grafana/public/app/plugins/datasource/elasticsearch/elastic_response.ts
Ivana Huckova 3fd810417f
Elasticsearch: Create Raw Doc metric to render raw JSON docs in columns in the new table panel (#26233)
* test

* WIP: Create v2 version

* Update tests, remove conosole logs, refactor

* Remove incorrect types

* Update type

* Rename legacy and new metrics

* Update

* Run request when Raw Data tto Raw Document switch

* Fix size updating

* Remove _source field from table results as we are showing each source field as column

* Remove _source just for metrics, not logs

* Revert "Remove _source just for metrics, not logs"

This reverts commit 611b6922f7.

* Revert "Remove _source field from table results as we are showing each source field as column"

This reverts commit 31a9d5f81b.

* Add vis preference for logs

* Update visualisation to logs

* Revert "Revert "Remove _source just for metrics""

This reverts commit a102ab2894.

Co-authored-by: Marcus Efraimsson <marcus.efraimsson@gmail.com>
2020-07-15 15:20:39 +02:00

627 lines
18 KiB
TypeScript

import _ from 'lodash';
import flatten from 'app/core/utils/flatten';
import * as queryDef from './query_def';
import TableModel from 'app/core/table_model';
import {
DataQueryResponse,
DataFrame,
toDataFrame,
FieldType,
MutableDataFrame,
PreferredVisualisationType,
} from '@grafana/data';
import { ElasticsearchAggregation } from './types';
export class ElasticResponse {
constructor(private targets: any, private response: any) {
this.targets = targets;
this.response = response;
}
processMetrics(esAgg: any, target: any, seriesList: any, props: any) {
let metric, y, i, bucket, value;
let newSeries: any;
for (y = 0; y < target.metrics.length; y++) {
metric = target.metrics[y];
if (metric.hide) {
continue;
}
switch (metric.type) {
case 'count': {
newSeries = { datapoints: [], metric: 'count', props: props };
for (i = 0; i < esAgg.buckets.length; i++) {
bucket = esAgg.buckets[i];
value = bucket.doc_count;
newSeries.datapoints.push([value, bucket.key]);
}
seriesList.push(newSeries);
break;
}
case 'percentiles': {
if (esAgg.buckets.length === 0) {
break;
}
const firstBucket = esAgg.buckets[0];
const percentiles = firstBucket[metric.id].values;
for (const percentileName in percentiles) {
newSeries = {
datapoints: [],
metric: 'p' + percentileName,
props: props,
field: metric.field,
};
for (i = 0; i < esAgg.buckets.length; i++) {
bucket = esAgg.buckets[i];
const values = bucket[metric.id].values;
newSeries.datapoints.push([values[percentileName], bucket.key]);
}
seriesList.push(newSeries);
}
break;
}
case 'extended_stats': {
for (const statName in metric.meta) {
if (!metric.meta[statName]) {
continue;
}
newSeries = {
datapoints: [],
metric: statName,
props: props,
field: metric.field,
};
for (i = 0; i < esAgg.buckets.length; i++) {
bucket = esAgg.buckets[i];
const stats = bucket[metric.id];
// add stats that are in nested obj to top level obj
stats.std_deviation_bounds_upper = stats.std_deviation_bounds.upper;
stats.std_deviation_bounds_lower = stats.std_deviation_bounds.lower;
newSeries.datapoints.push([stats[statName], bucket.key]);
}
seriesList.push(newSeries);
}
break;
}
default: {
newSeries = {
datapoints: [],
metric: metric.type,
field: metric.field,
metricId: metric.id,
props: props,
};
for (i = 0; i < esAgg.buckets.length; i++) {
bucket = esAgg.buckets[i];
value = bucket[metric.id];
if (value !== undefined) {
if (value.normalized_value) {
newSeries.datapoints.push([value.normalized_value, bucket.key]);
} else {
newSeries.datapoints.push([value.value, bucket.key]);
}
}
}
seriesList.push(newSeries);
break;
}
}
}
}
processAggregationDocs(esAgg: any, aggDef: ElasticsearchAggregation, target: any, table: any, props: any) {
// add columns
if (table.columns.length === 0) {
for (const propKey of _.keys(props)) {
table.addColumn({ text: propKey, filterable: true });
}
table.addColumn({ text: aggDef.field, filterable: true });
}
// helper func to add values to value array
