mirror of
https://github.com/grafana/grafana.git
synced 2024-11-28 11:44:26 -06:00
b12b5ed92f
* Renames * Rename to phlareql * Go renames
247 lines
7.2 KiB
Go
247 lines
7.2 KiB
Go
package parca
|
|
|
|
import (
|
|
"context"
|
|
"encoding/json"
|
|
"fmt"
|
|
"strings"
|
|
"time"
|
|
|
|
"github.com/bufbuild/connect-go"
|
|
"github.com/grafana/grafana-plugin-sdk-go/backend"
|
|
"github.com/grafana/grafana-plugin-sdk-go/data"
|
|
v1alpha1 "github.com/parca-dev/parca/gen/proto/go/parca/query/v1alpha1"
|
|
"google.golang.org/protobuf/types/known/timestamppb"
|
|
)
|
|
|
|
type queryModel struct {
|
|
ProfileTypeID string `json:"profileTypeId"`
|
|
LabelSelector string `json:"labelSelector"`
|
|
}
|
|
|
|
// These constants need to match the ones in the frontend.
|
|
const queryTypeProfile = "profile"
|
|
const queryTypeMetrics = "metrics"
|
|
const queryTypeBoth = "both"
|
|
|
|
// query processes single Parca query transforming the response to data.Frame packaged in DataResponse
|
|
func (d *ParcaDatasource) query(ctx context.Context, pCtx backend.PluginContext, query backend.DataQuery) backend.DataResponse {
|
|
var qm queryModel
|
|
response := backend.DataResponse{}
|
|
|
|
err := json.Unmarshal(query.JSON, &qm)
|
|
if err != nil {
|
|
response.Error = err
|
|
return response
|
|
}
|
|
|
|
if query.QueryType == queryTypeMetrics || query.QueryType == queryTypeBoth {
|
|
seriesResp, err := d.client.QueryRange(ctx, makeMetricRequest(qm, query))
|
|
if err != nil {
|
|
response.Error = err
|
|
return response
|
|
}
|
|
response.Frames = append(response.Frames, seriesToDataFrame(seriesResp, qm.ProfileTypeID)...)
|
|
}
|
|
|
|
if query.QueryType == queryTypeProfile || query.QueryType == queryTypeBoth {
|
|
logger.Debug("Querying SelectMergeStacktraces()", "queryModel", qm)
|
|
resp, err := d.client.Query(ctx, makeProfileRequest(qm, query))
|
|
if err != nil {
|
|
response.Error = err
|
|
return response
|
|
}
|
|
frame := responseToDataFrames(resp)
|
|
response.Frames = append(response.Frames, frame)
|
|
}
|
|
|
|
return response
|
|
}
|
|
|
|
func makeProfileRequest(qm queryModel, query backend.DataQuery) *connect.Request[v1alpha1.QueryRequest] {
|
|
return &connect.Request[v1alpha1.QueryRequest]{
|
|
Msg: &v1alpha1.QueryRequest{
|
|
Mode: v1alpha1.QueryRequest_MODE_MERGE,
|
|
Options: &v1alpha1.QueryRequest_Merge{
|
|
Merge: &v1alpha1.MergeProfile{
|
|
Query: fmt.Sprintf("%s%s", qm.ProfileTypeID, qm.LabelSelector),
|
|
Start: ×tamppb.Timestamp{
|
|
Seconds: query.TimeRange.From.Unix(),
|
|
},
|
|
End: ×tamppb.Timestamp{
|
|
Seconds: query.TimeRange.To.Unix(),
|
|
},
|
|
},
|
|
},
|
|
ReportType: v1alpha1.QueryRequest_REPORT_TYPE_FLAMEGRAPH_UNSPECIFIED,
|
|
},
|
|
}
|
|
}
|
|
|
|
func makeMetricRequest(qm queryModel, query backend.DataQuery) *connect.Request[v1alpha1.QueryRangeRequest] {
|
|
return &connect.Request[v1alpha1.QueryRangeRequest]{
|
|
Msg: &v1alpha1.QueryRangeRequest{
|
|
Query: fmt.Sprintf("%s%s", qm.ProfileTypeID, qm.LabelSelector),
|
|
Start: ×tamppb.Timestamp{
|
|
Seconds: query.TimeRange.From.Unix(),
|
|
},
|
|
End: ×tamppb.Timestamp{
|
|
Seconds: query.TimeRange.To.Unix(),
|
|
},
|
|
Limit: uint32(query.MaxDataPoints),
|
|
},
|
|
}
|
|
}
|
|
|
|
type CustomMeta struct {
|
|
ProfileTypeID string
|
|
}
|
|
|
|
// responseToDataFrames turns Parca response to data.Frame. We encode the data into a nested set format where we have
|
|
// [level, value, label] columns and by ordering the items in a depth first traversal order we can recreate the whole
|
|
// tree back.
|
|
func responseToDataFrames(resp *connect.Response[v1alpha1.QueryResponse]) *data.Frame {
|
|
if flameResponse, ok := resp.Msg.Report.(*v1alpha1.QueryResponse_Flamegraph); ok {
|
|
frame := treeToNestedSetDataFrame(flameResponse.Flamegraph)
|
|
frame.Meta = &data.FrameMeta{PreferredVisualization: "flamegraph"}
|
|
return frame
|
|
} else {
|
|
panic("unknown report type returned from query")
|
|
}
|
|
}
|
|
|
|
// treeToNestedSetDataFrame walks the tree depth first and adds items into the dataframe. This is a nested set format
|
|
// where by ordering the items in depth first order and knowing the level/depth of each item we can recreate the
|
|
// parent - child relationship without explicitly needing parent/child column and we can later just iterate over the
|
|
// dataFrame to again basically walking depth first over the tree/profile.
