mirror of
https://github.com/grafana/grafana.git
synced 2025-02-20 11:48:34 -06:00
274 lines
8.5 KiB
TypeScript
274 lines
8.5 KiB
TypeScript
import InfluxSeries from '../influx_series';
|
|
|
|
describe('when generating timeseries from influxdb response', function() {
|
|
describe('given multiple fields for series', function() {
|
|
var options = {
|
|
alias: '',
|
|
series: [
|
|
{
|
|
name: 'cpu',
|
|
tags: { app: 'test', server: 'server1' },
|
|
columns: ['time', 'mean', 'max', 'min'],
|
|
values: [[1431946625000, 10, 11, 9], [1431946626000, 20, 21, 19]],
|
|
},
|
|
],
|
|
};
|
|
describe('and no alias', function() {
|
|
it('should generate multiple datapoints for each column', function() {
|
|
var series = new InfluxSeries(options);
|
|
var result = series.getTimeSeries();
|
|
|
|
expect(result.length).toBe(3);
|
|
expect(result[0].target).toBe('cpu.mean {app: test, server: server1}');
|
|
expect(result[0].datapoints[0][0]).toBe(10);
|
|
expect(result[0].datapoints[0][1]).toBe(1431946625000);
|
|
expect(result[0].datapoints[1][0]).toBe(20);
|
|
expect(result[0].datapoints[1][1]).toBe(1431946626000);
|
|
|
|
expect(result[1].target).toBe('cpu.max {app: test, server: server1}');
|
|
expect(result[1].datapoints[0][0]).toBe(11);
|
|
expect(result[1].datapoints[0][1]).toBe(1431946625000);
|
|
expect(result[1].datapoints[1][0]).toBe(21);
|
|
expect(result[1].datapoints[1][1]).toBe(1431946626000);
|
|
|
|
expect(result[2].target).toBe('cpu.min {app: test, server: server1}');
|
|
expect(result[2].datapoints[0][0]).toBe(9);
|
|
expect(result[2].datapoints[0][1]).toBe(1431946625000);
|
|
expect(result[2].datapoints[1][0]).toBe(19);
|
|
expect(result[2].datapoints[1][1]).toBe(1431946626000);
|
|
});
|
|
});
|
|
|
|
describe('and simple alias', function() {
|
|
it('should use alias', function() {
|
|
options.alias = 'new series';
|
|
var series = new InfluxSeries(options);
|
|
var result = series.getTimeSeries();
|
|
|
|
expect(result[0].target).toBe('new series');
|
|
expect(result[1].target).toBe('new series');
|
|
expect(result[2].target).toBe('new series');
|
|
});
|
|
});
|
|
|
|
describe('and alias patterns', function() {
|
|
it('should replace patterns', function() {
|
|
options.alias = 'alias: $m -> $tag_server ([[measurement]])';
|
|
var series = new InfluxSeries(options);
|
|
var result = series.getTimeSeries();
|
|
|
|
expect(result[0].target).toBe('alias: cpu -> server1 (cpu)');
|
|
expect(result[1].target).toBe('alias: cpu -> server1 (cpu)');
|
|
expect(result[2].target).toBe('alias: cpu -> server1 (cpu)');
|
|
});
|
|
});
|
|
});
|
|
|
|
describe('given measurement with default fieldname', function() {
|
|
var options = {
|
|
series: [
|
|
{
|
|
name: 'cpu',
|
|
tags: { app: 'test', server: 'server1' },
|
|
columns: ['time', 'value'],
|
|
values: [['2015-05-18T10:57:05Z', 10], ['2015-05-18T10:57:06Z', 12]],
|
|
},
|
|
{
|
|
name: 'cpu',
|
|
tags: { app: 'test2', server: 'server2' },
|
|
columns: ['time', 'value'],
|
|
values: [['2015-05-18T10:57:05Z', 15], ['2015-05-18T10:57:06Z', 16]],
|
|
},
|
|
],
|
|
};
|
|
|
|
describe('and no alias', function() {
|
|
it('should generate label with no field', function() {
|
|
var series = new InfluxSeries(options);
|
|
var result = series.getTimeSeries();
|
|
|
|
expect(result[0].target).toBe('cpu {app: test, server: server1}');
|
|
expect(result[1].target).toBe('cpu {app: test2, server: server2}');
|
|
});
|
|
});
|
|
});
|
|
|
|
describe('given two series', function() {
|
|
var options = {
|
|
alias: '',
|
|
series: [
|
|
{
|
|
name: 'cpu',
|
|
tags: { app: 'test', server: 'server1' },
|
|
columns: ['time', 'mean'],
|
|
values: [[1431946625000, 10], [1431946626000, 12]],
|
|
},
|
|
{
|
|
name: 'cpu',
|
|
tags: { app: 'test2', server: 'server2' },
|
|
columns: ['time', 'mean'],
|
|
values: [[1431946625000, 15], [1431946626000, 16]],
|
|
},
|
|
],
|
|
};
|
|
|
|
describe('and no alias', function() {
|
|
it('should generate two time series', function() {
|
|
var series = new InfluxSeries(options);
|
|
