mirror of
https://github.com/grafana/grafana.git
synced 2024-11-30 04:34:23 -06:00
0fda3c4f44
* Fix timestamp formats and use uid to filter context rows * Remove timestamps from tests
382 lines
11 KiB
TypeScript
382 lines
11 KiB
TypeScript
import _ from 'lodash';
|
|
import { colors, ansicolor } from '@grafana/ui';
|
|
|
|
import {
|
|
Labels,
|
|
LogLevel,
|
|
DataFrame,
|
|
findCommonLabels,
|
|
findUniqueLabels,
|
|
getLogLevel,
|
|
FieldType,
|
|
getLogLevelFromKey,
|
|
LogRowModel,
|
|
LogsModel,
|
|
LogsMetaItem,
|
|
LogsMetaKind,
|
|
LogsDedupStrategy,
|
|
GraphSeriesXY,
|
|
dateTime,
|
|
toUtc,
|
|
NullValueMode,
|
|
toDataFrame,
|
|
FieldCache,
|
|
FieldWithIndex,
|
|
getFlotPairs,
|
|
TimeZone,
|
|
getDisplayProcessor,
|
|
} from '@grafana/data';
|
|
import { getThemeColor } from 'app/core/utils/colors';
|
|
import { hasAnsiCodes } from 'app/core/utils/text';
|
|
import { sortInAscendingOrder, deduplicateLogRowsById } from 'app/core/utils/explore';
|
|
import { getGraphSeriesModel } from 'app/plugins/panel/graph2/getGraphSeriesModel';
|
|
|
|
export const LogLevelColor = {
|
|
[LogLevel.critical]: colors[7],
|
|
[LogLevel.warning]: colors[1],
|
|
[LogLevel.error]: colors[4],
|
|
[LogLevel.info]: colors[0],
|
|
[LogLevel.debug]: colors[5],
|
|
[LogLevel.trace]: colors[2],
|
|
[LogLevel.unknown]: getThemeColor('#8e8e8e', '#dde4ed'),
|
|
};
|
|
|
|
const isoDateRegexp = /\d{4}-[01]\d-[0-3]\dT[0-2]\d:[0-5]\d:[0-6]\d[,\.]\d+([+-][0-2]\d:[0-5]\d|Z)/g;
|
|
function isDuplicateRow(row: LogRowModel, other: LogRowModel, strategy?: LogsDedupStrategy): boolean {
|
|
switch (strategy) {
|
|
case LogsDedupStrategy.exact:
|
|
// Exact still strips dates
|
|
return row.entry.replace(isoDateRegexp, '') === other.entry.replace(isoDateRegexp, '');
|
|
|
|
case LogsDedupStrategy.numbers:
|
|
return row.entry.replace(/\d/g, '') === other.entry.replace(/\d/g, '');
|
|
|
|
case LogsDedupStrategy.signature:
|
|
return row.entry.replace(/\w/g, '') === other.entry.replace(/\w/g, '');
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
export function dedupLogRows(rows: LogRowModel[], strategy?: LogsDedupStrategy): LogRowModel[] {
|
|
if (strategy === LogsDedupStrategy.none) {
|
|
return rows;
|
|
}
|
|
|
|
return rows.reduce((result: LogRowModel[], row: LogRowModel, index) => {
|
|
const rowCopy = { ...row };
|
|
const previous = result[result.length - 1];
|
|
if (index > 0 && isDuplicateRow(row, previous, strategy)) {
|
|
previous.duplicates!++;
|
|
} else {
|
|
rowCopy.duplicates = 0;
|
|
result.push(rowCopy);
|
|
}
|
|
return result;
|
|
}, []);
|
|
}
|
|
|
|
export function filterLogLevels(logRows: LogRowModel[], hiddenLogLevels: Set<LogLevel>): LogRowModel[] {
|
|
if (hiddenLogLevels.size === 0) {
|
|
return logRows;
|
|
}
|
|
|
|
return logRows.filter((row: LogRowModel) => {
|
|
return !hiddenLogLevels.has(row.logLevel);
|
|
});
|
|
}
|
|
|
|
export function makeSeriesForLogs(rows: LogRowModel[], intervalMs: number, timeZone: TimeZone): GraphSeriesXY[] {
|
|
// currently interval is rangeMs / resolution, which is too low for showing series as bars.
|
|
// need at least 10px per bucket, so we multiply interval by 10. Should be solved higher up the chain
|
|
// when executing queries & interval calculated and not here but this is a temporary fix.
