grafana/public/app/core/logs_model.ts
Ivana Huckova 742c737784
Logs panel: Add option to show common labels (#36166)
* Add common labels to Logs panel

* Clean up and add tests

* Update documentation

* Update public/app/plugins/panel/logs/LogsPanel.tsx

Co-authored-by: Gábor Farkas <gabor.farkas@gmail.com>

* Fix type error

Co-authored-by: Gábor Farkas <gabor.farkas@gmail.com>
2021-07-01 14:06:58 +02:00

507 lines
16 KiB
TypeScript

import { size } from 'lodash';
import { ansicolor, BarAlignment, colors, DrawStyle, StackingMode } from '@grafana/ui';
import {
AbsoluteTimeRange,
DataFrame,
DataQuery,
dateTime,
dateTimeFormat,
dateTimeFormatTimeAgo,
FieldCache,
FieldType,
FieldWithIndex,
findCommonLabels,
findUniqueLabels,
getLogLevel,
getLogLevelFromKey,
Labels,
LogLevel,
LogRowModel,
LogsDedupStrategy,
LogsMetaItem,
LogsMetaKind,
LogsModel,
rangeUtil,
sortInAscendingOrder,
textUtil,
toDataFrame,
} from '@grafana/data';
import { getThemeColor } from 'app/core/utils/colors';
import { SIPrefix } from '@grafana/data/src/valueFormats/symbolFormatters';
export const LIMIT_LABEL = 'Line limit';
export const COMMON_LABELS = 'Common labels';
export const LogLevelColor = {
[LogLevel.critical]: colors[7],
[LogLevel.warning]: colors[1],
[LogLevel.error]: colors[4],
[LogLevel.info]: colors[0],
[LogLevel.debug]: colors[5],
[LogLevel.trace]: colors[2],
[LogLevel.unknown]: getThemeColor('#8e8e8e', '#dde4ed'),
};
const isoDateRegexp = /\d{4}-[01]\d-[0-3]\dT[0-2]\d:[0-5]\d:[0-6]\d[,\.]\d+([+-][0-2]\d:[0-5]\d|Z)/g;
function isDuplicateRow(row: LogRowModel, other: LogRowModel, strategy?: LogsDedupStrategy): boolean {
switch (strategy) {
case LogsDedupStrategy.exact:
// Exact still strips dates
return row.entry.replace(isoDateRegexp, '') === other.entry.replace(isoDateRegexp, '');
case LogsDedupStrategy.numbers:
return row.entry.replace(/\d/g, '') === other.entry.replace(/\d/g, '');
case LogsDedupStrategy.signature:
return row.entry.replace(/\w/g, '') === other.entry.replace(/\w/g, '');
default:
return false;
}
}
export function dedupLogRows(rows: LogRowModel[], strategy?: LogsDedupStrategy): LogRowModel[] {
if (strategy === LogsDedupStrategy.none) {
return rows;
}
return rows.reduce((result: LogRowModel[], row: LogRowModel, index) => {
const rowCopy = { ...row };
const previous = result[result.length - 1];
if (index > 0 && isDuplicateRow(row, previous, strategy)) {
previous.duplicates!++;
} else {
rowCopy.duplicates = 0;
result.push(rowCopy);
}
return result;
}, []);
}
export function filterLogLevels(logRows: LogRowModel[], hiddenLogLevels: Set<LogLevel>): LogRowModel[] {
if (hiddenLogLevels.size === 0) {
return logRows;
}
return logRows.filter((row: LogRowModel) => {
return !hiddenLogLevels.has(row.logLevel);
});
}
export function makeDataFramesForLogs(sortedRows: LogRowModel[], bucketSize: number): DataFrame[] {
// currently interval is rangeMs / resolution, which is too low for showing series as bars.
// Should be solved higher up the chain when executing queries & interval calculated and not here but this is a temporary fix.
// Graph time series by log level
const seriesByLevel: any = {};
const seriesList: any[] = [];
for (const row of sortedRows) {
let series = seriesByLevel[row.logLevel];
if (!series) {
seriesByLevel[row.logLevel] = series = {
lastTs: null,
datapoints: [],
target: row.logLevel,
color: LogLevelColor[row.logLevel],
};
seriesList.push(series);
}
// align time to bucket size - used Math.floor for calculation as time of the bucket
// must be in the past (before Date.now()) to be displayed on the graph
const time = Math.floor(row.timeEpochMs / bucketSize) * bucketSize;
// Entry for time
if (time === series.lastTs) {
series.datapoints[series.datapoints.length - 1][0]++;
} else {
series.datapoints.push([1, time]);
