mirror of
https://github.com/grafana/grafana.git
synced 2025-02-20 11:48:34 -06:00
336 lines
8.8 KiB
TypeScript
336 lines
8.8 KiB
TypeScript
import { PromQueryModeller } from './PromQueryModeller';
|
|
import { PromOperationId } from './types';
|
|
|
|
describe('PromQueryModeller', () => {
|
|
const modeller = new PromQueryModeller();
|
|
|
|
it('Can render query with metric only', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'my_totals',
|
|
labels: [],
|
|
operations: [],
|
|
})
|
|
).toBe('my_totals');
|
|
});
|
|
|
|
it('Can render query with label filters', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'my_totals',
|
|
labels: [
|
|
{ label: 'cluster', op: '=', value: 'us-east' },
|
|
{ label: 'job', op: '=~', value: 'abc' },
|
|
],
|
|
operations: [],
|
|
})
|
|
).toBe('my_totals{cluster="us-east", job=~"abc"}');
|
|
});
|
|
|
|
it('Can render query with function', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'my_totals',
|
|
labels: [],
|
|
operations: [{ id: 'sum', params: [] }],
|
|
})
|
|
).toBe('sum(my_totals)');
|
|
});
|
|
|
|
it('Can render query with function with parameter to left of inner expression', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric',
|
|
labels: [],
|
|
operations: [{ id: PromOperationId.HistogramQuantile, params: [0.86] }],
|
|
})
|
|
).toBe('histogram_quantile(0.86, metric)');
|
|
});
|
|
|
|
it('Can render query with function with function parameters to the right of inner expression', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric',
|
|
labels: [],
|
|
operations: [{ id: PromOperationId.LabelReplace, params: ['server', '$1', 'instance', 'as(.*)d'] }],
|
|
})
|
|
).toBe('label_replace(metric, "server", "$1", "instance", "as(.*)d")');
|
|
});
|
|
|
|
it('Can group by expressions', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric',
|
|
labels: [],
|
|
operations: [{ id: '__sum_by', params: ['server', 'job'] }],
|
|
})
|
|
).toBe('sum by(server, job) (metric)');
|
|
});
|
|
|
|
it('Can render avg around a group by', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric',
|
|
labels: [],
|
|
operations: [
|
|
{ id: '__sum_by', params: ['server', 'job'] },
|
|
{ id: 'avg', params: [] },
|
|
],
|
|
})
|
|
).toBe('avg(sum by(server, job) (metric))');
|
|
});
|
|
|
|
it('Can use aggregation without label', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric',
|
|
labels: [],
|
|
operations: [{ id: '__sum_without', params: ['server', 'job'] }],
|
|
})
|
|
).toBe('sum without(server, job) (metric)');
|
|
});
|
|
|
|
it('Can render aggregations with parameters', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric',
|
|
labels: [],
|
|
operations: [{ id: 'topk', params: [5] }],
|
|
})
|
|
).toBe('topk(5, metric)');
|
|
});
|
|
|
|
it('Can render rate', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric',
|
|
labels: [{ label: 'pod', op: '=', value: 'A' }],
|
|
operations: [{ id: PromOperationId.Rate, params: ['$__rate_interval'] }],
|
|
})
|
|
).toBe('rate(metric{pod="A"}[$__rate_interval])');
|
|
});
|
|
|
|
it('Can render increase', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric',
|
|
labels: [{ label: 'pod', op: '=', value: 'A' }],
|
|
operations: [{ id: PromOperationId.Increase, params: ['$__interval'] }],
|
|
})
|
|
).toBe('increase(metric{pod="A"}[$__interval])');
|
|
});
|
|
|
|
it('Can render rate with custom range-vector', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric',
|
|
labels: [{ label: 'pod', op: '=', value: 'A' }],
|
|
operations: [{ id: PromOperationId.Rate, params: ['10m'] }],
|
|
})
|
|
).toBe('rate(metric{pod="A"}[10m])');
|
|
});
|
|
|
|
it('Can render multiply operation', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric',
|
|
labels: [],
|
|
operations: [{ id: PromOperationId.MultiplyBy, params: [1000] }],
|
|
})
|
|
).toBe('metric * 1000');
|
|
});
|
|
|
|
it('Can render query with simple binary query', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric_a',
|
|