|
|
func treeToNestedSetDataFrame(tree *v1alpha1.Flamegraph) *data.Frame {
|
|
frame := data.NewFrame("response")
|
|
|
|
levelField := data.NewField("level", nil, []int64{})
|
|
valueField := data.NewField("value", nil, []int64{})
|
|
valueField.Config = &data.FieldConfig{Unit: normalizeUnit(tree.Unit)}
|
|
selfField := data.NewField("self", nil, []int64{})
|
|
selfField.Config = &data.FieldConfig{Unit: normalizeUnit(tree.Unit)}
|
|
labelField := data.NewField("label", nil, []string{})
|
|
frame.Fields = data.Fields{levelField, valueField, selfField, labelField}
|
|
|
|
walkTree(tree.Root, func(level int64, value int64, name string, self int64) {
|
|
levelField.Append(level)
|
|
valueField.Append(value)
|
|
labelField.Append(name)
|
|
selfField.Append(self)
|
|
})
|
|
return frame
|
|
}
|
|
|
|
type Node struct {
|
|
Node *v1alpha1.FlamegraphNode
|
|
Level int64
|
|
}
|
|
|
|
func walkTree(tree *v1alpha1.FlamegraphRootNode, fn func(level int64, value int64, name string, self int64)) {
|
|
var stack []*Node
|
|
var childrenValue int64 = 0
|
|
|
|
for _, child := range tree.Children {
|
|
childrenValue += child.Cumulative
|
|
stack = append(stack, &Node{Node: child, Level: 1})
|
|
}
|
|
|
|
fn(0, tree.Cumulative, "total", tree.Cumulative-childrenValue)
|
|
|
|
for {
|
|
if len(stack) == 0 {
|
|
break
|
|
}
|
|
|
|
// shift stack
|
|
node := stack[0]
|
|
stack = stack[1:]
|
|
childrenValue = 0
|
|
|
|
if node.Node.Children != nil {
|
|
var children []*Node
|
|
for _, child := range node.Node.Children {
|
|
childrenValue += child.Cumulative
|
|
children = append(children, &Node{Node: child, Level: node.Level + 1})
|
|
}
|
|
// Put the children first so we do depth first traversal
|
|
stack = append(children, stack...)
|
|
}
|
|
fn(node.Level, node.Node.Cumulative, nodeName(node.Node), node.Node.Cumulative-childrenValue)
|
|
}
|
|
}
|
|
|
|
func nodeName(node *v1alpha1.FlamegraphNode) string {
|
|
if node.Meta == nil {
|
|
return "<unknown>"
|
|
}
|
|
|
|
mapping := ""
|
|
if node.Meta.Mapping != nil && node.Meta.Mapping.File != "" {
|
|
mapping = "[" + getLastItem(node.Meta.Mapping.File) + "] "
|
|
}
|
|
|
|
if node.Meta.Function != nil && node.Meta.Function.Name != "" {
|
|
return mapping + node.Meta.Function.Name
|
|
}
|
|
|
|
address := ""
|
|
if node.Meta.Location != nil {
|
|
address = fmt.Sprintf("0x%x", node.Meta.Location.Address)
|
|
}
|
|
|
|
if mapping == "" && address == "" {
|
|
return "<unknown>"
|
|
} else {
|
|
return mapping + address
|
|
}
|
|
}
|
|
|
|
func getLastItem(path string) string {
|
|
parts := strings.Split(path, "/")
|
|
return parts[len(parts)-1]
|
|
}
|
|
|
|
func normalizeUnit(unit string) string {
|
|
if unit == "nanoseconds" {
|
|
return "ns"
|
|
}
|
|
if unit == "count" {
|
|
return "short"
|
|
}
|
|
return unit
|
|
}
|
|
|
|
func seriesToDataFrame(seriesResp *connect.Response[v1alpha1.QueryRangeResponse], profileTypeID string) []*data.Frame {
|
|
var frames []*data.Frame
|
|
|
|
for _, series := range seriesResp.Msg.Series {
|
|
frame := data.NewFrame("series")
|
|
frame.Meta = &data.FrameMeta{PreferredVisualization: "graph"}
|
|
frames = append(frames, frame)
|
|
|
|
fields := data.Fields{}
|
|
timeField := data.NewField("time", nil, []time.Time{})
|
|
fields = append(fields, timeField)
|
|
|
|
labels := data.Labels{}
|
|
for _, label := range series.Labelset.Labels {
|
|
labels[label.Name] = label.Value
|
|
}
|
|
|
|
valueField := data.NewField(strings.Split(profileTypeID, ":")[1], labels, []int64{})
|
|
|
|
for _, sample := range series.Samples {
|
|
timeField.Append(sample.Timestamp.AsTime())
|
|
valueField.Append(sample.Value)
|
|
}
|
|
|
|
fields = append(fields, valueField)
|
|
frame.Fields = fields
|
|
}
|
|
|
|
return frames
|
|
}
|