grafana/public/app/core/logs_model.test.ts
Andrej Ocenas 0fda3c4f44
Explore: Fix context view in logs, where some rows may have been filtered out. (#21729)
* Fix timestamp formats and use uid to filter context rows

* Remove timestamps from tests
2020-01-26 23:13:56 +01:00

598 lines
15 KiB
TypeScript

import {
DataFrame,
FieldType,
LogsMetaKind,
LogsDedupStrategy,
LogLevel,
MutableDataFrame,
toDataFrame,
LogRowModel,
} from '@grafana/data';
import { dedupLogRows, dataFrameToLogsModel } from './logs_model';
describe('dedupLogRows()', () => {
test('should return rows as is when dedup is set to none', () => {
const rows: LogRowModel[] = [
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
] as any;
expect(dedupLogRows(rows, LogsDedupStrategy.none)).toMatchObject(rows);
});
test('should dedup on exact matches', () => {
const rows: LogRowModel[] = [
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'INFO test 2.44 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
] as any;
expect(dedupLogRows(rows, LogsDedupStrategy.exact)).toEqual([
{
duplicates: 1,
entry: 'WARN test 1.23 on [xxx]',
},
{
duplicates: 0,
entry: 'INFO test 2.44 on [xxx]',
},
{
duplicates: 0,
entry: 'WARN test 1.23 on [xxx]',
},
]);
});
test('should dedup on number matches', () => {
const rows: LogRowModel[] = [
{
entry: 'WARN test 1.2323423 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'INFO test 2.44 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
] as any;
expect(dedupLogRows(rows, LogsDedupStrategy.numbers)).toEqual([
{
duplicates: 1,
entry: 'WARN test 1.2323423 on [xxx]',
},
{
duplicates: 0,
entry: 'INFO test 2.44 on [xxx]',
},
{
duplicates: 0,
entry: 'WARN test 1.23 on [xxx]',
},
]);
});
test('should dedup on signature matches', () => {
const rows: LogRowModel[] = [
{
entry: 'WARN test 1.2323423 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'INFO test 2.44 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
] as any;
expect(dedupLogRows(rows, LogsDedupStrategy.signature)).toEqual([
{
duplicates: 3,
entry: 'WARN test 1.2323423 on [xxx]',
},
]);
});
test('should return to non-deduped state on same log result', () => {
const rows: LogRowModel[] = [
{
entry: 'INFO 123',
},
{
entry: 'WARN 123',
},
{
entry: 'WARN 123',
},
] as any;
expect(dedupLogRows(rows, LogsDedupStrategy.exact)).toEqual([
{
duplicates: 0,
entry: 'INFO 123',
},
{
duplicates: 1,
entry: 'WARN 123',
},
]);
expect(dedupLogRows(rows, LogsDedupStrategy.none)).toEqual(rows);
});
});
const emptyLogsModel: any = {
hasUniqueLabels: false,
rows: [],
meta: [],
series: [],
};
describe('dataFrameToLogsModel', () => {
it('given empty series should return empty logs model', () => {
expect(dataFrameToLogsModel([] as DataFrame[], 0, 'utc')).toMatchObject(emptyLogsModel);
});
it('given series without correct series name should return empty logs model', () => {
const series: DataFrame[] = [
toDataFrame({
fields: [],
}),
];
expect(dataFrameToLogsModel(series, 0, 'utc')).toMatchObject(emptyLogsModel);
});
it('given series without a time field should return empty logs model', () => {
const series: DataFrame[] = [
new MutableDataFrame({
fields: [
{
name: 'message',
type: FieldType.string,
values: [],
},
],
}),
];
expect(dataFrameToLogsModel(series, 0, 'utc')).toMatchObject(emptyLogsModel);
});
it('given series without a string field should return empty logs model', () => {
const series: DataFrame[] = [
new MutableDataFrame({
fields: [
{
name: 'time',
type: FieldType.time,
values: [],
},
],
}),
];
expect(dataFrameToLogsModel(series, 0, 'utc')).toMatchObject(emptyLogsModel);
