grafana/public/app/plugins/datasource/prometheus/specs/language_provider.test.ts
Dominik Prokop 9b7748ec13
Chore: Reorg packages (#20111)
Primarily- moving majority of the types and utils from @grafana/ui to @grafana/data

* Move types from grafana-ui to grafana-data

* Move valueFormats to grafana-data

* Move utils from grafana-ui to grafana-data

* Update imports in grafana-ui

* revert data's tsconfig change

* Update imports in grafana-runtime

* Fix import paths in grafana-ui

* Move rxjs to devDeps

* Core import updates batch 1

* Import updates batch 2

* Imports fix batch 3

* Imports fixes batch i don't know

* Fix imorts in grafana-toolkit

* Fix imports after master merge
2019-10-31 10:48:05 +01:00

416 lines
16 KiB
TypeScript

import Plain from 'slate-plain-serializer';
import { Editor as SlateEditor } from 'slate';
import LanguageProvider from '../language_provider';
import { PrometheusDatasource } from '../datasource';
import { HistoryItem } from '@grafana/data';
import { PromQuery } from '../types';
describe('Language completion provider', () => {
const datasource: PrometheusDatasource = ({
metadataRequest: () => ({ data: { data: [] as any[] } }),
getTimeRange: () => ({ start: 0, end: 1 }),
} as any) as PrometheusDatasource;
describe('empty query suggestions', () => {
it('returns default suggestions on empty context', async () => {
const instance = new LanguageProvider(datasource);
const value = Plain.deserialize('');
const result = await instance.provideCompletionItems({ text: '', prefix: '', value, wrapperClasses: [] });
expect(result.context).toBeUndefined();
expect(result.suggestions).toMatchObject([
{
label: 'Functions',
},
]);
});
it('returns default suggestions with metrics on empty context when metrics were provided', async () => {
const instance = new LanguageProvider(datasource, { metrics: ['foo', 'bar'] });
const value = Plain.deserialize('');
const result = await instance.provideCompletionItems({ text: '', prefix: '', value, wrapperClasses: [] });
expect(result.context).toBeUndefined();
expect(result.suggestions).toMatchObject([
{
label: 'Functions',
},
{
label: 'Metrics',
},
]);
});
it('returns default suggestions with history on empty context when history was provided', async () => {
const instance = new LanguageProvider(datasource);
const value = Plain.deserialize('');
const history: Array<HistoryItem<PromQuery>> = [
{
ts: 0,
query: { refId: '1', expr: 'metric' },
},
];
const result = await instance.provideCompletionItems(
{ text: '', prefix: '', value, wrapperClasses: [] },
{ history }
);
expect(result.context).toBeUndefined();
expect(result.suggestions).toMatchObject([
{
label: 'History',
items: [
{
label: 'metric',
},
],
},
{
label: 'Functions',
},
]);
});
});
describe('range suggestions', () => {
it('returns range suggestions in range context', async () => {
const instance = new LanguageProvider(datasource);
const value = Plain.deserialize('1');
const result = await instance.provideCompletionItems({
text: '1',
prefix: '1',
value,
wrapperClasses: ['context-range'],
});
expect(result.context).toBe('context-range');
expect(result.suggestions).toMatchObject([
{
items: [
{ label: '$__interval', sortText: '$__interval' }, // TODO: figure out why this row and sortText is needed
{ label: '1m', sortText: '00:01:00' },
{ label: '5m', sortText: '00:05:00' },
{ label: '10m', sortText: '00:10:00' },
{ label: '30m', sortText: '00:30:00' },
{ label: '1h', sortText: '01:00:00' },
{ label: '1d', sortText: '24:00:00' },
],
label: 'Range vector',
},
]);
});
});
describe('metric suggestions', () => {
it('returns metrics and function suggestions in an unknown context', async () => {
const instance = new LanguageProvider(datasource, { metrics: ['foo', 'bar'] });
let value = Plain.deserialize('a');
value = value.setSelection({ anchor: { offset: 1 }, focus: { offset: 1 } });
const result = await instance.provideCompletionItems({ text: 'a', prefix: 'a', value, wrapperClasses: [] });
expect(result.context).toBeUndefined();
expect(result.suggestions).toMatchObject([
{
label: 'Functions',
},
{
label: 'Metrics',
},
]);
});
it('returns metrics and function suggestions after a binary operator', async () => {
const instance = new LanguageProvider(datasource, { metrics: ['foo', 'bar'] });
const value = Plain.deserialize('*');
const result = await instance.provideCompletionItems({ text: '*', prefix: '', value, wrapperClasses: [] });
expect(result.context).toBeUndefined();
