grafana/pkg/tsdb/cloudmonitoring/cloudmonitoring_test.go
2020-07-15 19:31:17 +03:00

1057 lines
44 KiB
Go

package cloudmonitoring
import (
"encoding/json"
"fmt"
"io/ioutil"
"math"
"net/url"
"reflect"
"strconv"
"testing"
"time"
"github.com/grafana/grafana/pkg/components/simplejson"
"github.com/grafana/grafana/pkg/tsdb"
. "github.com/smartystreets/goconvey/convey"
)
func TestCloudMonitoring(t *testing.T) {
Convey("Google Cloud Monitoring", t, func() {
executor := &CloudMonitoringExecutor{}
Convey("Parse migrated queries from frontend and build Google Cloud Monitoring API queries", func() {
fromStart := time.Date(2018, 3, 15, 13, 0, 0, 0, time.UTC).In(time.Local)
tsdbQuery := &tsdb.TsdbQuery{
TimeRange: &tsdb.TimeRange{
From: fmt.Sprintf("%v", fromStart.Unix()*1000),
To: fmt.Sprintf("%v", fromStart.Add(34*time.Minute).Unix()*1000),
},
Queries: []*tsdb.Query{
{
Model: simplejson.NewFromAny(map[string]interface{}{
"metricType": "a/metric/type",
"view": "FULL",
"aliasBy": "testalias",
"type": "timeSeriesQuery",
}),
RefId: "A",
},
},
}
Convey("and query has no aggregation set", func() {
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(len(queries), ShouldEqual, 1)
So(queries[0].RefID, ShouldEqual, "A")
So(queries[0].Target, ShouldEqual, "aggregation.alignmentPeriod=%2B60s&aggregation.crossSeriesReducer=REDUCE_NONE&aggregation.perSeriesAligner=ALIGN_MEAN&filter=metric.type%3D%22a%2Fmetric%2Ftype%22&interval.endTime=2018-03-15T13%3A34%3A00Z&interval.startTime=2018-03-15T13%3A00%3A00Z&view=FULL")
So(len(queries[0].Params), ShouldEqual, 7)
So(queries[0].Params["interval.startTime"][0], ShouldEqual, "2018-03-15T13:00:00Z")
So(queries[0].Params["interval.endTime"][0], ShouldEqual, "2018-03-15T13:34:00Z")
So(queries[0].Params["aggregation.perSeriesAligner"][0], ShouldEqual, "ALIGN_MEAN")
So(queries[0].Params["filter"][0], ShouldEqual, "metric.type=\"a/metric/type\"")
So(queries[0].Params["view"][0], ShouldEqual, "FULL")
So(queries[0].AliasBy, ShouldEqual, "testalias")
Convey("and generated deep link has correct parameters", func() {
dl := queries[0].buildDeepLink()
So(dl, ShouldBeEmpty) // no resource type found
// assign resource type to query parameters to be included in the deep link filter
// in the actual workflow this information comes from the response of the Monitoring API
queries[0].Params.Set("resourceType", "a/resource/type")
dl = queries[0].buildDeepLink()
expectedTimeSelection := map[string]string{
"timeRange": "custom",
"start": "2018-03-15T13:00:00Z",
"end": "2018-03-15T13:34:00Z",
}
expectedTimeSeriesFilter := map[string]interface{}{
"perSeriesAligner": "ALIGN_MEAN",
"filter": "resource.type=\"a/resource/type\" metric.type=\"a/metric/type\"",
}
verifyDeepLink(dl, expectedTimeSelection, expectedTimeSeriesFilter)
})
})
Convey("and query has filters", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"metricType": "a/metric/type",
"filters": []interface{}{"key", "=", "value", "AND", "key2", "=", "value2", "AND", "resource.type", "=", "another/resource/type"},
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(len(queries), ShouldEqual, 1)
So(queries[0].Params["filter"][0], ShouldEqual, `metric.type="a/metric/type" key="value" key2="value2" resource.type="another/resource/type"`)
Convey("and generated deep link has correct parameters", func() {
// assign a resource type to query parameters
// in the actual workflow this information comes from the response of the Monitoring API
// the deep link should not contain this resource type since another resource type is included in the query filters
queries[0].Params.Set("resourceType", "a/resource/type")
dl := queries[0].buildDeepLink()
expectedTimeSelection := map[string]string{
"timeRange": "custom",
"start": "2018-03-15T13:00:00Z",
"end": "2018-03-15T13:34:00Z",
}
expectedTimeSeriesFilter := map[string]interface{}{
"filter": `metric.type="a/metric/type" key="value" key2="value2" resource.type="another/resource/type"`,
}
verifyDeepLink(dl, expectedTimeSelection, expectedTimeSeriesFilter)
})
})
Convey("and alignmentPeriod is set to grafana-auto", func() {
Convey("and IntervalMs is larger than 60000", func() {
tsdbQuery.Queries[0].IntervalMs = 1000000
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"alignmentPeriod": "grafana-auto",
"filters": []interface{}{"key", "=", "value", "AND", "key2", "=", "value2"},
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(queries[0].Params["aggregation.alignmentPeriod"][0], ShouldEqual, `+1000s`)
Convey("and generated deep link has correct parameters", func() {
// assign resource type to query parameters to be included in the deep link filter
// in the actual workflow this information comes from the response of the Monitoring API
queries[0].Params.Set("resourceType", "a/resource/type")
dl := queries[0].buildDeepLink()
expectedTimeSelection := map[string]string{
"timeRange": "custom",
"start": "2018-03-15T13:00:00Z",
"end": "2018-03-15T13:34:00Z",
}
expectedTimeSeriesFilter := map[string]interface{}{
