grafana/public/app/plugins/panel/table-old/transformers.ts
Josh Hunt 3c6e0e8ef8
Chore: ESlint import order (#44959)
* Add and configure eslint-plugin-import

* Fix the lint:ts npm command

* Autofix + prettier all the files

* Manually fix remaining files

* Move jquery code in jest-setup to external file to safely reorder imports

* Resolve issue caused by circular dependencies within Prometheus

* Update .betterer.results

* Fix missing // @ts-ignore

* ignore iconBundle.ts

* Fix missing // @ts-ignore
2022-04-22 14:33:13 +01:00

298 lines
7.5 KiB
TypeScript

import { findIndex, isObject, map } from 'lodash';
import { Column, TableData } from '@grafana/data';
import TableModel, { mergeTablesIntoModel } from 'app/core/table_model';
import TimeSeries from 'app/core/time_series2';
import flatten from 'app/core/utils/flatten';
import { TableTransform } from './types';
const transformers: { [key: string]: TableTransform } = {};
export const timeSeriesFormatFilterer = (data: any): any[] => {
if (!Array.isArray(data)) {
return data.datapoints ? [data] : [];
}
return data.reduce((acc, series) => {
if (!series.datapoints) {
return acc;
}
return acc.concat(series);
}, []);
};
export const tableDataFormatFilterer = (data: any): any[] => {
if (!Array.isArray(data)) {
return data.columns ? [data] : [];
}
return data.reduce((acc, series) => {
if (!series.columns) {
return acc;
}
return acc.concat(series);
}, []);
};
transformers['timeseries_to_rows'] = {
description: 'Time series to rows',
getColumns: () => {
return [];
},
transform: (data, panel, model) => {
model.columns = [{ text: 'Time', type: 'date' }, { text: 'Metric' }, { text: 'Value' }];
const filteredData = timeSeriesFormatFilterer(data);
for (let i = 0; i < filteredData.length; i++) {
const series = filteredData[i];
for (let y = 0; y < series.datapoints.length; y++) {
const dp = series.datapoints[y];
model.rows.push([dp[1], series.target, dp[0]]);
}
}
},
};
transformers['timeseries_to_columns'] = {
description: 'Time series to columns',
getColumns: () => {
return [];
},
transform: (data, panel, model) => {
model.columns.push({ text: 'Time', type: 'date' });
// group by time
const points: any = {};
const filteredData = timeSeriesFormatFilterer(data);
for (let i = 0; i < filteredData.length; i++) {
const series = filteredData[i];
model.columns.push({ text: series.target });
for (let y = 0; y < series.datapoints.length; y++) {
const dp = series.datapoints[y];
const timeKey = dp[1].toString();
if (!points[timeKey]) {
points[timeKey] = { time: dp[1] };
points[timeKey][i] = dp[0];
} else {
points[timeKey][i] = dp[0];
}
}
}
for (const time in points) {
const point = points[time];
const values = [point.time];
for (let i = 0; i < filteredData.length; i++) {
const value = point[i];
values.push(value);
}
model.rows.push(values);
}
},
};
transformers['timeseries_aggregations'] = {
description: 'Time series aggregations',
getColumns: () => {
return [
{ text: 'Avg', value: 'avg' },
{ text: 'Min', value: 'min' },
{ text: 'Max', value: 'max' },
{ text: 'Total', value: 'total' },
{ text: 'Current', value: 'current' },
{ text: 'Count', value: 'count' },
];
},
transform: (data, panel, model) => {
let i, y;
model.columns.push({ text: 'Metric' });
for (i = 0; i < panel.columns.length; i++) {
model.columns.push({ text: panel.columns[i].text });
}
const filteredData = timeSeriesFormatFilterer(data);
for (i = 0; i < filteredData.length; i++) {
const series = new TimeSeries({
datapoints: filteredData[i].datapoints,
alias: filteredData[i].target,
});
series.getFlotPairs('connected');
const cells = [series.alias];
for (y = 0; y < panel.columns.length; y++) {
cells.push(series.stats[panel.columns[y].value]);
}
model.rows.push(cells);
}
},
};
transformers['annotations'] = {
description: 'Annotations',
getColumns: () => {
return [];
},
transform: (data, panel, model) => {
model.columns.push({ text: 'Time', type: 'date' });
model.columns.push({ text: 'Title' });
model.columns.push({ text: 'Text' });
model.columns.push({ text: 'Tags' });
if (!data || !data.annotations || data.annotations.length === 0) {
return;
}
for (let i = 0; i < data.annotations.length; i++) {
const evt = data.annotations[i];
model.rows.push([evt.time, evt.title, evt.text, evt.tags]);
}
},
};
transformers['table'] = {
description: 'Table',
getColumns: (data) => {
if (!data || data.length === 0) {
return [];
}
// Single query returns data columns as is
if (data.length === 1) {
return [...data[0].columns];
}
const filteredData = tableDataFormatFilterer(data);
// Track column indexes: name -> index
const columnNames: any = {};
// Union of all columns
const columns = filteredData.reduce((acc: Column[], series: TableData) => {
series.columns.forEach((col) => {
const { text } = col;
if (columnNames[text] === undefined) {
columnNames[text] = acc.length;
acc.push(col);
}
});
return acc;
}, []);
return columns;
},
transform: (data: any[], panel, model) => {
if (!data || data.length === 0) {
return;
}
const filteredData = tableDataFormatFilterer(data);
const noTableIndex = findIndex(filteredData, (d) => 'columns' in d && 'rows' in d);
if (noTableIndex < 0) {
throw {
message: `Result of query #${String.fromCharCode(
65 + noTableIndex
)} is not in table format, try using another transform.`,
};
}
mergeTablesIntoModel(model, ...filteredData);
},
};
transformers['json'] = {
description: 'JSON Data',
getColumns: (data) => {
if (!data || data.length === 0) {
return [];
}
const names: any = {};
for (let i = 0; i < data.length; i++) {
const series = data[i];
if (series.type !== 'docs') {
continue;
}
// only look at 100 docs
const maxDocs = Math.min(series.datapoints.length, 100);
for (let y = 0; y < maxDocs; y++) {
const doc = series.datapoints[y];
const flattened = flatten(doc, {});
for (const propName in flattened) {
names[propName] = true;
}
}
}
return map(names, (value, key) => {
return { text: key, value: key };
});
},
transform: (data, panel, model) => {
let i, y, z;
for (const column of panel.columns) {
const tableCol: any = { text: column.text };
// if filterable data then set columns to filterable
if (data.length > 0 && data[0].filterable) {
tableCol.filterable = true;
}
model.columns.push(tableCol);
}
if (model.columns.length === 0) {
model.columns.push({ text: 'JSON' });
}
for (i = 0; i < data.length; i++) {
const series = data[i];
for (y = 0; y < series.datapoints.length; y++) {
const dp = series.datapoints[y];
const values = [];
if (isObject(dp) && panel.columns.length > 0) {
const flattened = flatten(dp);
for (z = 0; z < panel.columns.length; z++) {
values.push(flattened[panel.columns[z].value]);
}
} else {
values.push(JSON.stringify(dp));
}
model.rows.push(values);
}
}
},
};
function transformDataToTable(data: any, panel: any) {
const model = new TableModel();
if (!data || data.length === 0) {
return model;
}
const transformer = transformers[panel.transform];
if (!transformer) {
throw { message: 'Transformer ' + panel.transform + ' not found' };
}
transformer.transform(data, panel, model);
return model;
}
export { transformers, transformDataToTable };