mirror of
https://github.com/grafana/grafana.git
synced 2025-02-25 18:55:37 -06:00
Not needed for alerting (as the query intervalms will always be 0) but needed later when being called from the frontend)
265 lines
9.0 KiB
Go
265 lines
9.0 KiB
Go
package azuremonitor
|
|
|
|
import (
|
|
"encoding/json"
|
|
"fmt"
|
|
"io/ioutil"
|
|
"net/url"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/grafana/grafana/pkg/components/simplejson"
|
|
"github.com/grafana/grafana/pkg/tsdb"
|
|
|
|
. "github.com/smartystreets/goconvey/convey"
|
|
)
|
|
|
|
func TestAzureMonitorDatasource(t *testing.T) {
|
|
Convey("AzureMonitorDatasource", t, func() {
|
|
datasource := &AzureMonitorDatasource{}
|
|
|
|
Convey("Parse queries from frontend and build AzureMonitor API queries", func() {
|
|
fromStart := time.Date(2018, 3, 15, 13, 0, 0, 0, time.UTC).In(time.Local)
|
|
tsdbQuery := &tsdb.TsdbQuery{
|
|
TimeRange: &tsdb.TimeRange{
|
|
From: fmt.Sprintf("%v", fromStart.Unix()*1000),
|
|
To: fmt.Sprintf("%v", fromStart.Add(34*time.Minute).Unix()*1000),
|
|
},
|
|
Queries: []*tsdb.Query{
|
|
{
|
|
Model: simplejson.NewFromAny(map[string]interface{}{
|
|
"azureMonitor": map[string]interface{}{
|
|
"timeGrain": "PT1M",
|
|
"aggregation": "Average",
|
|
"resourceGroup": "grafanastaging",
|
|
"resourceName": "grafana",
|
|
"metricDefinition": "Microsoft.Compute/virtualMachines",
|
|
"metricName": "Percentage CPU",
|
|
"alias": "testalias",
|
|
"queryType": "Azure Monitor",
|
|
},
|
|
}),
|
|
RefId: "A",
|
|
},
|
|
},
|
|
}
|
|
Convey("and is a normal query", func() {
|
|
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
|
|
So(err, ShouldBeNil)
|
|
|
|
So(len(queries), ShouldEqual, 1)
|
|
So(queries[0].RefID, ShouldEqual, "A")
|
|
So(queries[0].URL, ShouldEqual, "resourceGroups/grafanastaging/providers/Microsoft.Compute/virtualMachines/grafana/providers/microsoft.insights/metrics")
|
|
So(queries[0].Target, ShouldEqual, "aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU×pan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z")
|
|
So(len(queries[0].Params), ShouldEqual, 5)
|
|
So(queries[0].Params["timespan"][0], ShouldEqual, "2018-03-15T13:00:00Z/2018-03-15T13:34:00Z")
|
|
So(queries[0].Params["api-version"][0], ShouldEqual, "2018-01-01")
|
|
So(queries[0].Params["aggregation"][0], ShouldEqual, "Average")
|
|
So(queries[0].Params["metricnames"][0], ShouldEqual, "Percentage CPU")
|
|
So(queries[0].Params["interval"][0], ShouldEqual, "PT1M")
|
|
So(queries[0].Alias, ShouldEqual, "testalias")
|
|
})
|
|
|
|
Convey("and has a dimension filter", func() {
|
|
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
|
|
"azureMonitor": map[string]interface{}{
|
|
"timeGrain": "PT1M",
|
|
"aggregation": "Average",
|
|
"resourceGroup": "grafanastaging",
|
|
"resourceName": "grafana",
|
|
"metricDefinition": "Microsoft.Compute/virtualMachines",
|
|
"metricName": "Percentage CPU",
|
|
"alias": "testalias",
|
|
"queryType": "Azure Monitor",
|
|
"dimension": "blob",
|
|
"dimensionFilter": "*",
|
|
},
|
|
})
|
|
|
|
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
|
|
So(err, ShouldBeNil)
|
|