const addMetricValue = (values: any[], metricName: string, value: any) => {
table.addColumn({ text: metricName });
values.push(value);
};
const buckets = _.isArray(esAgg.buckets) ? esAgg.buckets : [esAgg.buckets];
for (const bucket of buckets) {
const values = [];
for (const propValues of _.values(props)) {
values.push(propValues);
}
// add bucket key (value)
values.push(bucket.key);
for (const metric of target.metrics) {
switch (metric.type) {
case 'count': {
addMetricValue(values, this.getMetricName(metric.type), bucket.doc_count);
break;
}
case 'extended_stats': {
for (const statName in metric.meta) {
if (!metric.meta[statName]) {
continue;
}
const stats = bucket[metric.id];
// add stats that are in nested obj to top level obj
stats.std_deviation_bounds_upper = stats.std_deviation_bounds.upper;
stats.std_deviation_bounds_lower = stats.std_deviation_bounds.lower;
addMetricValue(values, this.getMetricName(statName), stats[statName]);
}
break;
}
case 'percentiles': {
const percentiles = bucket[metric.id].values;
for (const percentileName in percentiles) {
addMetricValue(values, `p${percentileName} ${metric.field}`, percentiles[percentileName]);
}
break;
}
default: {
let metricName = this.getMetricName(metric.type);
const otherMetrics = _.filter(target.metrics, { type: metric.type });
// if more of the same metric type include field field name in property
if (otherMetrics.length > 1) {
metricName += ' ' + metric.field;
if (metric.type === 'bucket_script') {
//Use the formula in the column name
metricName = metric.settings.script;
}
}
addMetricValue(values, metricName, bucket[metric.id].value);
break;
}
}
}
table.rows.push(values);
}
}
// This is quite complex
// need to recurse down the nested buckets to build series
processBuckets(aggs: any, target: any, seriesList: any, table: any, props: any, depth: any) {
let bucket, aggDef: any, esAgg, aggId;
const maxDepth = target.bucketAggs.length - 1;
for (aggId in aggs) {
aggDef = _.find(target.bucketAggs, { id: aggId });
esAgg = aggs[aggId];
if (!aggDef) {
continue;
}
if (depth === maxDepth) {
if (aggDef.type === 'date_histogram') {
this.processMetrics(esAgg, target, seriesList, props);
} else {
this.processAggregationDocs(esAgg, aggDef, target, table, props);
}
} else {
for (const nameIndex in esAgg.buckets) {
bucket = esAgg.buckets[nameIndex];
props = _.clone(props);
if (bucket.key !== void 0) {
props[aggDef.field] = bucket.key;
} else {
props['filter'] = nameIndex;
}
if (bucket.key_as_string) {
props[aggDef.field] = bucket.key_as_string;
}
this.processBuckets(bucket, target, seriesList, table, props, depth + 1);
}
}
}
}
private getMetricName(metric: any) {
let metricDef: any = _.find(queryDef.metricAggTypes, { value: metric });
if (!metricDef) {
metricDef = _.find(queryDef.extendedStats, { value: metric });
}
return metricDef ? metricDef.text : metric;
}
private getSeriesName(series: any, target: any, metricTypeCount: any) {
let metricName = this.getMetricName(series.metric);
if (target.alias) {
const regex = /\{\{([\s\S]+?)\}\}/g;
return target.alias.replace(regex, (match: any, g1: any, g2: any) => {
const group = g1 || g2;
if (group.indexOf('term ') === 0) {
return series.props[group.substring(5)];
}
if (series.props[group] !== void 0) {
return series.props[group];
}
if (group === 'metric') {
return metricName;
}
if (group === 'field') {
return series.field || '';
}
return match;
});
}
if (series.field && queryDef.isPipelineAgg(series.metric)) {
if (series.metric && queryDef.isPipelineAggWithMultipleBucketPaths(series.metric)) {
const agg: any = _.find(target.metrics, { id: series.metricId });
if (agg && agg.settings.script) {
metricName = agg.settings.script;
for (const pv of agg.pipelineVariables) {
const appliedAgg: any = _.find(target.metrics, { id: pv.pipelineAgg });
if (appliedAgg) {
metricName = metricName.replace('params.' + pv.name, queryDef.describeMetric(appliedAgg));
}
}
} else {
metricName = 'Unset';
}
} else {
const appliedAgg: any = _.find(target.metrics, { id: series.field });