"minAlignmentPeriod": `1000s`,
}
verifyDeepLink(dl, expectedTimeSelection, expectedTimeSeriesFilter)
})
})
Convey("and IntervalMs is less than 60000", func() {
tsdbQuery.Queries[0].IntervalMs = 30000
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"alignmentPeriod": "grafana-auto",
"filters": []interface{}{"key", "=", "value", "AND", "key2", "=", "value2"},
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(queries[0].Params["aggregation.alignmentPeriod"][0], ShouldEqual, `+60s`)
Convey("and generated deep link has correct parameters", func() {
// assign resource type to query parameters to be included in the deep link filter
// in the actual workflow this information comes from the response of the Monitoring API
queries[0].Params.Set("resourceType", "a/resource/type")
dl := queries[0].buildDeepLink()
expectedTimeSelection := map[string]string{
"timeRange": "custom",
"start": "2018-03-15T13:00:00Z",
"end": "2018-03-15T13:34:00Z",
}
expectedTimeSeriesFilter := map[string]interface{}{
"minAlignmentPeriod": `60s`,
}
verifyDeepLink(dl, expectedTimeSelection, expectedTimeSeriesFilter)
})
})
})
Convey("and alignmentPeriod is set to cloud-monitoring-auto", func() { // legacy
Convey("and range is two hours", func() {
tsdbQuery.TimeRange.From = "1538033322461"
tsdbQuery.TimeRange.To = "1538040522461"
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"target": "target",
"alignmentPeriod": "cloud-monitoring-auto",
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(queries[0].Params["aggregation.alignmentPeriod"][0], ShouldEqual, `+60s`)
})
Convey("and range is 22 hours", func() {
tsdbQuery.TimeRange.From = "1538034524922"
tsdbQuery.TimeRange.To = "1538113724922"
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"target": "target",
"alignmentPeriod": "cloud-monitoring-auto",
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(queries[0].Params["aggregation.alignmentPeriod"][0], ShouldEqual, `+60s`)
})
Convey("and range is 23 hours", func() {
tsdbQuery.TimeRange.From = "1538034567985"
tsdbQuery.TimeRange.To = "1538117367985"
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"target": "target",
"alignmentPeriod": "cloud-monitoring-auto",
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(queries[0].Params["aggregation.alignmentPeriod"][0], ShouldEqual, `+300s`)
})
Convey("and range is 7 days", func() {
tsdbQuery.TimeRange.From = "1538036324073"
tsdbQuery.TimeRange.To = "1538641124073"
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"target": "target",
"alignmentPeriod": "cloud-monitoring-auto",
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(queries[0].Params["aggregation.alignmentPeriod"][0], ShouldEqual, `+3600s`)
})
})
Convey("and alignmentPeriod is set to stackdriver-auto", func() { // legacy
Convey("and range is two hours", func() {
tsdbQuery.TimeRange.From = "1538033322461"
tsdbQuery.TimeRange.To = "1538040522461"
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"target": "target",
"alignmentPeriod": "stackdriver-auto",
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(queries[0].Params["aggregation.alignmentPeriod"][0], ShouldEqual, `+60s`)
Convey("and generated deep link has correct parameters", func() {
// assign resource type to query parameters to be included in the deep link filter
// in the actual workflow this information comes from the response of the Monitoring API
queries[0].Params.Set("resourceType", "a/resource/type")
dl := queries[0].buildDeepLink()
expectedTimeSelection := map[string]string{
"timeRange": "custom",
"start": "2018-09-27T07:28:42Z",
"end": "2018-09-27T09:28:42Z",
}
expectedTimeSeriesFilter := map[string]interface{}{
"minAlignmentPeriod": `60s`,
}
verifyDeepLink(dl, expectedTimeSelection, expectedTimeSeriesFilter)
})
})
Convey("and range is 22 hours", func() {
tsdbQuery.TimeRange.From = "1538034524922"
tsdbQuery.TimeRange.To = "1538113724922"
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"target": "target",
"alignmentPeriod": "stackdriver-auto",
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(queries[0].Params["aggregation.alignmentPeriod"][0], ShouldEqual, `+60s`)
Convey("and generated deep link has correct parameters", func() {
// assign resource type to query parameters to be included in the deep link filter
// in the actual workflow this information comes from the response of the Monitoring API
queries[0].Params.Set("resourceType", "a/resource/type")
dl := queries[0].buildDeepLink()
expectedTimeSelection := map[string]string{
"timeRange": "custom",
"start": "2018-09-27T07:48:44Z",
"end": "2018-09-28T05:48:44Z",
}
expectedTimeSeriesFilter := map[string]interface{}{
"minAlignmentPeriod": `60s`,
}
verifyDeepLink(dl, expectedTimeSelection, expectedTimeSeriesFilter)
})
})
Convey("and range is 23 hours", func() {
tsdbQuery.TimeRange.From = "1538034567985"
tsdbQuery.TimeRange.To = "1538117367985"
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"target": "target",
"alignmentPeriod": "stackdriver-auto",