|
|
So(queries[0].Target, ShouldEqual, "%24filter=blob+eq+%27%2A%27&aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU×pan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z")
|
|
|
|
})
|
|
})
|
|
|
|
Convey("Parse AzureMonitor API response in the time series format", func() {
|
|
Convey("when data from query aggregated as average to one time series", func() {
|
|
data, err := loadTestFile("./test-data/1-azure-monitor-response-avg.json")
|
|
So(err, ShouldBeNil)
|
|
So(data.Interval, ShouldEqual, "PT1M")
|
|
|
|
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
|
|
query := &AzureMonitorQuery{
|
|
UrlComponents: map[string]string{
|
|
"resourceName": "grafana",
|
|
},
|
|
Params: url.Values{
|
|
"aggregation": {"Average"},
|
|
},
|
|
}
|
|
err = datasource.parseResponse(res, data, query)
|
|
So(err, ShouldBeNil)
|
|
|
|
So(len(res.Series), ShouldEqual, 1)
|
|
So(res.Series[0].Name, ShouldEqual, "grafana.Percentage CPU")
|
|
So(len(res.Series[0].Points), ShouldEqual, 5)
|
|
|
|
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 2.0875)
|
|
So(res.Series[0].Points[0][1].Float64, ShouldEqual, 1549620780000)
|
|
|
|
So(res.Series[0].Points[1][0].Float64, ShouldEqual, 2.1525)
|
|
So(res.Series[0].Points[1][1].Float64, ShouldEqual, 1549620840000)
|
|
|
|
So(res.Series[0].Points[2][0].Float64, ShouldEqual, 2.155)
|
|
So(res.Series[0].Points[2][1].Float64, ShouldEqual, 1549620900000)
|
|
|
|
So(res.Series[0].Points[3][0].Float64, ShouldEqual, 3.6925)
|
|
So(res.Series[0].Points[3][1].Float64, ShouldEqual, 1549620960000)
|
|
|
|
So(res.Series[0].Points[4][0].Float64, ShouldEqual, 2.44)
|
|
So(res.Series[0].Points[4][1].Float64, ShouldEqual, 1549621020000)
|
|
})
|
|
|
|
Convey("when data from query aggregated as total to one time series", func() {
|
|
data, err := loadTestFile("./test-data/2-azure-monitor-response-total.json")
|
|
So(err, ShouldBeNil)
|
|
|
|
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
|
|
query := &AzureMonitorQuery{
|
|
UrlComponents: map[string]string{
|
|
"resourceName": "grafana",
|
|
},
|
|
Params: url.Values{
|
|
"aggregation": {"Total"},
|
|
},
|
|
}
|
|
err = datasource.parseResponse(res, data, query)
|
|
So(err, ShouldBeNil)
|
|
|
|
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 8.26)
|
|
So(res.Series[0].Points[0][1].Float64, ShouldEqual, 1549718940000)
|
|
})
|
|
|
|
Convey("when data from query aggregated as maximum to one time series", func() {
|
|
data, err := loadTestFile("./test-data/3-azure-monitor-response-maximum.json")
|
|
So(err, ShouldBeNil)
|
|
|
|
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
|
|
query := &AzureMonitorQuery{
|
|
UrlComponents: map[string]string{
|
|
"resourceName": "grafana",
|
|
},
|
|
Params: url.Values{
|
|
"aggregation": {"Maximum"},
|
|
},
|
|
}
|
|
err = datasource.parseResponse(res, data, query)
|
|
So(err, ShouldBeNil)
|
|
|
|
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 3.07)
|
|
So(res.Series[0].Points[0][1].Float64, ShouldEqual, 1549722360000)
|
|
})
|
|
|
|
Convey("when data from query aggregated as minimum to one time series", func() {
|
|
