]}
}
]
}
}
]
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 6)
// the important part is that the label-value is always before the level-value
requireTimeSeriesName(t, "val3 info", frames[0])
requireTimeSeriesName(t, "val3 error", frames[1])
requireTimeSeriesName(t, "val2 info", frames[2])
requireTimeSeriesName(t, "val2 error", frames[3])
requireTimeSeriesName(t, "val1 info", frames[4])
requireTimeSeriesName(t, "val1 error", frames[5])
}
func TestFlatten(t *testing.T) {
t.Run("Flattens simple object", func(t *testing.T) {
obj := map[string]any{
"foo": "bar",
"nested": map[string]any{
"bax": map[string]any{
"baz": "qux",
},
},
}
flattened := flatten(obj, 10)
require.Len(t, flattened, 2)
require.Equal(t, "bar", flattened["foo"])
require.Equal(t, "qux", flattened["nested.bax.baz"])
})
t.Run("Flattens object to max 10 nested levels", func(t *testing.T) {
obj := map[string]any{
"nested0": map[string]any{
"nested1": map[string]any{
"nested2": map[string]any{
"nested3": map[string]any{
"nested4": map[string]any{
"nested5": map[string]any{
"nested6": map[string]any{
"nested7": map[string]any{
"nested8": map[string]any{
"nested9": map[string]any{
"nested10": map[string]any{
"nested11": map[string]any{
"nested12": "abc",
},
},
},
},
},
},
},
},
},
},
},
},
}
flattened := flatten(obj, 10)
require.Len(t, flattened, 1)
require.Equal(t, map[string]any{"nested11": map[string]any{"nested12": "abc"}}, flattened["nested0.nested1.nested2.nested3.nested4.nested5.nested6.nested7.nested8.nested9.nested10"])
})
t.Run("does not affect any non-nested JSON", func(t *testing.T) {
target := map[string]any{
"fieldName": "",
}
assert.Equal(t, map[string]any{
"fieldName": "",
}, flatten(target, 10))
})
t.Run("flattens up to maxDepth", func(t *testing.T) {
target := map[string]any{
"fieldName2": map[string]any{
"innerFieldName2": map[string]any{
"innerFieldName3": "",
},
},
}
assert.Equal(t, map[string]any{
"fieldName2.innerFieldName2": map[string]any{"innerFieldName3": ""}}, flatten(target, 1))
})
t.Run("flattens up to maxDepth with multiple keys in target", func(t *testing.T) {
target := map[string]any{
"fieldName": map[string]any{
"innerFieldName": "",
},
"fieldName2": map[string]any{
"innerFieldName2": map[string]any{
"innerFieldName3": "",
},
},
}
assert.Equal(t, map[string]any{"fieldName.innerFieldName": "", "fieldName2.innerFieldName2": map[string]any{"innerFieldName3": ""}}, flatten(target, 1))
})
t.Run("flattens multiple objects of the same max depth", func(t *testing.T) {
target := map[string]any{
"fieldName": map[string]any{
"innerFieldName": "",
},
"fieldName2": map[string]any{
"innerFieldName2": "",
},
}
assert.Equal(t, map[string]any{
"fieldName.innerFieldName": "",
"fieldName2.innerFieldName2": ""}, flatten(target, 1))
})
t.Run("only flattens multiple entries in the same key", func(t *testing.T) {
target := map[string]any{
"fieldName": map[string]any{
"innerFieldName": "",
"innerFieldName1": "",
},
"fieldName2": map[string]any{
"innerFieldName2": map[string]any{
"innerFieldName3": "",
},
},
}
assert.Equal(t, map[string]any{
"fieldName.innerFieldName": "",
"fieldName.innerFieldName1": "",
"fieldName2.innerFieldName2": map[string]any{"innerFieldName3": ""}}, flatten(target, 1))
})
t.Run("combines nested field names", func(t *testing.T) {
target := map[string]any{
"fieldName": map[string]any{
"innerFieldName": "",
},
"fieldName2": map[string]any{
"innerFieldName2": "",
},
}
assert.Equal(t, map[string]any{"fieldName.innerFieldName": "", "fieldName2.innerFieldName2": ""}, flatten(target, 10))
})
t.Run("will preserve only one key with the same name", func(t *testing.T) {
// This test documents that in the unlikely case of a collision of a flattened name and an existing key, only
