grafana/public/app/plugins/panel/table/transformers.ts
David Kaltschmidt 8d70f13393 Type-agnostic row merge in table transform for multiple queries
* moved unique value naming to datasource (credit: @bergquist)
* merge rows based on same column-values and empty values
* expanded tests
2017-12-11 12:42:53 +01:00

346 lines
9.0 KiB
TypeScript

import _ from 'lodash';
import flatten from '../../../core/utils/flatten';
import TimeSeries from '../../../core/time_series2';
import TableModel from '../../../core/table_model';
var transformers = {};
transformers['timeseries_to_rows'] = {
description: 'Time series to rows',
getColumns: function() {
return [];
},
transform: function(data, panel, model) {
model.columns = [
{text: 'Time', type: 'date'},
{text: 'Metric'},
{text: 'Value'},
];
for (var i = 0; i < data.length; i++) {
var series = data[i];
for (var y = 0; y < series.datapoints.length; y++) {
var dp = series.datapoints[y];
model.rows.push([dp[1], series.target, dp[0]]);
}
}
},
};
transformers['timeseries_to_columns'] = {
description: 'Time series to columns',
getColumns: function() {
return [];
},
transform: function(data, panel, model) {
model.columns.push({text: 'Time', type: 'date'});
// group by time
var points = {};
for (let i = 0; i < data.length; i++) {
var series = data[i];
model.columns.push({text: series.target});
for (var y = 0; y < series.datapoints.length; y++) {
var dp = series.datapoints[y];
var timeKey = dp[1].toString();
if (!points[timeKey]) {
points[timeKey] = {time: dp[1]};
points[timeKey][i] = dp[0];
} else {
points[timeKey][i] = dp[0];
}
}
}
for (var time in points) {
var point = points[time];
var values = [point.time];
for (let i = 0; i < data.length; i++) {
var value = point[i];
values.push(value);
}
model.rows.push(values);
}
}
};
transformers['timeseries_aggregations'] = {
description: 'Time series aggregations',
getColumns: function() {
return [
{text: 'Avg', value: 'avg'},
{text: 'Min', value: 'min'},
{text: 'Max', value: 'max'},
{text: 'Total', value: 'total'},
{text: 'Current', value: 'current'},
{text: 'Count', value: 'count'},
];
},
transform: function(data, panel, model) {
var i, y;
model.columns.push({text: 'Metric'});
for (i = 0; i < panel.columns.length; i++) {
model.columns.push({text: panel.columns[i].text});
}
for (i = 0; i < data.length; i++) {
var series = new TimeSeries({
datapoints: data[i].datapoints,
alias: data[i].target,
});
series.getFlotPairs('connected');
var cells = [series.alias];
for (y = 0; y < panel.columns.length; y++) {
cells.push(series.stats[panel.columns[y].value]);
}
model.rows.push(cells);
}
}
};
transformers['annotations'] = {
description: 'Annotations',
getColumns: function() {
return [];
},
transform: function(data, panel, model) {
model.columns.push({text: 'Time', type: 'date'});
model.columns.push({text: 'Title'});
model.columns.push({text: 'Text'});
model.columns.push({text: 'Tags'});
if (!data || !data.annotations || data.annotations.length === 0) {
return;
}
for (var i = 0; i < data.annotations.length; i++) {
var evt = data.annotations[i];
model.rows.push([evt.time, evt.title, evt.text, evt.tags]);
}
}
};
transformers['table'] = {
description: 'Table',
getColumns: function(data) {
if (!data || data.length === 0) {
return [];
}
// Single query returns data columns as is
if (data.length === 1) {
return [...data[0].columns];
}
// Track column indexes: name -> index
const columnNames = {};
// Union of all columns
const columns = data.reduce((acc, d, i) => {
d.columns.forEach((col, j) => {
const { text } = col;
if (columnNames[text] === undefined) {
columnNames[text] = acc.length;
acc.push(col);
}
});
return acc;
}, []);
return columns;
},
transform: function(data, panel, model) {
if (!data || data.length === 0) {
return;
}
const noTableIndex = _.findIndex(data, d => d.type !== 'table');
if (noTableIndex > -1) {
throw {message: `Result of query #${String.fromCharCode(65 + noTableIndex)} is not in table format, try using another transform.`};