expect(result.suggestions).toMatchObject([
{
label: 'Functions',
},
{
label: 'Metrics',
},
]);
});
it('returns no suggestions at the beginning of a non-empty function', async () => {
const instance = new LanguageProvider(datasource, { metrics: ['foo', 'bar'] });
const value = Plain.deserialize('sum(up)');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(4).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
value: valueWithSelection,
wrapperClasses: [],
});
expect(result.context).toBeUndefined();
expect(result.suggestions.length).toEqual(0);
});
});
describe('label suggestions', () => {
it('returns default label suggestions on label context and no metric', async () => {
const instance = new LanguageProvider(datasource);
const value = Plain.deserialize('{}');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(1).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-labels'],
value: valueWithSelection,
});
expect(result.context).toBe('context-labels');
expect(result.suggestions).toEqual([{ items: [{ label: 'job' }, { label: 'instance' }], label: 'Labels' }]);
});
it('returns label suggestions on label context and metric', async () => {
const datasources: PrometheusDatasource = ({
metadataRequest: () => ({ data: { data: [{ __name__: 'metric', bar: 'bazinga' }] as any[] } }),
getTimeRange: () => ({ start: 0, end: 1 }),
} as any) as PrometheusDatasource;
const instance = new LanguageProvider(datasources, { labelKeys: { '{__name__="metric"}': ['bar'] } });
const value = Plain.deserialize('metric{}');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(7).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-labels'],
value: valueWithSelection,
});
expect(result.context).toBe('context-labels');
expect(result.suggestions).toEqual([{ items: [{ label: 'bar' }], label: 'Labels' }]);
});
it('returns label suggestions on label context but leaves out labels that already exist', async () => {
const datasources: PrometheusDatasource = ({
metadataRequest: () => ({
data: {
data: [
{
__name__: 'metric',
bar: 'asdasd',
job1: 'dsadsads',
job2: 'fsfsdfds',
job3: 'dsadsad',
},
],
},
}),
getTimeRange: () => ({ start: 0, end: 1 }),
} as any) as PrometheusDatasource;
const instance = new LanguageProvider(datasources, {
labelKeys: {
'{job1="foo",job2!="foo",job3=~"foo",__name__="metric"}': ['bar', 'job1', 'job2', 'job3', '__name__'],
},
});
const value = Plain.deserialize('{job1="foo",job2!="foo",job3=~"foo",__name__="metric",}');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(54).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-labels'],
value: valueWithSelection,
});
expect(result.context).toBe('context-labels');
expect(result.suggestions).toEqual([{ items: [{ label: 'bar' }], label: 'Labels' }]);
});
it('returns label value suggestions inside a label value context after a negated matching operator', async () => {
const instance = new LanguageProvider(datasource, {
labelKeys: { '{}': ['label'] },
labelValues: { '{}': { label: ['a', 'b', 'c'] } },
});
const value = Plain.deserialize('{label!=}');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(8).value;
const result = await instance.provideCompletionItems({
text: '!=',
prefix: '',
wrapperClasses: ['context-labels'],
labelKey: 'label',
value: valueWithSelection,
});
expect(result.context).toBe('context-label-values');
expect(result.suggestions).toEqual([
{
items: [{ label: 'a' }, { label: 'b' }, { label: 'c' }],
label: 'Label values for "label"',
},
]);
});
it('returns a refresher on label context and unavailable metric', async () => {
const instance = new LanguageProvider(datasource, { labelKeys: { '{__name__="foo"}': ['bar'] } });
const value = Plain.deserialize('metric{}');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(7).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-labels'],
value: valueWithSelection,
});
expect(result.context).toBeUndefined();
expect(result.suggestions).toEqual([]);
});
it('returns label values on label context when given a metric and a label key', async () => {
const instance = new LanguageProvider(datasource, {
labelKeys: { '{__name__="metric"}': ['bar'] },
labelValues: { '{__name__="metric"}': { bar: ['baz'] } },
});
const value = Plain.deserialize('metric{bar=ba}');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(13).value;
const result = await instance.provideCompletionItems({
text: '=ba',
prefix: 'ba',
wrapperClasses: ['context-labels'],
labelKey: 'bar',
value: valueWithSelection,
});