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(queries[0].Params["aggregation.alignmentPeriod"][0], ShouldEqual, `+300s`)
Convey("and generated deep link has correct parameters", func() {
// assign resource type to query parameters to be included in the deep link filter
// in the actual workflow this information comes from the response of the Monitoring API
queries[0].Params.Set("resourceType", "a/resource/type")
dl := queries[0].buildDeepLink()
expectedTimeSelection := map[string]string{
"timeRange": "custom",
"start": "2018-09-27T07:49:27Z",
"end": "2018-09-28T06:49:27Z",
}
expectedTimeSeriesFilter := map[string]interface{}{
"minAlignmentPeriod": `300s`,
}
verifyDeepLink(dl, expectedTimeSelection, expectedTimeSeriesFilter)
})
})
Convey("and range is 7 days", func() {
tsdbQuery.TimeRange.From = "1538036324073"
tsdbQuery.TimeRange.To = "1538641124073"
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"target": "target",
"alignmentPeriod": "stackdriver-auto",
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(queries[0].Params["aggregation.alignmentPeriod"][0], ShouldEqual, `+3600s`)
Convey("and generated deep link has correct parameters", func() {
// assign resource type to query parameters to be included in the deep link filter
// in the actual workflow this information comes from the response of the Monitoring API
queries[0].Params.Set("resourceType", "a/resource/type")
dl := queries[0].buildDeepLink()
expectedTimeSelection := map[string]string{
"timeRange": "custom",
"start": "2018-09-27T08:18:44Z",
"end": "2018-10-04T08:18:44Z",
}
expectedTimeSeriesFilter := map[string]interface{}{
"minAlignmentPeriod": `3600s`,
}
verifyDeepLink(dl, expectedTimeSelection, expectedTimeSeriesFilter)
})
})
})
Convey("and alignmentPeriod is set in frontend", func() {
Convey("and alignment period is within accepted range", func() {
tsdbQuery.Queries[0].IntervalMs = 1000
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"alignmentPeriod": "+600s",
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(queries[0].Params["aggregation.alignmentPeriod"][0], ShouldEqual, `+600s`)
Convey("and generated deep link has correct parameters", func() {
// assign resource type to query parameters to be included in the deep link filter
// in the actual workflow this information comes from the response of the Monitoring API
queries[0].Params.Set("resourceType", "a/resource/type")
dl := queries[0].buildDeepLink()
expectedTimeSelection := map[string]string{
"timeRange": "custom",
"start": "2018-03-15T13:00:00Z",
"end": "2018-03-15T13:34:00Z",
}
expectedTimeSeriesFilter := map[string]interface{}{
"minAlignmentPeriod": `600s`,
}
verifyDeepLink(dl, expectedTimeSelection, expectedTimeSeriesFilter)
})
})
})
Convey("and query has aggregation mean set", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"metricType": "a/metric/type",
"crossSeriesReducer": "REDUCE_SUM",
"view": "FULL",
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(len(queries), ShouldEqual, 1)
So(queries[0].RefID, ShouldEqual, "A")
So(queries[0].Target, ShouldEqual, "aggregation.alignmentPeriod=%2B60s&aggregation.crossSeriesReducer=REDUCE_SUM&aggregation.perSeriesAligner=ALIGN_MEAN&filter=metric.type%3D%22a%2Fmetric%2Ftype%22&interval.endTime=2018-03-15T13%3A34%3A00Z&interval.startTime=2018-03-15T13%3A00%3A00Z&view=FULL")
So(len(queries[0].Params), ShouldEqual, 7)
So(queries[0].Params["interval.startTime"][0], ShouldEqual, "2018-03-15T13:00:00Z")
So(queries[0].Params["interval.endTime"][0], ShouldEqual, "2018-03-15T13:34:00Z")
So(queries[0].Params["aggregation.crossSeriesReducer"][0], ShouldEqual, "REDUCE_SUM")
So(queries[0].Params["aggregation.perSeriesAligner"][0], ShouldEqual, "ALIGN_MEAN")
So(queries[0].Params["aggregation.alignmentPeriod"][0], ShouldEqual, "+60s")
So(queries[0].Params["filter"][0], ShouldEqual, "metric.type=\"a/metric/type\"")
So(queries[0].Params["view"][0], ShouldEqual, "FULL")
Convey("and generated deep link has correct parameters", func() {
// assign resource type to query parameters to be included in the deep link filter
// in the actual workflow this information comes from the response of the Monitoring API
queries[0].Params.Set("resourceType", "a/resource/type")
dl := queries[0].buildDeepLink()
expectedTimeSelection := map[string]string{
"timeRange": "custom",
"start": "2018-03-15T13:00:00Z",
"end": "2018-03-15T13:34:00Z",
}
expectedTimeSeriesFilter := map[string]interface{}{
"minAlignmentPeriod": `60s`,
"crossSeriesReducer": "REDUCE_SUM",
"perSeriesAligner": "ALIGN_MEAN",
"filter": "resource.type=\"a/resource/type\" metric.type=\"a/metric/type\"",
}
verifyDeepLink(dl, expectedTimeSelection, expectedTimeSeriesFilter)
})
})
Convey("and query has group bys", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"metricType": "a/metric/type",
"crossSeriesReducer": "REDUCE_NONE",
"groupBys": []interface{}{"metric.label.group1", "metric.label.group2"},
"view": "FULL",