if (appliedAgg) {
metricName += ' ' + queryDef.describeMetric(appliedAgg);
} else {
metricName = 'Unset';
}
}
} else if (series.field) {
metricName += ' ' + series.field;
}
const propKeys = _.keys(series.props);
if (propKeys.length === 0) {
return metricName;
}
let name = '';
for (const propName in series.props) {
name += series.props[propName] + ' ';
}
if (metricTypeCount === 1) {
return name.trim();
}
return name.trim() + ' ' + metricName;
}
nameSeries(seriesList: any, target: any) {
const metricTypeCount = _.uniq(_.map(seriesList, 'metric')).length;
for (let i = 0; i < seriesList.length; i++) {
const series = seriesList[i];
series.target = this.getSeriesName(series, target, metricTypeCount);
}
}
processHits(hits: { total: { value: any }; hits: any[] }, seriesList: any[]) {
const hitsTotal = typeof hits.total === 'number' ? hits.total : hits.total.value; // <- Works with Elasticsearch 7.0+
const series: any = {
target: 'docs',
type: 'docs',
datapoints: [],
total: hitsTotal,
filterable: true,
};
let propName, hit, doc: any, i;
for (i = 0; i < hits.hits.length; i++) {
hit = hits.hits[i];
doc = {
_id: hit._id,
_type: hit._type,
_index: hit._index,
};
if (hit._source) {
for (propName in hit._source) {
doc[propName] = hit._source[propName];
}
}
for (propName in hit.fields) {
doc[propName] = hit.fields[propName];
}
series.datapoints.push(doc);
}
seriesList.push(series);
}
trimDatapoints(aggregations: any, target: any) {
const histogram: any = _.find(target.bucketAggs, { type: 'date_histogram' });
const shouldDropFirstAndLast = histogram && histogram.settings && histogram.settings.trimEdges;
if (shouldDropFirstAndLast) {
const trim = histogram.settings.trimEdges;
for (const prop in aggregations) {
const points = aggregations[prop];
if (points.datapoints.length > trim * 2) {
points.datapoints = points.datapoints.slice(trim, points.datapoints.length - trim);
}
}
}
}
getErrorFromElasticResponse(response: any, err: any) {
const result: any = {};
result.data = JSON.stringify(err, null, 4);
if (err.root_cause && err.root_cause.length > 0 && err.root_cause[0].reason) {
result.message = err.root_cause[0].reason;
} else {
result.message = err.reason || 'Unknown elastic error response';
}
if (response.$$config) {
result.config = response.$$config;
}
return result;
}
getTimeSeries() {
if (this.targets.some((target: any) => target.metrics.some((metric: any) => metric.type === 'raw_data'))) {
return this.processResponseToDataFrames(false);
}
return this.processResponseToSeries();
}
getLogs(logMessageField?: string, logLevelField?: string): DataQueryResponse {
return this.processResponseToDataFrames(true, logMessageField, logLevelField);
}
processResponseToDataFrames(
isLogsRequest: boolean,
logMessageField?: string,
logLevelField?: string
): DataQueryResponse {
const dataFrame: DataFrame[] = [];
for (let n = 0; n < this.response.responses.length; n++) {
const response = this.response.responses[n];
if (response.error) {
throw this.getErrorFromElasticResponse(this.response, response.error);
}
if (response.hits && response.hits.hits.length > 0) {
const { propNames, docs } = flattenHits(response.hits.hits);
if (docs.length > 0) {
let series = createEmptyDataFrame(
propNames,
this.targets[0].timeField,
isLogsRequest,
logMessageField,
logLevelField
);
// Add a row for each document
for (const doc of docs) {
if (logLevelField) {
// Remap level field based on the datasource config. This field is then used in explore to figure out the
// log level. We may rewrite some actual data in the level field if they are different.
doc['level'] = doc[logLevelField];
}
series.add(doc);
}
if (isLogsRequest) {
series = addPreferredVisualisationType(series, 'logs');
}
dataFrame.push(series);
}
}
if (response.aggregations) {
const aggregations = response.aggregations;
const target = this.targets[n];
const tmpSeriesList: any[] = [];
const table = new TableModel();
this.processBuckets(aggregations, target, tmpSeriesList, table, {}, 0);