}
// Single query returns data columns and rows as is
if (data.length === 1) {
model.columns = [...data[0].columns];
model.rows = [...data[0].rows];
return;
}
// Track column indexes: name -> index
const columnNames = {};
const columnIndexes = [];
// Union of all non-value columns
const columns = data.reduce((acc, d, i) => {
const indexes = [];
d.columns.forEach((col, j) => {
const { text } = col;
if (columnNames[text] === undefined) {
columnNames[text] = acc.length;
acc.push(col);
}
indexes[j] = columnNames[text];
});
columnIndexes.push(indexes);
return acc;
}, []);
model.columns = columns;
// Adjust rows to new column indexes
let rows = data.reduce((acc, d, i) => {
const indexes = columnIndexes[i];
d.rows.forEach((r, j) => {
const alteredRow = [];
indexes.forEach((to, from) => {
alteredRow[to] = r[from];
});
acc.push(alteredRow);
});
return acc;
}, []);
// Merge rows that have same values for columns
const mergedRows = {};
rows = rows.reduce((acc, row, rowIndex) => {
if (!mergedRows[rowIndex]) {
let offset = rowIndex + 1;
while (offset < rows.length) {
// Find next row that has the same field values unless the respective field is undefined
const match = _.findIndex(rows, (otherRow) => {
let fieldsAreTheSame = true;
let foundFieldToMatch = false;
for (let columnIndex = 0; columnIndex < columns.length; columnIndex++) {
if (row[columnIndex] !== undefined && otherRow[columnIndex] !== undefined) {
if (row[columnIndex] !== otherRow[columnIndex]) {
fieldsAreTheSame = false;
}
} else if (row[columnIndex] === undefined || otherRow[columnIndex] === undefined) {
foundFieldToMatch = true;
}
if (!fieldsAreTheSame) {
break;
}
}
return fieldsAreTheSame && foundFieldToMatch;
}, offset);
if (match > -1) {
const matchedRow = rows[match];
// Merge values into current row
for (let columnIndex = 0; columnIndex < columns.length; columnIndex++) {
if (row[columnIndex] === undefined && matchedRow[columnIndex] !== undefined) {
row[columnIndex] = matchedRow[columnIndex];
}
}
mergedRows[match] = matchedRow;
// Keep looking for more rows to merge
offset = match + 1;
} else {
break;
}
}
acc.push(row);
}
return acc;
}, []);
model.rows = rows;
}
};
transformers['json'] = {
description: 'JSON Data',
getColumns: function(data) {
if (!data || data.length === 0) {
return [];
}
var names: any = {};
for (var i = 0; i < data.length; i++) {
var series = data[i];
if (series.type !== 'docs') {
continue;
}
// only look at 100 docs
var maxDocs = Math.min(series.datapoints.length, 100);
for (var y = 0; y < maxDocs; y++) {
var doc = series.datapoints[y];
var flattened = flatten(doc, null);
for (var propName in flattened) {
names[propName] = true;
}
}
}
return _.map(names, function(value, key) {
return {text: key, value: key};
});
},
transform: function(data, panel, model) {
var i, y, z;
for (let column of panel.columns) {
var tableCol: any = {text: column.text};
// if filterable data then set columns to filterable
if (data.length > 0 && data[0].filterable) {
tableCol.filterable = true;
}
model.columns.push(tableCol);
}
if (model.columns.length === 0) {
model.columns.push({text: 'JSON'});
}
for (i = 0; i < data.length; i++) {
var series = data[i];
for (y = 0; y < series.datapoints.length; y++) {
var dp = series.datapoints[y];
var values = [];
if (_.isObject(dp) && panel.columns.length > 0) {
var flattened = flatten(dp, null);
for (z = 0; z < panel.columns.length; z++) {
values.push(flattened[panel.columns[z].value]);
}
} else {
values.push(JSON.stringify(dp));
}
model.rows.push(values);
}
}
}
};
function transformDataToTable(data, panel) {
var model = new TableModel();
if (!data || data.length === 0) {
return model;
}
var transformer = transformers[panel.transform];
if (!transformer) {
throw {message: 'Transformer ' + panel.transform + ' not found'};
}
transformer.transform(data, panel, model);
return model;
}
export {transformers, transformDataToTable};