series.lastTs = time;
}
// add zero to other levels to aid stacking so each level series has same number of points
for (const other of seriesList) {
if (other !== series && other.lastTs !== time) {
other.datapoints.push([0, time]);
other.lastTs = time;
}
}
}
return seriesList.map((series, i) => {
series.datapoints.sort((a: number[], b: number[]) => a[1] - b[1]);
const data = toDataFrame(series);
const fieldCache = new FieldCache(data);
const valueField = fieldCache.getFirstFieldOfType(FieldType.number)!;
data.fields[valueField.index].config.min = 0;
data.fields[valueField.index].config.decimals = 0;
data.fields[valueField.index].config.custom = {
drawStyle: DrawStyle.Bars,
barAlignment: BarAlignment.Center,
barWidthFactor: 0.9,
barMaxWidth: 5,
lineColor: series.color,
pointColor: series.color,
fillColor: series.color,
lineWidth: 0,
fillOpacity: 100,
stacking: {
mode: StackingMode.Normal,
group: 'A',
},
};
return data;
});
}
function isLogsData(series: DataFrame) {
return series.fields.some((f) => f.type === FieldType.time) && series.fields.some((f) => f.type === FieldType.string);
}
/**
* Convert dataFrame into LogsModel which consists of creating separate array of log rows and metrics series. Metrics
* series can be either already included in the dataFrame or will be computed from the log rows.
* @param dataFrame
* @param intervalMs In case there are no metrics series, we use this for computing it from log rows.
*/
export function dataFrameToLogsModel(
dataFrame: DataFrame[],
intervalMs: number | undefined,
absoluteRange?: AbsoluteTimeRange,
queries?: DataQuery[]
): LogsModel {
const { logSeries } = separateLogsAndMetrics(dataFrame);
const logsModel = logSeriesToLogsModel(logSeries);
if (logsModel) {
// Create histogram metrics from logs using the interval as bucket size for the line count
if (intervalMs && logsModel.rows.length > 0) {
const sortedRows = logsModel.rows.sort(sortInAscendingOrder);
const { visibleRange, bucketSize, visibleRangeMs, requestedRangeMs } = getSeriesProperties(
sortedRows,
intervalMs,
absoluteRange
);
logsModel.visibleRange = visibleRange;
logsModel.series = makeDataFramesForLogs(sortedRows, bucketSize);
if (logsModel.meta) {
logsModel.meta = adjustMetaInfo(logsModel, visibleRangeMs, requestedRangeMs);
}
} else {
logsModel.series = [];
}
logsModel.queries = queries;
return logsModel;
}
return {
hasUniqueLabels: false,
rows: [],
meta: [],
series: [],
queries,
};
}
/**
* Returns a clamped time range and interval based on the visible logs and the given range.
*
* @param sortedRows Log rows from the query response
* @param intervalMs Dynamic data interval based on available pixel width
* @param absoluteRange Requested time range
* @param pxPerBar Default: 20, buckets will be rendered as bars, assuming 10px per histogram bar plus some free space around it
*/
export function getSeriesProperties(
sortedRows: LogRowModel[],
intervalMs: number,
absoluteRange?: AbsoluteTimeRange,
pxPerBar = 20,
minimumBucketSize = 1000
) {
let visibleRange = absoluteRange;
let resolutionIntervalMs = intervalMs;
let bucketSize = Math.max(resolutionIntervalMs * pxPerBar, minimumBucketSize);
let visibleRangeMs;
let requestedRangeMs;
// Clamp time range to visible logs otherwise big parts of the graph might look empty
if (absoluteRange) {
const earliestTsLogs = sortedRows[0].timeEpochMs;
requestedRangeMs = absoluteRange.to - absoluteRange.from;
visibleRangeMs = absoluteRange.to - earliestTsLogs;
if (visibleRangeMs > 0) {
// Adjust interval bucket size for potentially shorter visible range
const clampingFactor = visibleRangeMs / requestedRangeMs;
resolutionIntervalMs *= clampingFactor;
// Minimum bucketsize of 1s for nicer graphing
bucketSize = Math.max(Math.ceil(resolutionIntervalMs * pxPerBar), minimumBucketSize);