this.trimDatapoints(tmpSeriesList, target);
this.nameSeries(tmpSeriesList, target);
if (table.rows.length > 0) {
dataFrame.push(toDataFrame(table));
}
for (let y = 0; y < tmpSeriesList.length; y++) {
let series = toDataFrame(tmpSeriesList[y]);
// When log results, show aggregations only in graph. Log fields are then going to be shown in table.
if (isLogsRequest) {
series = addPreferredVisualisationType(series, 'graph');
}
dataFrame.push(series);
}
}
}
return { data: dataFrame };
}
processResponseToSeries = () => {
const seriesList = [];
for (let i = 0; i < this.response.responses.length; i++) {
const response = this.response.responses[i];
if (response.error) {
throw this.getErrorFromElasticResponse(this.response, response.error);
}
if (response.hits && response.hits.hits.length > 0) {
this.processHits(response.hits, seriesList);
}
if (response.aggregations) {
const aggregations = response.aggregations;
const target = this.targets[i];
const tmpSeriesList: any[] = [];
const table = new TableModel();
this.processBuckets(aggregations, target, tmpSeriesList, table, {}, 0);
this.trimDatapoints(tmpSeriesList, target);
this.nameSeries(tmpSeriesList, target);
for (let y = 0; y < tmpSeriesList.length; y++) {
seriesList.push(tmpSeriesList[y]);
}
if (table.rows.length > 0) {
seriesList.push(table);
}
}
}
return { data: seriesList };
};
}
type Doc = {
_id: string;
_type: string;
_index: string;
_source?: any;
};
/**
* Flatten the docs from response mainly the _source part which can be nested. This flattens it so that it is one level
* deep and the keys are: `level1Name.level2Name...`. Also returns list of all properties from all the docs (not all
* docs have to have the same keys).
* @param hits
*/
const flattenHits = (hits: Doc[]): { docs: Array<Record<string, any>>; propNames: string[] } => {
const docs: any[] = [];
// We keep a list of all props so that we can create all the fields in the dataFrame, this can lead
// to wide sparse dataframes in case the scheme is different per document.
let propNames: string[] = [];
for (const hit of hits) {
const flattened = hit._source ? flatten(hit._source) : {};
const doc = {
_id: hit._id,
_type: hit._type,
_index: hit._index,
_source: { ...flattened },
...flattened,
};
for (const propName of Object.keys(doc)) {
if (propNames.indexOf(propName) === -1) {
propNames.push(propName);
}
}
docs.push(doc);
}
propNames.sort();
return { docs, propNames };
};
/**
* Create empty dataframe but with created fields. Fields are based from propNames (should be from the response) and
* also from configuration specified fields for message, time, and level.
* @param propNames
* @param timeField
* @param logMessageField
* @param logLevelField
*/
const createEmptyDataFrame = (
propNames: string[],
timeField: string,
isLogsRequest: boolean,
logMessageField?: string,
logLevelField?: string
): MutableDataFrame => {
const series = new MutableDataFrame({ fields: [] });
series.addField({
name: timeField,
type: FieldType.time,
});
if (logMessageField) {
series.addField({
name: logMessageField,
type: FieldType.string,
}).parse = (v: any) => {
return v || '';
};
}
if (logLevelField) {
series.addField({
name: 'level',
type: FieldType.string,
}).parse = (v: any) => {
return v || '';
};
}
const fieldNames = series.fields.map(field => field.name);
for (const propName of propNames) {
// Do not duplicate fields. This can mean that we will shadow some fields.
if (fieldNames.includes(propName)) {
continue;
}
// Do not add _source field (besides logs) as we are showing each _source field in table instead.
if (!isLogsRequest && propName === '_source') {
continue;
}
series.addField({
name: propName,
type: FieldType.string,
}).parse = (v: any) => {
return v || '';
};
}
return series;
};
const addPreferredVisualisationType = (series: any, type: PreferredVisualisationType) => {
let s = series;
s.meta
? (s.meta.preferredVisualisationType = type)
: (s.meta = {
preferredVisualisationType: type,
});
return s;
};