labels: [],
|
|
operations: [],
|
|
binaryQueries: [
|
|
{
|
|
operator: '/',
|
|
query: {
|
|
metric: 'metric_b',
|
|
labels: [],
|
|
operations: [],
|
|
},
|
|
},
|
|
],
|
|
})
|
|
).toBe('metric_a / metric_b');
|
|
});
|
|
|
|
it('Can render query with multiple binary queries and nesting', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric_a',
|
|
labels: [],
|
|
operations: [],
|
|
binaryQueries: [
|
|
{
|
|
operator: '+',
|
|
query: {
|
|
metric: 'metric_b',
|
|
labels: [],
|
|
operations: [],
|
|
},
|
|
},
|
|
{
|
|
operator: '+',
|
|
query: {
|
|
metric: 'metric_c',
|
|
labels: [],
|
|
operations: [],
|
|
},
|
|
},
|
|
],
|
|
})
|
|
).toBe('metric_a + metric_b + metric_c');
|
|
});
|
|
|
|
it('Can render query with nested query with binary op', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric_a',
|
|
labels: [],
|
|
operations: [],
|
|
binaryQueries: [
|
|
{
|
|
operator: '/',
|
|
query: {
|
|
metric: 'metric_b',
|
|
labels: [],
|
|
operations: [{ id: PromOperationId.MultiplyBy, params: [1000] }],
|
|
},
|
|
},
|
|
],
|
|
})
|
|
).toBe('metric_a / (metric_b * 1000)');
|
|
});
|
|
|
|
it('Can render query with nested binary query with parentheses', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric_a',
|
|
labels: [],
|
|
operations: [],
|
|
binaryQueries: [
|
|
{
|
|
operator: '/',
|
|
query: {
|
|
metric: 'metric_b',
|
|
labels: [],
|
|
operations: [],
|
|
binaryQueries: [
|
|
{
|
|
operator: '*',
|
|
query: {
|
|
metric: 'metric_c',
|
|
labels: [],
|
|
operations: [],
|
|
},
|
|
},
|
|
],
|
|
},
|
|
},
|
|
],
|
|
})
|
|
).toBe('metric_a / (metric_b * metric_c)');
|
|
});
|
|
|
|
it('Should add parantheis around first query if it has binary op', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric_a',
|
|
labels: [],
|
|
operations: [{ id: PromOperationId.MultiplyBy, params: [1000] }],
|
|
binaryQueries: [
|
|
{
|
|
operator: '/',
|
|
query: {
|
|
metric: 'metric_b',
|
|
labels: [],
|
|
operations: [],
|
|
},
|
|
},
|
|
],
|
|
})
|
|
).toBe('(metric_a * 1000) / metric_b');
|
|
});
|
|
|
|
it('Can render functions that require a range as a parameter', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric_a',
|
|
labels: [],
|
|
operations: [{ id: 'holt_winters', params: ['5m', 0.5, 0.5] }],
|
|
})
|
|
).toBe('holt_winters(metric_a[5m], 0.5, 0.5)');
|
|
});
|
|
it('Can render functions that require parameters left of a range', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric_a',
|
|
labels: [],
|
|
operations: [{ id: 'quantile_over_time', params: ['5m', 1] }],
|
|
})
|
|
).toBe('quantile_over_time(1, metric_a[5m])');
|
|
});
|
|
it('Can render the label_join function', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric_a',
|
|
labels: [],
|
|
operations: [{ id: 'label_join', params: ['label_1', ',', 'label_2'] }],
|
|
})
|
|
).toBe('label_join(metric_a, "label_1", ",", "label_2")');
|
|
});
|
|
|
|
it('Can render label_join with extra parameters', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric_a',
|
|
labels: [],
|
|
operations: [{ id: 'label_join', params: ['label_1', ', ', 'label_2', 'label_3', 'label_4', 'label_5'] }],
|
|
})
|
|
).toBe('label_join(metric_a, "label_1", ", ", "label_2", "label_3", "label_4", "label_5")');
|
|
});
|
|
|
|
it('can render vector matchers', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'metric_a',
|
|
labels: [],
|
|
operations: [],
|
|
binaryQueries: [
|
|
{
|
|
operator: '/',
|
|
vectorMatches: 'le, foo',
|
|
vectorMatchesType: 'on',
|
|
query: {
|
|
metric: 'metric_b',
|
|
labels: [],
|
|
operations: [],
|
|
},
|
|
},
|
|
],
|
|
})
|
|
).toBe('metric_a / on(le, foo) metric_b');
|
|
});
|
|
|
|
it('can render bool in binary ops', () => {
|
|
expect(
|
|
modeller.renderQuery({
|
|
metric: 'cluster_namespace_slug_dialer_name',
|
|
labels: [],
|
|
operations: [
|
|
{
|
|
id: '__less_or_equal',
|
|
params: [2, true],
|
|
},
|
|
],
|
|
})
|
|
).toBe('cluster_namespace_slug_dialer_name <= bool 2');
|
|
});
|
|
});
|