// one entry's value will be preserved at random
target := map[string]any{
"fieldName": map[string]any{
"innerFieldName": "one of these values will be lost",
},
"fieldName.innerFieldName": "this may be lost",
}
result := flatten(target, 10)
assert.Len(t, result, 1)
_, ok := result["fieldName.innerFieldName"]
assert.True(t, ok)
})
}
func TestTrimEdges(t *testing.T) {
query := []byte(`
[
{
"refId": "A",
"metrics": [
{ "type": "avg", "id": "1", "field": "@value" },
{ "type": "count", "id": "3" }
],
"bucketAggs": [
{
"id": "2",
"type": "date_histogram",
"field": "host",
"settings": { "trimEdges": "1" }
}
]
}
]
`)
response := []byte(`
{
"responses": [
{
"aggregations": {
"2": {
"buckets": [
{ "1": { "value": 1000 }, "key": 1, "doc_count": 369 },
{ "1": { "value": 2000 }, "key": 2, "doc_count": 200 },
{ "1": { "value": 2000 }, "key": 3, "doc_count": 200 }
]
}
}
}
]
}
`)
result, err := queryDataTest(query, response)
require.NoError(t, err)
require.Len(t, result.response.Responses, 1)
frames := result.response.Responses["A"].Frames
require.Len(t, frames, 2)
// should remove first and last value
requireFrameLength(t, frames[0], 1)
}
func parseTestResponse(tsdbQueries map[string]string, responseBody string, keepLabelsInResponse bool) (*backend.QueryDataResponse, error) {
from := time.Date(2018, 5, 15, 17, 50, 0, 0, time.UTC)
to := time.Date(2018, 5, 15, 17, 55, 0, 0, time.UTC)
configuredFields := es.ConfiguredFields{
TimeField: "@timestamp",
LogMessageField: "line",
LogLevelField: "lvl",
}
timeRange := backend.TimeRange{
From: from,
To: to,
}
tsdbQuery := backend.QueryDataRequest{
Queries: []backend.DataQuery{},
}
for refID, tsdbQueryBody := range tsdbQueries {
tsdbQuery.Queries = append(tsdbQuery.Queries, backend.DataQuery{
TimeRange: timeRange,
RefID: refID,
JSON: json.RawMessage(tsdbQueryBody),
})
}
var response es.MultiSearchResponse
err := json.Unmarshal([]byte(responseBody), &response)
if err != nil {
return nil, err
}
queries, err := parseQuery(tsdbQuery.Queries, log.New())
if err != nil {
return nil, err
}
return parseResponse(context.Background(), response.Responses, queries, configuredFields, keepLabelsInResponse, log.New())
}
func requireTimeValue(t *testing.T, expected int64, frame *data.Frame, index int) {
getField := func() *data.Field {
for _, field := range frame.Fields {
if field.Type() == data.FieldTypeTime {
return field
}
}
return nil
}
field := getField()
require.NotNil(t, field, "missing time-field")
require.Equal(t, time.UnixMilli(expected).UTC(), field.At(index), fmt.Sprintf("wrong time at index %v", index))
}
func requireNumberValue(t *testing.T, expected float64, frame *data.Frame, index int) {
getField := func() *data.Field {
for _, field := range frame.Fields {
if field.Type() == data.FieldTypeNullableFloat64 {
return field
}
}
return nil
}
field := getField()
require.NotNil(t, field, "missing number-field")
v := field.At(index).(*float64)
require.Equal(t, expected, *v, fmt.Sprintf("wrong number at index %v", index))
}
func requireFrameLength(t *testing.T, frame *data.Frame, expectedLength int) {
l, err := frame.RowLen()
require.NoError(t, err)
require.Equal(t, expectedLength, l, "wrong frame-length")
}
func requireStringAt(t *testing.T, expected string, field *data.Field, index int) {
v := field.At(index).(*string)
require.Equal(t, expected, *v, fmt.Sprintf("wrong string at index %v", index))
}
func requireFloatAt(t *testing.T, expected float64, field *data.Field, index int) {
v := field.At(index).(*float64)
require.Equal(t, expected, *v, fmt.Sprintf("wrong float at index %v", index))
}
func requireTimeSeriesName(t *testing.T, expected string, frame *data.Frame) {
require.Equal(t, expected, frame.Name)
}