var result = series.getTimeSeries();
|
|
|
|
expect(result.length).toBe(2);
|
|
expect(result[0].target).toBe('cpu.mean {app: test, server: server1}');
|
|
expect(result[0].datapoints[0][0]).toBe(10);
|
|
expect(result[0].datapoints[0][1]).toBe(1431946625000);
|
|
expect(result[0].datapoints[1][0]).toBe(12);
|
|
expect(result[0].datapoints[1][1]).toBe(1431946626000);
|
|
|
|
expect(result[1].target).toBe('cpu.mean {app: test2, server: server2}');
|
|
expect(result[1].datapoints[0][0]).toBe(15);
|
|
expect(result[1].datapoints[0][1]).toBe(1431946625000);
|
|
expect(result[1].datapoints[1][0]).toBe(16);
|
|
expect(result[1].datapoints[1][1]).toBe(1431946626000);
|
|
});
|
|
});
|
|
|
|
describe('and simple alias', function() {
|
|
it('should use alias', function() {
|
|
options.alias = 'new series';
|
|
var series = new InfluxSeries(options);
|
|
var result = series.getTimeSeries();
|
|
|
|
expect(result[0].target).toBe('new series');
|
|
});
|
|
});
|
|
|
|
describe('and alias patterns', function() {
|
|
it('should replace patterns', function() {
|
|
options.alias = 'alias: $m -> $tag_server ([[measurement]])';
|
|
var series = new InfluxSeries(options);
|
|
var result = series.getTimeSeries();
|
|
|
|
expect(result[0].target).toBe('alias: cpu -> server1 (cpu)');
|
|
expect(result[1].target).toBe('alias: cpu -> server2 (cpu)');
|
|
});
|
|
});
|
|
});
|
|
|
|
describe('given measurement with dots', function() {
|
|
var options = {
|
|
alias: '',
|
|
series: [
|
|
{
|
|
name: 'app.prod.server1.count',
|
|
tags: {},
|
|
columns: ['time', 'mean'],
|
|
values: [[1431946625000, 10], [1431946626000, 12]],
|
|
},
|
|
],
|
|
};
|
|
|
|
it('should replace patterns', function() {
|
|
options.alias = 'alias: $1 -> [[3]]';
|
|
var series = new InfluxSeries(options);
|
|
var result = series.getTimeSeries();
|
|
|
|
expect(result[0].target).toBe('alias: prod -> count');
|
|
});
|
|
});
|
|
|
|
describe('given table response', function() {
|
|
var options = {
|
|
alias: '',
|
|
series: [
|
|
{
|
|
name: 'app.prod.server1.count',
|
|
tags: { datacenter: 'Africa', server: 'server2' },
|
|
columns: ['time', 'value2', 'value'],
|
|
values: [[1431946625000, 23, 10], [1431946626000, 25, 12]],
|
|
},
|
|
],
|
|
};
|
|
|
|
it('should return table', function() {
|
|
var series = new InfluxSeries(options);
|
|
var table = series.getTable();
|
|
|
|
expect(table.type).toBe('table');
|
|
expect(table.columns.length).toBe(5);
|
|
expect(table.rows[0]).toEqual([
|
|
1431946625000,
|
|
'Africa',
|
|
'server2',
|
|
23,
|
|
10,
|
|
]);
|
|
});
|
|
});
|
|
|
|
describe('given annotation response', function() {
|
|
describe('with empty tagsColumn', function() {
|
|
var options = {
|
|
alias: '',
|
|
annotation: {},
|
|
series: [
|
|
{
|
|
name: 'logins.count',
|
|
tags: { datacenter: 'Africa', server: 'server2' },
|
|
columns: ['time', 'datacenter', 'hostname', 'source', 'value'],
|
|
values: [
|
|
[
|
|
1481549440372,
|
|
'America',
|
|
'10.1.100.10',
|
|
'backend',
|
|
215.7432653659507,
|
|
],
|
|
],
|
|
},
|
|
],
|
|
};
|
|
|
|
it('should multiple tags', function() {
|
|
var series = new InfluxSeries(options);
|
|
var annotations = series.getAnnotations();
|
|
|
|
expect(annotations[0].tags.length).toBe(0);
|
|
});
|
|
});
|
|
|
|
describe('given annotation response', function() {
|
|
var options = {
|
|
alias: '',
|
|
annotation: {
|
|
tagsColumn: 'datacenter, source',
|
|
},
|
|
series: [
|
|
{
|
|
name: 'logins.count',
|
|
tags: { datacenter: 'Africa', server: 'server2' },
|
|
columns: ['time', 'datacenter', 'hostname', 'source', 'value'],
|
|
values: [
|
|
[
|
|
1481549440372,
|
|
'America',
|
|
'10.1.100.10',
|
|
'backend',
|
|
215.7432653659507,
|
|
],
|
|
],
|
|
},
|
|
],
|
|
};
|
|
|
|
it('should multiple tags', function() {
|
|
var series = new InfluxSeries(options);
|
|
var annotations = series.getAnnotations();
|
|
|
|
expect(annotations[0].tags.length).toBe(2);
|
|
expect(annotations[0].tags[0]).toBe('America');
|
|
expect(annotations[0].tags[1]).toBe('backend');
|
|
});
|
|
});
|
|
});
|
|
});
|