// makeSeriesForLogs() aligns dataspoints with time buckets, so we do the same here to not cut off data
const adjustedEarliest = Math.floor(earliestTsLogs / bucketSize) * bucketSize;
visibleRange = { from: adjustedEarliest, to: absoluteRange.to };
} else {
// We use visibleRangeMs to calculate range coverage of received logs. However, some data sources are rounding up range in requests. This means that received logs
// can (in edge cases) be outside of the requested range and visibleRangeMs < 0. In that case, we want to change visibleRangeMs to be 1 so we can calculate coverage.
visibleRangeMs = 1;
}
}
return { bucketSize, visibleRange, visibleRangeMs, requestedRangeMs };
}
function separateLogsAndMetrics(dataFrames: DataFrame[]) {
const metricSeries: DataFrame[] = [];
const logSeries: DataFrame[] = [];
for (const dataFrame of dataFrames) {
// We want to show meta stats even if no result was returned. That's why we are pushing also data frames with no fields.
if (isLogsData(dataFrame) || !dataFrame.fields.length) {
logSeries.push(dataFrame);
continue;
}
if (dataFrame.length > 0) {
metricSeries.push(dataFrame);
}
}
return { logSeries, metricSeries };
}
interface LogFields {
series: DataFrame;
timeField: FieldWithIndex;
stringField: FieldWithIndex;
timeNanosecondField?: FieldWithIndex;
logLevelField?: FieldWithIndex;
idField?: FieldWithIndex;
}
/**
* Converts dataFrames into LogsModel. This involves merging them into one list, sorting them and computing metadata
* like common labels.
*/
export function logSeriesToLogsModel(logSeries: DataFrame[]): LogsModel | undefined {
if (logSeries.length === 0) {
return undefined;
}
const allLabels: Labels[] = [];
// Find the fields we care about and collect all labels
let allSeries: LogFields[] = [];
// We are sometimes passing data frames with no fields because we want to calculate correct meta stats.
// Therefore we need to filter out series with no fields. These series are used only for meta stats calculation.
const seriesWithFields = logSeries.filter((series) => series.fields.length);
if (seriesWithFields.length) {
allSeries = seriesWithFields.map((series) => {
const fieldCache = new FieldCache(series);
const stringField = fieldCache.getFirstFieldOfType(FieldType.string);
if (stringField?.labels) {
allLabels.push(stringField.labels);
}
return {
series,
timeField: fieldCache.getFirstFieldOfType(FieldType.time),
timeNanosecondField: fieldCache.hasFieldWithNameAndType('tsNs', FieldType.time)
? fieldCache.getFieldByName('tsNs')
: undefined,
stringField,
logLevelField: fieldCache.getFieldByName('level'),
idField: getIdField(fieldCache),
} as LogFields;
});
}
const commonLabels = allLabels.length > 0 ? findCommonLabels(allLabels) : {};
const rows: LogRowModel[] = [];
let hasUniqueLabels = false;
for (const info of allSeries) {
const { timeField, timeNanosecondField, stringField, logLevelField, idField, series } = info;
const labels = stringField.labels;
const uniqueLabels = findUniqueLabels(labels, commonLabels);
if (Object.keys(uniqueLabels).length > 0) {
hasUniqueLabels = true;
}
let seriesLogLevel: LogLevel | undefined = undefined;
if (labels && Object.keys(labels).indexOf('level') !== -1) {
seriesLogLevel = getLogLevelFromKey(labels['level']);
}
for (let j = 0; j < series.length; j++) {
const ts = timeField.values.get(j);
const time = dateTime(ts);
const tsNs = timeNanosecondField ? timeNanosecondField.values.get(j) : undefined;
const timeEpochNs = tsNs ? tsNs : time.valueOf() + '000000';
// In edge cases, this can be undefined. If undefined, we want to replace it with empty string.
const messageValue: unknown = stringField.values.get(j) ?? '';
// This should be string but sometimes isn't (eg elastic) because the dataFrame is not strongly typed.