data, err := loadTestFile("./test-data/4-azure-monitor-response-minimum.json")
|
|
So(err, ShouldBeNil)
|
|
|
|
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
|
|
query := &AzureMonitorQuery{
|
|
UrlComponents: map[string]string{
|
|
"resourceName": "grafana",
|
|
},
|
|
Params: url.Values{
|
|
"aggregation": {"Minimum"},
|
|
},
|
|
}
|
|
err = datasource.parseResponse(res, data, query)
|
|
So(err, ShouldBeNil)
|
|
|
|
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 1.51)
|
|
So(res.Series[0].Points[0][1].Float64, ShouldEqual, 1549723380000)
|
|
})
|
|
|
|
Convey("when data from query aggregated as Count to one time series", func() {
|
|
data, err := loadTestFile("./test-data/5-azure-monitor-response-count.json")
|
|
So(err, ShouldBeNil)
|
|
|
|
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
|
|
query := &AzureMonitorQuery{
|
|
UrlComponents: map[string]string{
|
|
"resourceName": "grafana",
|
|
},
|
|
Params: url.Values{
|
|
"aggregation": {"Count"},
|
|
},
|
|
}
|
|
err = datasource.parseResponse(res, data, query)
|
|
So(err, ShouldBeNil)
|
|
|
|
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 4)
|
|
So(res.Series[0].Points[0][1].Float64, ShouldEqual, 1549723440000)
|
|
})
|
|
|
|
Convey("when data from query aggregated as total and has dimension filter", func() {
|
|
data, err := loadTestFile("./test-data/6-azure-monitor-response-multi-dimension.json")
|
|
So(err, ShouldBeNil)
|
|
|
|
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
|
|
query := &AzureMonitorQuery{
|
|
UrlComponents: map[string]string{
|
|
"resourceName": "grafana",
|
|
},
|
|
Params: url.Values{
|
|
"aggregation": {"Average"},
|
|
},
|
|
}
|
|
err = datasource.parseResponse(res, data, query)
|
|
So(err, ShouldBeNil)
|
|
So(len(res.Series), ShouldEqual, 3)
|
|
|
|
So(res.Series[0].Name, ShouldEqual, "grafana{blobtype=PageBlob}.Blob Count")
|
|
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 3)
|
|
|
|
So(res.Series[1].Name, ShouldEqual, "grafana{blobtype=BlockBlob}.Blob Count")
|
|
So(res.Series[1].Points[0][0].Float64, ShouldEqual, 1)
|
|
|
|
So(res.Series[2].Name, ShouldEqual, "grafana{blobtype=Azure Data Lake Storage}.Blob Count")
|
|
So(res.Series[2].Points[0][0].Float64, ShouldEqual, 0)
|
|
})
|
|
})
|
|
|
|
Convey("Find closest allowed interval for auto time grain", func() {
|
|
intervals := map[string]int64{
|
|
"3m": 180000,
|
|
"5m": 300000,
|
|
"10m": 600000,
|
|
"15m": 900000,
|
|
"1d": 86400000,
|
|
"2d": 172800000,
|
|
}
|
|
|
|
closest := datasource.findClosestAllowedIntervalMS(intervals["3m"])
|
|
So(closest, ShouldEqual, intervals["5m"])
|
|
|
|
closest = datasource.findClosestAllowedIntervalMS(intervals["10m"])
|
|
So(closest, ShouldEqual, intervals["15m"])
|
|
|
|
closest = datasource.findClosestAllowedIntervalMS(intervals["2d"])
|
|
So(closest, ShouldEqual, intervals["1d"])
|
|
})
|
|
})
|
|
}
|
|
|
|
func loadTestFile(path string) (AzureMonitorResponse, error) {
|
|
var data AzureMonitorResponse
|
|
|
|
jsonBody, err := ioutil.ReadFile(path)
|
|
if err != nil {
|
|
return data, err
|
|
}
|
|
err = json.Unmarshal(jsonBody, &data)
|
|
return data, err
|
|
}
|