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(len(queries), ShouldEqual, 1)
So(queries[0].RefID, ShouldEqual, "A")
So(queries[0].Target, ShouldEqual, "aggregation.alignmentPeriod=%2B60s&aggregation.crossSeriesReducer=REDUCE_NONE&aggregation.groupByFields=metric.label.group1&aggregation.groupByFields=metric.label.group2&aggregation.perSeriesAligner=ALIGN_MEAN&filter=metric.type%3D%22a%2Fmetric%2Ftype%22&interval.endTime=2018-03-15T13%3A34%3A00Z&interval.startTime=2018-03-15T13%3A00%3A00Z&view=FULL")
So(len(queries[0].Params), ShouldEqual, 8)
So(queries[0].Params["interval.startTime"][0], ShouldEqual, "2018-03-15T13:00:00Z")
So(queries[0].Params["interval.endTime"][0], ShouldEqual, "2018-03-15T13:34:00Z")
So(queries[0].Params["aggregation.perSeriesAligner"][0], ShouldEqual, "ALIGN_MEAN")
So(queries[0].Params["aggregation.groupByFields"][0], ShouldEqual, "metric.label.group1")
So(queries[0].Params["aggregation.groupByFields"][1], ShouldEqual, "metric.label.group2")
So(queries[0].Params["filter"][0], ShouldEqual, "metric.type=\"a/metric/type\"")
So(queries[0].Params["view"][0], ShouldEqual, "FULL")
Convey("and generated deep link has correct parameters", func() {
// assign resource type to query parameters to be included in the deep link filter
// in the actual workflow this information comes from the response of the Monitoring API
queries[0].Params.Set("resourceType", "a/resource/type")
dl := queries[0].buildDeepLink()
expectedTimeSelection := map[string]string{
"timeRange": "custom",
"start": "2018-03-15T13:00:00Z",
"end": "2018-03-15T13:34:00Z",
}
expectedTimeSeriesFilter := map[string]interface{}{
"minAlignmentPeriod": `60s`,
"perSeriesAligner": "ALIGN_MEAN",
"filter": "resource.type=\"a/resource/type\" metric.type=\"a/metric/type\"",
"groupByFields": []interface{}{"metric.label.group1", "metric.label.group2"},
}
verifyDeepLink(dl, expectedTimeSelection, expectedTimeSeriesFilter)
})
})
})
Convey("Parse queries from frontend and build Google Cloud Monitoring API queries", func() {
fromStart := time.Date(2018, 3, 15, 13, 0, 0, 0, time.UTC).In(time.Local)
tsdbQuery := &tsdb.TsdbQuery{
TimeRange: &tsdb.TimeRange{
From: fmt.Sprintf("%v", fromStart.Unix()*1000),
To: fmt.Sprintf("%v", fromStart.Add(34*time.Minute).Unix()*1000),
},
Queries: []*tsdb.Query{
{
Model: simplejson.NewFromAny(map[string]interface{}{
"queryType": metricQueryType,
"metricQuery": map[string]interface{}{
"metricType": "a/metric/type",
"view": "FULL",
"aliasBy": "testalias",
"type": "timeSeriesQuery",
"groupBys": []interface{}{"metric.label.group1", "metric.label.group2"},
},
}),
RefId: "A",
},
},
}
Convey("and query type is metrics", func() {
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(len(queries), ShouldEqual, 1)
So(queries[0].RefID, ShouldEqual, "A")
So(queries[0].Target, ShouldEqual, "aggregation.alignmentPeriod=%2B60s&aggregation.crossSeriesReducer=REDUCE_NONE&aggregation.groupByFields=metric.label.group1&aggregation.groupByFields=metric.label.group2&aggregation.perSeriesAligner=ALIGN_MEAN&filter=metric.type%3D%22a%2Fmetric%2Ftype%22&interval.endTime=2018-03-15T13%3A34%3A00Z&interval.startTime=2018-03-15T13%3A00%3A00Z&view=FULL")
So(len(queries[0].Params), ShouldEqual, 8)
So(queries[0].Params["aggregation.groupByFields"][0], ShouldEqual, "metric.label.group1")
So(queries[0].Params["aggregation.groupByFields"][1], ShouldEqual, "metric.label.group2")
So(queries[0].Params["interval.startTime"][0], ShouldEqual, "2018-03-15T13:00:00Z")
So(queries[0].Params["interval.endTime"][0], ShouldEqual, "2018-03-15T13:34:00Z")
So(queries[0].Params["aggregation.perSeriesAligner"][0], ShouldEqual, "ALIGN_MEAN")
So(queries[0].Params["filter"][0], ShouldEqual, "metric.type=\"a/metric/type\"")
So(queries[0].Params["view"][0], ShouldEqual, "FULL")
So(queries[0].AliasBy, ShouldEqual, "testalias")
So(queries[0].GroupBys, ShouldResemble, []string{"metric.label.group1", "metric.label.group2"})
Convey("and generated deep link has correct parameters", func() {
// assign resource type to query parameters to be included in the deep link filter
// in the actual workflow this information comes from the response of the Monitoring API
queries[0].Params.Set("resourceType", "a/resource/type")
dl := queries[0].buildDeepLink()
expectedTimeSelection := map[string]string{
"timeRange": "custom",
"start": "2018-03-15T13:00:00Z",
"end": "2018-03-15T13:34:00Z",
}
expectedTimeSeriesFilter := map[string]interface{}{
"minAlignmentPeriod": `60s`,
"perSeriesAligner": "ALIGN_MEAN",
"filter": "resource.type=\"a/resource/type\" metric.type=\"a/metric/type\"",
"groupByFields": []interface{}{"metric.label.group1", "metric.label.group2"},
}
verifyDeepLink(dl, expectedTimeSelection, expectedTimeSeriesFilter)
})
})
Convey("and query type is SLOs", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"queryType": sloQueryType,
"metricQuery": map[string]interface{}{},
"sloQuery": map[string]interface{}{
"projectName": "test-proj",
"alignmentPeriod": "stackdriver-auto",