expect(result.context).toBe('context-label-values');
expect(result.suggestions).toEqual([{ items: [{ label: 'baz' }], label: 'Label values for "bar"' }]);
});
it('returns label suggestions on aggregation context and metric w/ selector', async () => {
const instance = new LanguageProvider(datasource, { labelKeys: { '{__name__="metric",foo="xx"}': ['bar'] } });
const value = Plain.deserialize('sum(metric{foo="xx"}) by ()');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(26).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-aggregation'],
value: valueWithSelection,
});
expect(result.context).toBe('context-aggregation');
expect(result.suggestions).toEqual([{ items: [{ label: 'bar' }], label: 'Labels' }]);
});
it('returns label suggestions on aggregation context and metric w/o selector', async () => {
const instance = new LanguageProvider(datasource, { labelKeys: { '{__name__="metric"}': ['bar'] } });
const value = Plain.deserialize('sum(metric) by ()');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(16).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-aggregation'],
value: valueWithSelection,
});
expect(result.context).toBe('context-aggregation');
expect(result.suggestions).toEqual([{ items: [{ label: 'bar' }], label: 'Labels' }]);
});
it('returns label suggestions inside a multi-line aggregation context', async () => {
const instance = new LanguageProvider(datasource, {
labelKeys: { '{__name__="metric"}': ['label1', 'label2', 'label3'] },
});
const value = Plain.deserialize('sum(\nmetric\n)\nby ()');
const aggregationTextBlock = value.document.getBlocks().get(3);
const ed = new SlateEditor({ value });
ed.moveToStartOfNode(aggregationTextBlock);
const valueWithSelection = ed.moveForward(4).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-aggregation'],
value: valueWithSelection,
});
expect(result.context).toBe('context-aggregation');
expect(result.suggestions).toEqual([
{
items: [{ label: 'label1' }, { label: 'label2' }, { label: 'label3' }],
label: 'Labels',
},
]);
});
it('returns label suggestions inside an aggregation context with a range vector', async () => {
const instance = new LanguageProvider(datasource, {
labelKeys: { '{__name__="metric"}': ['label1', 'label2', 'label3'] },
});
const value = Plain.deserialize('sum(rate(metric[1h])) by ()');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(26).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-aggregation'],
value: valueWithSelection,
});
expect(result.context).toBe('context-aggregation');
expect(result.suggestions).toEqual([
{
items: [{ label: 'label1' }, { label: 'label2' }, { label: 'label3' }],
label: 'Labels',
},
]);
});
it('returns label suggestions inside an aggregation context with a range vector and label', async () => {
const instance = new LanguageProvider(datasource, {
labelKeys: { '{__name__="metric",label1="value"}': ['label1', 'label2', 'label3'] },
});
const value = Plain.deserialize('sum(rate(metric{label1="value"}[1h])) by ()');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(42).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-aggregation'],
value: valueWithSelection,
});
expect(result.context).toBe('context-aggregation');
expect(result.suggestions).toEqual([
{
items: [{ label: 'label1' }, { label: 'label2' }, { label: 'label3' }],
label: 'Labels',
},
]);
});
it('returns no suggestions inside an unclear aggregation context using alternate syntax', async () => {
const instance = new LanguageProvider(datasource, {
labelKeys: { '{__name__="metric"}': ['label1', 'label2', 'label3'] },
});
const value = Plain.deserialize('sum by ()');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(8).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-aggregation'],
value: valueWithSelection,
});
expect(result.context).toBe('context-aggregation');
expect(result.suggestions).toEqual([]);
});
it('returns label suggestions inside an aggregation context using alternate syntax', async () => {
const instance = new LanguageProvider(datasource, {
labelKeys: { '{__name__="metric"}': ['label1', 'label2', 'label3'] },
});
const value = Plain.deserialize('sum by () (metric)');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(8).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-aggregation'],
value: valueWithSelection,
});
expect(result.context).toBe('context-aggregation');
expect(result.suggestions).toEqual([
{
items: [{ label: 'label1' }, { label: 'label2' }, { label: 'label3' }],
label: 'Labels',
},
]);
});
});
});