|
|
// intervalMs = intervalMs * 10;
|
|
|
|
// Graph time series by log level
|
|
const seriesByLevel: any = {};
|
|
const bucketSize = intervalMs * 10;
|
|
const seriesList: any[] = [];
|
|
|
|
const sortedRows = rows.sort(sortInAscendingOrder);
|
|
for (const row of sortedRows) {
|
|
let series = seriesByLevel[row.logLevel];
|
|
|
|
if (!series) {
|
|
seriesByLevel[row.logLevel] = series = {
|
|
lastTs: null,
|
|
datapoints: [],
|
|
alias: row.logLevel,
|
|
target: row.logLevel,
|
|
color: LogLevelColor[row.logLevel],
|
|
};
|
|
|
|
seriesList.push(series);
|
|
}
|
|
|
|
// align time to bucket size - used Math.floor for calculation as time of the bucket
|
|
// must be in the past (before Date.now()) to be displayed on the graph
|
|
const time = Math.floor(row.timeEpochMs / bucketSize) * bucketSize;
|
|
|
|
// Entry for time
|
|
if (time === series.lastTs) {
|
|
series.datapoints[series.datapoints.length - 1][0]++;
|
|
} else {
|
|
series.datapoints.push([1, time]);
|
|
series.lastTs = time;
|
|
}
|
|
|
|
// add zero to other levels to aid stacking so each level series has same number of points
|
|
for (const other of seriesList) {
|
|
if (other !== series && other.lastTs !== time) {
|
|
other.datapoints.push([0, time]);
|
|
other.lastTs = time;
|
|
}
|
|
}
|
|
}
|
|
|
|
return seriesList.map((series, i) => {
|
|
series.datapoints.sort((a: number[], b: number[]) => {
|
|
return a[1] - b[1];
|
|
});
|
|
|
|
// EEEP: converts GraphSeriesXY to DataFrame and back again!
|
|
const data = toDataFrame(series);
|
|
const points = getFlotPairs({
|
|
xField: data.fields[1],
|
|
yField: data.fields[0],
|
|
nullValueMode: NullValueMode.Null,
|
|
});
|
|
|
|
const timeField = data.fields[1];
|
|
timeField.display = getDisplayProcessor({
|
|
field: timeField,
|
|
timeZone,
|
|
});
|
|
|
|
const valueField = data.fields[0];
|
|
valueField.config = {
|
|
...valueField.config,
|
|
color: series.color,
|
|
};
|
|
|
|
const graphSeries: GraphSeriesXY = {
|
|
color: series.color,
|
|
label: series.alias,
|
|
data: points,
|
|
isVisible: true,
|
|
yAxis: {
|
|
index: 1,
|
|
min: 0,
|
|
tickDecimals: 0,
|
|
},
|
|
seriesIndex: i,
|
|
timeField,
|
|
valueField,
|
|
// for now setting the time step to be 0,
|
|
// and handle the bar width by setting lineWidth instead of barWidth in flot options
|
|
timeStep: 0,
|
|
};
|
|
|
|
return graphSeries;
|
|
});
|
|
}
|
|
|
|
function isLogsData(series: DataFrame) {
|
|
return series.fields.some(f => f.type === FieldType.time) && series.fields.some(f => f.type === FieldType.string);
|
|
}
|
|
|
|
/**
|
|
* Convert dataFrame into LogsModel which consists of creating separate array of log rows and metrics series. Metrics
|
|
* series can be either already included in the dataFrame or will be computed from the log rows.
|
|
* @param dataFrame
|
|
* @param intervalMs In case there are no metrics series, we use this for computing it from log rows.
|
|
*/
|
|
export function dataFrameToLogsModel(dataFrame: DataFrame[], intervalMs: number, timeZone: TimeZone): LogsModel {
|
|
const { logSeries, metricSeries } = separateLogsAndMetrics(dataFrame);
|
|
const logsModel = logSeriesToLogsModel(logSeries);
|
|
|
|
if (logsModel) {
|
|
if (metricSeries.length === 0) {
|
|
// Create metrics from logs
|
|
logsModel.series = makeSeriesForLogs(logsModel.rows, intervalMs, timeZone);
|
|
} else {
|
|
// We got metrics in the dataFrame so process those
|
|
logsModel.series = getGraphSeriesModel(
|
|
metricSeries,
|
|
timeZone,
|
|
{},
|
|
{ showBars: true, showLines: false, showPoints: false },
|
|
{
|
|
asTable: false,
|
|
isVisible: true,
|
|
placement: 'under',
|
|
}
|
|
);
|
|
}
|
|
|
|
return logsModel;
|
|
}
|
|
|
|
return {
|
|
hasUniqueLabels: false,
|
|
rows: [],
|
|
meta: [],
|
|
series: [],
|
|
};
|
|
}
|
|
|
|
function separateLogsAndMetrics(dataFrame: DataFrame[]) {
|
|
const metricSeries: DataFrame[] = [];
|
|
const logSeries: DataFrame[] = [];
|
|
|
|
for (const series of dataFrame) {
|
|
if (isLogsData(series)) {
|
|
logSeries.push(series);
|
|
continue;
|
|
}
|
|
|
|
metricSeries.push(series);
|
|
}
|
|
|
|
return { logSeries, metricSeries };
|
|
}
|
|
|
|
const logTimeFormat = 'YYYY-MM-DD HH:mm:ss';
|
|
|
|
interface LogFields {
|
|
series: DataFrame;
|
|
|
|
timeField: FieldWithIndex;
|
|
stringField: FieldWithIndex;
|
|
logLevelField?: FieldWithIndex;
|
|
idField?: FieldWithIndex;
|
|
}
|
|
|
|
/**
|
|
* Converts dataFrames into LogsModel. This involves merging them into one list, sorting them and computing metadata
|
|
* like common labels.