"perSeriesAligner": "ALIGN_NEXT_OLDER",
"aliasBy": "",
"selectorName": "select_slo_health",
"serviceId": "test-service",
"sloId": "test-slo",
},
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(len(queries), ShouldEqual, 1)
So(queries[0].RefID, ShouldEqual, "A")
So(queries[0].Params["interval.startTime"][0], ShouldEqual, "2018-03-15T13:00:00Z")
So(queries[0].Params["interval.endTime"][0], ShouldEqual, "2018-03-15T13:34:00Z")
So(queries[0].Params["aggregation.alignmentPeriod"][0], ShouldEqual, `+60s`)
So(queries[0].AliasBy, ShouldEqual, "")
So(queries[0].Params["aggregation.perSeriesAligner"][0], ShouldEqual, "ALIGN_MEAN")
So(queries[0].Target, ShouldEqual, `aggregation.alignmentPeriod=%2B60s&aggregation.perSeriesAligner=ALIGN_MEAN&filter=select_slo_health%28%22projects%2Ftest-proj%2Fservices%2Ftest-service%2FserviceLevelObjectives%2Ftest-slo%22%29&interval.endTime=2018-03-15T13%3A34%3A00Z&interval.startTime=2018-03-15T13%3A00%3A00Z`)
So(len(queries[0].Params), ShouldEqual, 5)
Convey("and perSeriesAligner is inferred by SLO selector", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"queryType": sloQueryType,
"metricQuery": map[string]interface{}{},
"sloQuery": map[string]interface{}{
"projectName": "test-proj",
"alignmentPeriod": "stackdriver-auto",
"perSeriesAligner": "ALIGN_NEXT_OLDER",
"aliasBy": "",
"selectorName": "select_slo_compliance",
"serviceId": "test-service",
"sloId": "test-slo",
},
})
queries, err := executor.buildQueries(tsdbQuery)
So(err, ShouldBeNil)
So(queries[0].Params["aggregation.perSeriesAligner"][0], ShouldEqual, "ALIGN_NEXT_OLDER")
Convey("and empty deep link", func() {
dl := queries[0].buildDeepLink()
So(dl, ShouldBeEmpty)
})
})
})
})
Convey("Parse cloud monitoring response in the time series format", func() {
Convey("when data from query aggregated to one time series", func() {
data, err := loadTestFile("./test-data/1-series-response-agg-one-metric.json")
So(err, ShouldBeNil)
So(len(data.TimeSeries), ShouldEqual, 1)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &cloudMonitoringQuery{}
err = executor.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(len(res.Series), ShouldEqual, 1)
So(res.Series[0].Name, ShouldEqual, "serviceruntime.googleapis.com/api/request_count")
So(len(res.Series[0].Points), ShouldEqual, 3)
Convey("timestamps should be in ascending order", func() {
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 0.05)
So(res.Series[0].Points[0][1].Float64, ShouldEqual, int64(1536670020000))
So(res.Series[0].Points[1][0].Float64, ShouldEqual, 1.05)
So(res.Series[0].Points[1][1].Float64, ShouldEqual, int64(1536670080000))
So(res.Series[0].Points[2][0].Float64, ShouldEqual, 1.0666666666667)
So(res.Series[0].Points[2][1].Float64, ShouldEqual, int64(1536670260000))
})
})
Convey("when data from query with no aggregation", func() {
data, err := loadTestFile("./test-data/2-series-response-no-agg.json")
So(err, ShouldBeNil)
So(len(data.TimeSeries), ShouldEqual, 3)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &cloudMonitoringQuery{}
err = executor.parseResponse(res, data, query)
So(err, ShouldBeNil)
Convey("Should add labels to metric name", func() {
So(len(res.Series), ShouldEqual, 3)
So(res.Series[0].Name, ShouldEqual, "compute.googleapis.com/instance/cpu/usage_time collector-asia-east-1")
So(res.Series[1].Name, ShouldEqual, "compute.googleapis.com/instance/cpu/usage_time collector-europe-west-1")
So(res.Series[2].Name, ShouldEqual, "compute.googleapis.com/instance/cpu/usage_time collector-us-east-1")
})
Convey("Should parse to time series", func() {
So(len(res.Series[0].Points), ShouldEqual, 3)
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 9.8566497180145)
So(res.Series[0].Points[1][0].Float64, ShouldEqual, 9.7323568146676)
So(res.Series[0].Points[2][0].Float64, ShouldEqual, 9.7730520330369)
})
Convey("Should add meta for labels to the response", func() {
labels := res.Meta.Get("labels").Interface().(map[string][]string)
So(labels, ShouldNotBeNil)
So(len(labels["metric.label.instance_name"]), ShouldEqual, 3)
So(labels["metric.label.instance_name"], ShouldContain, "collector-asia-east-1")
So(labels["metric.label.instance_name"], ShouldContain, "collector-europe-west-1")
So(labels["metric.label.instance_name"], ShouldContain, "collector-us-east-1")
So(len(labels["resource.label.zone"]), ShouldEqual, 3)
So(labels["resource.label.zone"], ShouldContain, "asia-east1-a")
So(labels["resource.label.zone"], ShouldContain, "europe-west1-b")
So(labels["resource.label.zone"], ShouldContain, "us-east1-b")
So(len(labels["resource.label.project_id"]), ShouldEqual, 1)
So(labels["resource.label.project_id"][0], ShouldEqual, "grafana-prod")
})
})
Convey("when data from query with no aggregation and group bys", func() {
data, err := loadTestFile("./test-data/2-series-response-no-agg.json")
So(err, ShouldBeNil)
So(len(data.TimeSeries), ShouldEqual, 3)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &cloudMonitoringQuery{GroupBys: []string{"metric.label.instance_name", "resource.label.zone"}}