});
it('given one series should return expected logs model', () => {
const series: DataFrame[] = [
new MutableDataFrame({
fields: [
{
name: 'time',
type: FieldType.time,
values: ['2019-04-26T09:28:11.352440161Z', '2019-04-26T14:42:50.991981292Z'],
},
{
name: 'message',
type: FieldType.string,
values: [
't=2019-04-26T11:05:28+0200 lvl=info msg="Initializing DatasourceCacheService" logger=server',
't=2019-04-26T16:42:50+0200 lvl=eror msg="new token…t unhashed token=56d9fdc5c8b7400bd51b060eea8ca9d7',
],
labels: {
filename: '/var/log/grafana/grafana.log',
job: 'grafana',
},
},
{
name: 'id',
type: FieldType.string,
values: ['foo', 'bar'],
},
],
meta: {
limit: 1000,
},
}),
];
const logsModel = dataFrameToLogsModel(series, 0, 'utc');
expect(logsModel.hasUniqueLabels).toBeFalsy();
expect(logsModel.rows).toHaveLength(2);
expect(logsModel.rows).toMatchObject([
{
entry: 't=2019-04-26T11:05:28+0200 lvl=info msg="Initializing DatasourceCacheService" logger=server',
labels: { filename: '/var/log/grafana/grafana.log', job: 'grafana' },
logLevel: 'info',
uniqueLabels: {},
uid: 'foo',
},
{
entry: 't=2019-04-26T16:42:50+0200 lvl=eror msg="new token…t unhashed token=56d9fdc5c8b7400bd51b060eea8ca9d7',
labels: { filename: '/var/log/grafana/grafana.log', job: 'grafana' },
logLevel: 'error',
uniqueLabels: {},
uid: 'bar',
},
]);
expect(logsModel.series).toHaveLength(2);
expect(logsModel.meta).toHaveLength(2);
expect(logsModel.meta[0]).toMatchObject({
label: 'Common labels',
value: series[0].fields[1].labels,
kind: LogsMetaKind.LabelsMap,
});
expect(logsModel.meta[1]).toMatchObject({
label: 'Limit',
value: `1000 (2 returned)`,
kind: LogsMetaKind.String,
});
});
it('given one series without labels should return expected logs model', () => {
const series: DataFrame[] = [
new MutableDataFrame({
fields: [
{
name: 'time',
type: FieldType.time,
values: ['1970-01-01T00:00:01Z'],
},
{
name: 'message',
type: FieldType.string,
values: ['WARN boooo'],
},
{
name: 'level',
type: FieldType.string,
values: ['dbug'],
},
],
}),
];
const logsModel = dataFrameToLogsModel(series, 0, 'utc');
expect(logsModel.rows).toHaveLength(1);
expect(logsModel.rows).toMatchObject([
{
entry: 'WARN boooo',
labels: undefined,
logLevel: LogLevel.debug,
uniqueLabels: {},
},
]);
});
it('given multiple series with unique times should return expected logs model', () => {
const series: DataFrame[] = [
toDataFrame({
fields: [
{
name: 'ts',
type: FieldType.time,
values: ['1970-01-01T00:00:01Z'],
},
{
name: 'line',
type: FieldType.string,
values: ['WARN boooo'],
labels: {
foo: 'bar',
baz: '1',
level: 'dbug',
},
},
{
name: 'id',
type: FieldType.string,
values: ['0'],
},
],
}),
toDataFrame({
name: 'logs',
fields: [
{
name: 'time',
type: FieldType.time,
values: ['1970-01-01T00:00:00Z', '1970-01-01T00:00:02Z'],
},
{
name: 'message',
type: FieldType.string,
values: ['INFO 1', 'INFO 2'],
labels: {
foo: 'bar',
baz: '2',
level: 'err',
},
},
{
name: 'id',
type: FieldType.string,
values: ['1', '2'],
},
],
}),
];
const logsModel = dataFrameToLogsModel(series, 0, 'utc');
expect(logsModel.hasUniqueLabels).toBeTruthy();
expect(logsModel.rows).toHaveLength(3);
expect(logsModel.rows).toMatchObject([
{
entry: 'INFO 1',
labels: { foo: 'bar', baz: '2' },
logLevel: LogLevel.error,
uniqueLabels: { baz: '2' },
},
{
entry: 'WARN boooo',
labels: { foo: 'bar', baz: '1' },
logLevel: LogLevel.debug,
uniqueLabels: { baz: '1' },
},
{
entry: 'INFO 2',
labels: { foo: 'bar', baz: '2' },
logLevel: LogLevel.error,
uniqueLabels: { baz: '2' },
},
]);
expect(logsModel.series).toHaveLength(2);