const message: string = typeof messageValue === 'string' ? messageValue : JSON.stringify(messageValue);
const hasAnsi = textUtil.hasAnsiCodes(message);
const hasUnescapedContent = !!message.match(/\\n|\\t|\\r/);
const searchWords = series.meta && series.meta.searchWords ? series.meta.searchWords : [];
const entry = hasAnsi ? ansicolor.strip(message) : message;
let logLevel = LogLevel.unknown;
if (logLevelField && logLevelField.values.get(j)) {
logLevel = getLogLevelFromKey(logLevelField.values.get(j));
} else if (seriesLogLevel) {
logLevel = seriesLogLevel;
} else {
logLevel = getLogLevel(entry);
}
rows.push({
entryFieldIndex: stringField.index,
rowIndex: j,
dataFrame: series,
logLevel,
timeFromNow: dateTimeFormatTimeAgo(ts),
timeEpochMs: time.valueOf(),
timeEpochNs,
timeLocal: dateTimeFormat(ts, { timeZone: 'browser' }),
timeUtc: dateTimeFormat(ts, { timeZone: 'utc' }),
uniqueLabels,
hasAnsi,
hasUnescapedContent,
searchWords,
entry,
raw: message,
labels: stringField.labels || {},
uid: idField ? idField.values.get(j) : j.toString(),
});
}
}
// Meta data to display in status
const meta: LogsMetaItem[] = [];
if (size(commonLabels) > 0) {
meta.push({
label: COMMON_LABELS,
value: commonLabels,
kind: LogsMetaKind.LabelsMap,
});
}
const limits = logSeries.filter((series) => series.meta && series.meta.limit);
const limitValue = Object.values(
limits.reduce((acc: any, elem: any) => {
acc[elem.refId] = elem.meta.limit;
return acc;
}, {})
).reduce((acc: number, elem: any) => (acc += elem), 0) as number;
if (limitValue > 0) {
meta.push({
label: LIMIT_LABEL,
value: limitValue,
kind: LogsMetaKind.Number,
});
}
let totalBytes = 0;
const queriesVisited: { [refId: string]: boolean } = {};
// To add just 1 error message
let errorMetaAdded = false;
for (const series of logSeries) {
const totalBytesKey = series.meta?.custom?.lokiQueryStatKey;
const { refId } = series; // Stats are per query, keeping track by refId
if (!errorMetaAdded && series.meta?.custom?.error) {
meta.push({
label: '',
value: series.meta?.custom.error,
kind: LogsMetaKind.Error,
});
errorMetaAdded = true;
}
if (refId && !queriesVisited[refId]) {
if (totalBytesKey && series.meta?.stats) {
const byteStat = series.meta.stats.find((stat) => stat.displayName === totalBytesKey);
if (byteStat) {
totalBytes += byteStat.value;
}
}
queriesVisited[refId] = true;
}
}
if (totalBytes > 0) {
const { text, suffix } = SIPrefix('B')(totalBytes);
meta.push({
label: 'Total bytes processed',
value: `${text} ${suffix}`,
kind: LogsMetaKind.String,
});
}
return {
hasUniqueLabels,
meta,
rows,
};
}
function getIdField(fieldCache: FieldCache): FieldWithIndex | undefined {
const idFieldNames = ['id'];
for (const fieldName of idFieldNames) {
const idField = fieldCache.getFieldByName(fieldName);
if (idField) {
return idField;
}
}
return undefined;
}
// Used to add additional information to Line limit meta info
function adjustMetaInfo(logsModel: LogsModel, visibleRangeMs?: number, requestedRangeMs?: number): LogsMetaItem[] {
let logsModelMeta = [...logsModel.meta!];
const limitIndex = logsModelMeta.findIndex((meta) => meta.label === LIMIT_LABEL);
const limit = limitIndex >= 0 && logsModelMeta[limitIndex]?.value;
if (limit && limit > 0) {
let metaLimitValue;
if (limit === logsModel.rows.length && visibleRangeMs && requestedRangeMs) {
const coverage = ((visibleRangeMs / requestedRangeMs) * 100).toFixed(2);
metaLimitValue = `${limit} reached, received logs cover ${coverage}% (${rangeUtil.msRangeToTimeString(
visibleRangeMs
)}) of your selected time range (${rangeUtil.msRangeToTimeString(requestedRangeMs)})`;
} else {
metaLimitValue = `${limit} (${logsModel.rows.length} returned)`;
}
logsModelMeta[limitIndex] = {
label: LIMIT_LABEL,
value: metaLimitValue,
kind: LogsMetaKind.String,
};
}
return logsModelMeta;
}