err = executor.parseResponse(res, data, query)
So(err, ShouldBeNil)
Convey("Should add instance name and zone labels to metric name", func() {
So(len(res.Series), ShouldEqual, 3)
So(res.Series[0].Name, ShouldEqual, "compute.googleapis.com/instance/cpu/usage_time collector-asia-east-1 asia-east1-a")
So(res.Series[1].Name, ShouldEqual, "compute.googleapis.com/instance/cpu/usage_time collector-europe-west-1 europe-west1-b")
So(res.Series[2].Name, ShouldEqual, "compute.googleapis.com/instance/cpu/usage_time collector-us-east-1 us-east1-b")
})
})
Convey("when data from query with no aggregation and alias by", func() {
data, err := loadTestFile("./test-data/2-series-response-no-agg.json")
So(err, ShouldBeNil)
So(len(data.TimeSeries), ShouldEqual, 3)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
Convey("and the alias pattern is for metric type, a metric label and a resource label", func() {
query := &cloudMonitoringQuery{AliasBy: "{{metric.type}} - {{metric.label.instance_name}} - {{resource.label.zone}}", GroupBys: []string{"metric.label.instance_name", "resource.label.zone"}}
err = executor.parseResponse(res, data, query)
So(err, ShouldBeNil)
Convey("Should use alias by formatting and only show instance name", func() {
So(len(res.Series), ShouldEqual, 3)
So(res.Series[0].Name, ShouldEqual, "compute.googleapis.com/instance/cpu/usage_time - collector-asia-east-1 - asia-east1-a")
So(res.Series[1].Name, ShouldEqual, "compute.googleapis.com/instance/cpu/usage_time - collector-europe-west-1 - europe-west1-b")
So(res.Series[2].Name, ShouldEqual, "compute.googleapis.com/instance/cpu/usage_time - collector-us-east-1 - us-east1-b")
})
})
Convey("and the alias pattern is for metric name", func() {
query := &cloudMonitoringQuery{AliasBy: "metric {{metric.name}} service {{metric.service}}", GroupBys: []string{"metric.label.instance_name", "resource.label.zone"}}
err = executor.parseResponse(res, data, query)
So(err, ShouldBeNil)
Convey("Should use alias by formatting and only show instance name", func() {
So(len(res.Series), ShouldEqual, 3)
So(res.Series[0].Name, ShouldEqual, "metric instance/cpu/usage_time service compute")
So(res.Series[1].Name, ShouldEqual, "metric instance/cpu/usage_time service compute")
So(res.Series[2].Name, ShouldEqual, "metric instance/cpu/usage_time service compute")
})
})
})
Convey("when data from query is distribution with exponential bounds", func() {
data, err := loadTestFile("./test-data/3-series-response-distribution-exponential.json")
So(err, ShouldBeNil)
So(len(data.TimeSeries), ShouldEqual, 1)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &cloudMonitoringQuery{AliasBy: "{{bucket}}"}
err = executor.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(len(res.Series), ShouldEqual, 11)
for i := 0; i < 11; i++ {
if i == 0 {
So(res.Series[i].Name, ShouldEqual, "0")
} else {
So(res.Series[i].Name, ShouldEqual, strconv.FormatInt(int64(math.Pow(float64(2), float64(i-1))), 10))
}
So(len(res.Series[i].Points), ShouldEqual, 3)
}
Convey("timestamps should be in ascending order", func() {
So(res.Series[0].Points[0][1].Float64, ShouldEqual, int64(1536668940000))
So(res.Series[0].Points[1][1].Float64, ShouldEqual, int64(1536669000000))
So(res.Series[0].Points[2][1].Float64, ShouldEqual, int64(1536669060000))
})
Convey("bucket bounds should be correct", func() {
So(res.Series[0].Name, ShouldEqual, "0")
So(res.Series[1].Name, ShouldEqual, "1")
So(res.Series[2].Name, ShouldEqual, "2")
So(res.Series[3].Name, ShouldEqual, "4")
So(res.Series[4].Name, ShouldEqual, "8")
})
Convey("value should be correct", func() {
So(res.Series[8].Points[0][0].Float64, ShouldEqual, 1)
So(res.Series[9].Points[0][0].Float64, ShouldEqual, 1)
So(res.Series[10].Points[0][0].Float64, ShouldEqual, 1)
So(res.Series[8].Points[1][0].Float64, ShouldEqual, 0)
So(res.Series[9].Points[1][0].Float64, ShouldEqual, 0)
So(res.Series[10].Points[1][0].Float64, ShouldEqual, 1)
So(res.Series[8].Points[2][0].Float64, ShouldEqual, 0)
So(res.Series[9].Points[2][0].Float64, ShouldEqual, 1)
So(res.Series[10].Points[2][0].Float64, ShouldEqual, 0)
})
})
Convey("when data from query is distribution with explicit bounds", func() {
data, err := loadTestFile("./test-data/4-series-response-distribution-explicit.json")
So(err, ShouldBeNil)
So(len(data.TimeSeries), ShouldEqual, 1)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &cloudMonitoringQuery{AliasBy: "{{bucket}}"}
err = executor.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(len(res.Series), ShouldEqual, 33)
for i := 0; i < 33; i++ {
if i == 0 {
So(res.Series[i].Name, ShouldEqual, "0")
}
So(len(res.Series[i].Points), ShouldEqual, 2)
}
Convey("timestamps should be in ascending order", func() {
So(res.Series[0].Points[0][1].Float64, ShouldEqual, int64(1550859086000))
So(res.Series[0].Points[1][1].Float64, ShouldEqual, int64(1550859146000))
})
Convey("bucket bounds should be correct", func() {