expect(logsModel.meta).toHaveLength(1);
expect(logsModel.meta[0]).toMatchObject({
label: 'Common labels',
value: {
foo: 'bar',
},
kind: LogsMetaKind.LabelsMap,
});
});
it('given multiple series with equal times should return expected logs model', () => {
const series: DataFrame[] = [
toDataFrame({
fields: [
{
name: 'ts',
type: FieldType.time,
values: ['1970-01-01T00:00:00Z'],
},
{
name: 'line',
type: FieldType.string,
values: ['WARN boooo 1'],
labels: {
foo: 'bar',
baz: '1',
level: 'dbug',
},
},
{
name: 'id',
type: FieldType.string,
values: ['0'],
},
],
}),
toDataFrame({
fields: [
{
name: 'ts',
type: FieldType.time,
values: ['1970-01-01T00:00:01Z'],
},
{
name: 'line',
type: FieldType.string,
values: ['WARN boooo 2'],
labels: {
foo: 'bar',
baz: '2',
level: 'dbug',
},
},
{
name: 'id',
type: FieldType.string,
values: ['1'],
},
],
}),
toDataFrame({
name: 'logs',
fields: [
{
name: 'time',
type: FieldType.time,
values: ['1970-01-01T00:00:00Z', '1970-01-01T00:00:01Z'],
},
{
name: 'message',
type: FieldType.string,
values: ['INFO 1', 'INFO 2'],
labels: {
foo: 'bar',
baz: '2',
level: 'err',
},
},
{
name: 'id',
type: FieldType.string,
values: ['2', '3'],
},
],
}),
];
const logsModel = dataFrameToLogsModel(series, 0, 'utc');
expect(logsModel.hasUniqueLabels).toBeTruthy();
expect(logsModel.rows).toHaveLength(4);
expect(logsModel.rows).toMatchObject([
{
entry: 'WARN boooo 1',
labels: { foo: 'bar', baz: '1' },
logLevel: LogLevel.debug,
uniqueLabels: { baz: '1' },
},
{
entry: 'INFO 1',
labels: { foo: 'bar', baz: '2' },
logLevel: LogLevel.error,
uniqueLabels: { baz: '2' },
},
{
entry: 'WARN boooo 2',
labels: { foo: 'bar', baz: '2' },
logLevel: LogLevel.debug,
uniqueLabels: { baz: '2' },
},
{
entry: 'INFO 2',
labels: { foo: 'bar', baz: '2' },
logLevel: LogLevel.error,
uniqueLabels: { baz: '2' },
},
]);
});
it('should fallback to row index if no id', () => {
const series: DataFrame[] = [
toDataFrame({
labels: { foo: 'bar' },
fields: [
{
name: 'ts',
type: FieldType.time,
values: ['1970-01-01T00:00:00Z'],
},
{
name: 'line',
type: FieldType.string,
values: ['WARN boooo 1'],
},
],
}),
];
const logsModel = dataFrameToLogsModel(series, 0, 'utc');
expect(logsModel.rows[0].uid).toBe('0');
});
it('given multiple series with equal ids should return expected logs model', () => {
const series: DataFrame[] = [
toDataFrame({
fields: [
{
name: 'ts',
type: FieldType.time,
values: ['1970-01-01T00:00:00Z'],
},
{
name: 'line',
type: FieldType.string,
values: ['WARN boooo 1'],
labels: {
foo: 'bar',
baz: '1',
level: 'dbug',
},
},
{
name: 'id',
type: FieldType.string,
values: ['0'],
},
],
}),
toDataFrame({
fields: [
{
name: 'ts',
type: FieldType.time,
values: ['1970-01-01T00:00:01Z'],
},
{
name: 'line',
type: FieldType.string,
values: ['WARN boooo 2'],
labels: {
foo: 'bar',
baz: '2',
level: 'dbug',
},
},
{
name: 'id',
type: FieldType.string,
values: ['1'],
},
],
}),
toDataFrame({
fields: [
{
name: 'ts',
type: FieldType.time,
values: ['1970-01-01T00:00:01Z'],
},
{
name: 'line',
type: FieldType.string,
values: ['WARN boooo 2'],
labels: {
foo: 'bar',
baz: '2',
level: 'dbug',
},
},
{
name: 'id',
type: FieldType.string,
values: ['1'],
},
],
}),
];
const logsModel = dataFrameToLogsModel(series, 0, 'utc');
expect(logsModel.hasUniqueLabels).toBeTruthy();
expect(logsModel.rows).toHaveLength(2);
expect(logsModel.rows).toMatchObject([
{
entry: 'WARN boooo 1',
labels: { foo: 'bar' },
logLevel: LogLevel.debug,
uniqueLabels: { baz: '1' },
},
{
entry: 'WARN boooo 2',
labels: { foo: 'bar' },
logLevel: LogLevel.debug,
uniqueLabels: { baz: '2' },
},
]);
});
});