|
|
*/
|
|
export function logSeriesToLogsModel(logSeries: DataFrame[]): LogsModel | undefined {
|
|
if (logSeries.length === 0) {
|
|
return undefined;
|
|
}
|
|
const allLabels: Labels[] = [];
|
|
|
|
// Find the fields we care about and collect all labels
|
|
const allSeries: LogFields[] = logSeries.map(series => {
|
|
const fieldCache = new FieldCache(series);
|
|
|
|
// Assume the first string field in the dataFrame is the message. This was right so far but probably needs some
|
|
// more explicit checks.
|
|
const stringField = fieldCache.getFirstFieldOfType(FieldType.string);
|
|
if (stringField.labels) {
|
|
allLabels.push(stringField.labels);
|
|
}
|
|
return {
|
|
series,
|
|
timeField: fieldCache.getFirstFieldOfType(FieldType.time),
|
|
stringField,
|
|
logLevelField: fieldCache.getFieldByName('level'),
|
|
idField: getIdField(fieldCache),
|
|
};
|
|
});
|
|
|
|
const commonLabels = allLabels.length > 0 ? findCommonLabels(allLabels) : {};
|
|
|
|
const rows: LogRowModel[] = [];
|
|
let hasUniqueLabels = false;
|
|
|
|
for (const info of allSeries) {
|
|
const { timeField, stringField, logLevelField, idField, series } = info;
|
|
const labels = stringField.labels;
|
|
const uniqueLabels = findUniqueLabels(labels, commonLabels);
|
|
if (Object.keys(uniqueLabels).length > 0) {
|
|
hasUniqueLabels = true;
|
|
}
|
|
|
|
let seriesLogLevel: LogLevel | undefined = undefined;
|
|
if (labels && Object.keys(labels).indexOf('level') !== -1) {
|
|
seriesLogLevel = getLogLevelFromKey(labels['level']);
|
|
}
|
|
|
|
for (let j = 0; j < series.length; j++) {
|
|
const ts = timeField.values.get(j);
|
|
const time = dateTime(ts);
|
|
|
|
const messageValue: unknown = stringField.values.get(j);
|
|
// This should be string but sometimes isn't (eg elastic) because the dataFrame is not strongly typed.
|
|
const message: string = typeof messageValue === 'string' ? messageValue : JSON.stringify(messageValue);
|
|
|
|
const hasAnsi = hasAnsiCodes(message);
|
|
const searchWords = series.meta && series.meta.searchWords ? series.meta.searchWords : [];
|
|
|
|
let logLevel = LogLevel.unknown;
|
|
if (logLevelField) {
|
|
logLevel = getLogLevelFromKey(logLevelField.values.get(j));
|
|
} else if (seriesLogLevel) {
|
|
logLevel = seriesLogLevel;
|
|
} else {
|
|
logLevel = getLogLevel(message);
|
|
}
|
|
|
|
rows.push({
|
|
entryFieldIndex: stringField.index,
|
|
rowIndex: j,
|
|
dataFrame: series,
|
|
logLevel,
|
|
timeFromNow: time.fromNow(),
|
|
timeEpochMs: time.valueOf(),
|
|
timeLocal: time.format(logTimeFormat),
|
|
timeUtc: toUtc(time.valueOf()).format(logTimeFormat),
|
|
uniqueLabels,
|
|
hasAnsi,
|
|
searchWords,
|
|
entry: hasAnsi ? ansicolor.strip(message) : message,
|
|
raw: message,
|
|
labels: stringField.labels,
|
|
uid: idField ? idField.values.get(j) : j.toString(),
|
|
});
|
|
}
|
|
}
|
|
|
|
const deduplicatedLogRows = deduplicateLogRowsById(rows);
|
|
|
|
// Meta data to display in status
|
|
const meta: LogsMetaItem[] = [];
|
|
if (_.size(commonLabels) > 0) {
|
|
meta.push({
|
|
label: 'Common labels',
|
|
value: commonLabels,
|
|
kind: LogsMetaKind.LabelsMap,
|
|
});
|
|
}
|
|
|
|
const limits = logSeries.filter(series => series.meta && series.meta.limit);
|
|
|
|
if (limits.length > 0) {
|
|
meta.push({
|
|
label: 'Limit',
|
|
value: `${limits[0].meta.limit} (${deduplicatedLogRows.length} returned)`,
|
|
kind: LogsMetaKind.String,
|
|
});
|
|
}
|
|
|
|
return {
|
|
hasUniqueLabels,
|
|
meta,
|
|
rows: deduplicatedLogRows,
|
|
};
|
|
}
|
|
|
|
function getIdField(fieldCache: FieldCache): FieldWithIndex | undefined {
|
|
const idFieldNames = ['id'];
|
|
for (const fieldName of idFieldNames) {
|
|
const idField = fieldCache.getFieldByName(fieldName);
|
|
if (idField) {
|
|
return idField;
|
|
}
|
|
}
|
|
return undefined;
|
|
}
|