So(res.Series[0].Name, ShouldEqual, "0")
So(res.Series[1].Name, ShouldEqual, "0.01")
So(res.Series[2].Name, ShouldEqual, "0.05")
So(res.Series[3].Name, ShouldEqual, "0.1")
})
Convey("value should be correct", func() {
So(res.Series[8].Points[0][0].Float64, ShouldEqual, 381)
So(res.Series[9].Points[0][0].Float64, ShouldEqual, 212)
So(res.Series[10].Points[0][0].Float64, ShouldEqual, 56)
So(res.Series[8].Points[1][0].Float64, ShouldEqual, 375)
So(res.Series[9].Points[1][0].Float64, ShouldEqual, 213)
So(res.Series[10].Points[1][0].Float64, ShouldEqual, 56)
})
})
Convey("when data from query returns metadata system labels", func() {
data, err := loadTestFile("./test-data/5-series-response-meta-data.json")
So(err, ShouldBeNil)
So(len(data.TimeSeries), ShouldEqual, 3)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &cloudMonitoringQuery{AliasBy: "{{bucket}}"}
err = executor.parseResponse(res, data, query)
labels := res.Meta.Get("labels").Interface().(map[string][]string)
So(err, ShouldBeNil)
So(len(res.Series), ShouldEqual, 3)
Convey("and systemlabel contains key with array of string", func() {
So(len(labels["metadata.system_labels.test"]), ShouldEqual, 5)
So(labels["metadata.system_labels.test"], ShouldContain, "value1")
So(labels["metadata.system_labels.test"], ShouldContain, "value2")
So(labels["metadata.system_labels.test"], ShouldContain, "value3")
So(labels["metadata.system_labels.test"], ShouldContain, "value4")
So(labels["metadata.system_labels.test"], ShouldContain, "value5")
})
Convey("and systemlabel contains key with primitive strings", func() {
So(len(labels["metadata.system_labels.region"]), ShouldEqual, 2)
So(labels["metadata.system_labels.region"], ShouldContain, "us-central1")
So(labels["metadata.system_labels.region"], ShouldContain, "us-west1")
})
Convey("and userLabel contains key with primitive strings", func() {
So(len(labels["metadata.user_labels.region"]), ShouldEqual, 2)
So(labels["metadata.user_labels.region"], ShouldContain, "region1")
So(labels["metadata.user_labels.region"], ShouldContain, "region3")
So(len(labels["metadata.user_labels.name"]), ShouldEqual, 2)
So(labels["metadata.user_labels.name"], ShouldContain, "name1")
So(labels["metadata.user_labels.name"], ShouldContain, "name3")
})
})
Convey("when data from query returns metadata system labels and alias by is defined", func() {
data, err := loadTestFile("./test-data/5-series-response-meta-data.json")
So(err, ShouldBeNil)
So(len(data.TimeSeries), ShouldEqual, 3)
Convey("and systemlabel contains key with array of string", func() {
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &cloudMonitoringQuery{AliasBy: "{{metadata.system_labels.test}}"}
err = executor.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(len(res.Series), ShouldEqual, 3)
fmt.Println(res.Series[0].Name)
So(res.Series[0].Name, ShouldEqual, "value1, value2")
So(res.Series[1].Name, ShouldEqual, "value1, value2, value3")
So(res.Series[2].Name, ShouldEqual, "value1, value2, value4, value5")
})
Convey("and systemlabel contains key with array of string2", func() {
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &cloudMonitoringQuery{AliasBy: "{{metadata.system_labels.test2}}"}
err = executor.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(len(res.Series), ShouldEqual, 3)
fmt.Println(res.Series[0].Name)
So(res.Series[2].Name, ShouldEqual, "testvalue")
})
})
Convey("when data from query returns slo and alias by is defined", func() {
data, err := loadTestFile("./test-data/6-series-response-slo.json")
So(err, ShouldBeNil)
So(len(data.TimeSeries), ShouldEqual, 1)
Convey("and alias by is expanded", func() {
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &cloudMonitoringQuery{
ProjectName: "test-proj",
Selector: "select_slo_compliance",
Service: "test-service",
Slo: "test-slo",
AliasBy: "{{project}} - {{service}} - {{slo}} - {{selector}}",
}
err = executor.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Name, ShouldEqual, "test-proj - test-service - test-slo - select_slo_compliance")
})
})
Convey("when data from query returns slo and alias by is not defined", func() {
data, err := loadTestFile("./test-data/6-series-response-slo.json")
So(err, ShouldBeNil)
So(len(data.TimeSeries), ShouldEqual, 1)
Convey("and alias by is expanded", func() {
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &cloudMonitoringQuery{
ProjectName: "test-proj",
Selector: "select_slo_compliance",
Service: "test-service",
Slo: "test-slo",
}
err = executor.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Name, ShouldEqual, "select_slo_compliance(\"projects/test-proj/services/test-service/serviceLevelObjectives/test-slo\")")
})
})
})
Convey("when interpolating filter wildcards", func() {
Convey("and wildcard is used in the beginning and the end of the word", func() {
Convey("and there's no wildcard in the middle of the word", func() {
value := interpolateFilterWildcards("*-central1*")
So(value, ShouldEqual, `has_substring("-central1")`)
})
Convey("and there is a wildcard in the middle of the word", func() {
value := interpolateFilterWildcards("*-cent*ral1*")
So(value, ShouldNotStartWith, `has_substring`)
})
})
Convey("and wildcard is used in the beginning of the word", func() {
Convey("and there is not a wildcard elsewhere in the word", func() {
value := interpolateFilterWildcards("*-central1")
So(value, ShouldEqual, `ends_with("-central1")`)
})
Convey("and there is a wildcard elsewhere in the word", func() {
value := interpolateFilterWildcards("*-cent*al1")
So(value, ShouldNotStartWith, `ends_with`)
})
})
Convey("and wildcard is used at the end of the word", func() {
Convey("and there is not a wildcard elsewhere in the word", func() {
value := interpolateFilterWildcards("us-central*")
So(value, ShouldEqual, `starts_with("us-central")`)
})
Convey("and there is a wildcard elsewhere in the word", func() {
value := interpolateFilterWildcards("*us-central*")
So(value, ShouldNotStartWith, `starts_with`)
})
})
Convey("and wildcard is used in the middle of the word", func() {
Convey("and there is only one wildcard", func() {
value := interpolateFilterWildcards("us-ce*tral1-b")
So(value, ShouldEqual, `monitoring.regex.full_match("^us\\-ce.*tral1\\-b$")`)
})
Convey("and there is more than one wildcard", func() {
value := interpolateFilterWildcards("us-ce*tra*1-b")
So(value, ShouldEqual, `monitoring.regex.full_match("^us\\-ce.*tra.*1\\-b$")`)
})
})
Convey("and wildcard is used in the middle of the word and in the beginning of the word", func() {
value := interpolateFilterWildcards("*s-ce*tral1-b")
So(value, ShouldEqual, `monitoring.regex.full_match("^.*s\\-ce.*tral1\\-b$")`)
})
Convey("and wildcard is used in the middle of the word and in the ending of the word", func() {
value := interpolateFilterWildcards("us-ce*tral1-*")
So(value, ShouldEqual, `monitoring.regex.full_match("^us\\-ce.*tral1\\-.*$")`)
})
Convey("and no wildcard is used", func() {
value := interpolateFilterWildcards("us-central1-a}")
So(value, ShouldEqual, `us-central1-a}`)
})
})
Convey("when building filter string", func() {
Convey("and there's no regex operator", func() {
Convey("and there are wildcards in a filter value", func() {
filterParts := []string{"zone", "=", "*-central1*"}
value := buildFilterString("somemetrictype", filterParts)
So(value, ShouldEqual, `metric.type="somemetrictype" zone=has_substring("-central1")`)
})
Convey("and there are no wildcards in any filter value", func() {
filterParts := []string{"zone", "!=", "us-central1-a"}
value := buildFilterString("somemetrictype", filterParts)
So(value, ShouldEqual, `metric.type="somemetrictype" zone!="us-central1-a"`)
})
})
Convey("and there is a regex operator", func() {
filterParts := []string{"zone", "=~", "us-central1-a~"}
value := buildFilterString("somemetrictype", filterParts)
Convey("it should remove the ~ character from the operator that belongs to the value", func() {
So(value, ShouldNotContainSubstring, `=~`)
So(value, ShouldContainSubstring, `zone=`)
})
Convey("it should insert monitoring.regex.full_match before filter value", func() {
So(value, ShouldContainSubstring, `zone=monitoring.regex.full_match("us-central1-a~")`)
})
})
})
})
}
func loadTestFile(path string) (cloudMonitoringResponse, error) {
var data cloudMonitoringResponse
jsonBody, err := ioutil.ReadFile(path)
if err != nil {
return data, err
}
err = json.Unmarshal(jsonBody, &data)
return data, err
}
func verifyDeepLink(dl string, expectedTimeSelection map[string]string, expectedTimeSeriesFilter map[string]interface{}) {
u, err := url.Parse(dl)
So(err, ShouldBeNil)
So(u.Scheme, ShouldEqual, "https")
So(u.Host, ShouldEqual, "accounts.google.com")
So(u.Path, ShouldEqual, "/AccountChooser")
params, err := url.ParseQuery(u.RawQuery)
So(err, ShouldBeNil)
continueParam := params.Get("continue")
So(continueParam, ShouldNotBeEmpty)
u, err = url.Parse(continueParam)
So(err, ShouldBeNil)
params, err = url.ParseQuery(u.RawQuery)
So(err, ShouldBeNil)
deepLinkParam := params.Get("Grafana_deeplink")
So(deepLinkParam, ShouldNotBeEmpty)
pageStateStr := params.Get("pageState")
So(pageStateStr, ShouldNotBeEmpty)
var pageState map[string]map[string]interface{}
err = json.Unmarshal([]byte(pageStateStr), &pageState)
So(err, ShouldBeNil)
timeSelection, ok := pageState["timeSelection"]
So(ok, ShouldBeTrue)
for k, v := range expectedTimeSelection {
s, ok := timeSelection[k].(string)
So(ok, ShouldBeTrue)
So(s, ShouldEqual, v)
}
dataSets, ok := pageState["xyChart"]["dataSets"].([]interface{})
So(ok, ShouldBeTrue)
So(len(dataSets), ShouldEqual, 1)
dataSet, ok := dataSets[0].(map[string]interface{})
So(ok, ShouldBeTrue)
i, ok := dataSet["timeSeriesFilter"]
So(ok, ShouldBeTrue)
timeSeriesFilter := i.(map[string]interface{})
for k, v := range expectedTimeSeriesFilter {
s, ok := timeSeriesFilter[k]
So(ok, ShouldBeTrue)
rt := reflect.TypeOf(v)
switch rt.Kind() {
case reflect.Slice, reflect.Array:
So(s, ShouldResemble, v)
default:
So(s, ShouldEqual, v)
}
}
}