mirror of
https://github.com/grafana/grafana.git
synced 2025-02-15 01:53:33 -06:00
* add implementation of `logRowsToReadableJson` * add test for logRowsToReadableJson * add json, txt download buttons * changed downloadmenu to `Menu` * set closed state when menu closes * removed unused css * removed unused imports * remove isOpen state * remove unused import * add tests * remove untouched file
264 lines
6.6 KiB
TypeScript
264 lines
6.6 KiB
TypeScript
import { Labels, LogLevel, LogsModel, LogRowModel, LogsSortOrder, MutableDataFrame } from '@grafana/data';
|
|
|
|
import {
|
|
getLogLevel,
|
|
calculateLogsLabelStats,
|
|
calculateStats,
|
|
getLogLevelFromKey,
|
|
sortLogsResult,
|
|
checkLogsError,
|
|
logRowsToReadableJson,
|
|
} from './utils';
|
|
|
|
describe('getLoglevel()', () => {
|
|
it('returns no log level on empty line', () => {
|
|
expect(getLogLevel('')).toBe(LogLevel.unknown);
|
|
});
|
|
|
|
it('returns no log level on when level is part of a word', () => {
|
|
expect(getLogLevel('who warns us')).toBe(LogLevel.unknown);
|
|
});
|
|
|
|
it('returns same log level for long and short version', () => {
|
|
expect(getLogLevel('[Warn]')).toBe(LogLevel.warning);
|
|
expect(getLogLevel('[Warning]')).toBe(LogLevel.warning);
|
|
expect(getLogLevel('[Warn]')).toBe('warning');
|
|
});
|
|
|
|
it('returns correct log level when level is capitalized', () => {
|
|
expect(getLogLevel('WARN')).toBe(LogLevel.warn);
|
|
});
|
|
|
|
it('returns log level on line contains a log level', () => {
|
|
expect(getLogLevel('warn: it is looking bad')).toBe(LogLevel.warn);
|
|
expect(getLogLevel('2007-12-12 12:12:12 [WARN]: it is looking bad')).toBe(LogLevel.warn);
|
|
});
|
|
|
|
it('returns first log level found', () => {
|
|
expect(getLogLevel('WARN this could be a debug message')).toBe(LogLevel.warn);
|
|
expect(getLogLevel('WARN this is a non-critical message')).toBe(LogLevel.warn);
|
|
});
|
|
});
|
|
|
|
describe('getLogLevelFromKey()', () => {
|
|
it('returns correct log level', () => {
|
|
expect(getLogLevelFromKey('info')).toBe(LogLevel.info);
|
|
});
|
|
it('returns correct log level when level is capitalized', () => {
|
|
expect(getLogLevelFromKey('INFO')).toBe(LogLevel.info);
|
|
});
|
|
it('returns unknown log level when level is integer', () => {
|
|
expect(getLogLevelFromKey(1)).toBe(LogLevel.unknown);
|
|
});
|
|
});
|
|
|
|
describe('calculateLogsLabelStats()', () => {
|
|
test('should return no stats for empty rows', () => {
|
|
expect(calculateLogsLabelStats([], '')).toEqual([]);
|
|
});
|
|
|
|
test('should return no stats of label is not found', () => {
|
|
const rows = [
|
|
{
|
|
entry: 'foo 1',
|
|
labels: {
|
|
foo: 'bar',
|
|
} as Labels,
|
|
},
|
|
] as LogRowModel[];
|
|
|
|
expect(calculateLogsLabelStats(rows, 'baz')).toEqual([]);
|
|
});
|
|
|
|
test('should return stats for found labels', () => {
|
|
const rows = [
|
|
{
|
|
entry: 'foo 1',
|
|
labels: {
|
|
foo: 'bar',
|
|
} as Labels,
|
|
},
|
|
{
|
|
entry: 'foo 0',
|
|
labels: {
|
|
foo: 'xxx',
|
|
} as Labels,
|
|
},
|
|
{
|
|
entry: 'foo 2',
|
|
labels: {
|
|
foo: 'bar',
|
|
} as Labels,
|
|
},
|
|
] as LogRowModel[];
|
|
|
|
expect(calculateLogsLabelStats(rows, 'foo')).toMatchObject([
|
|
{
|
|
value: 'bar',
|
|
count: 2,
|
|
},
|
|
{
|
|
value: 'xxx',
|
|
count: 1,
|
|
},
|
|
]);
|
|
});
|
|
});
|
|
|
|
describe('calculateStats()', () => {
|
|
test('should return no stats for empty array', () => {
|
|
expect(calculateStats([])).toEqual([]);
|
|
});
|
|
|
|
test('should return correct stats', () => {
|
|
const values = ['one', 'one', null, undefined, 'two'];
|
|
expect(calculateStats(values)).toMatchObject([
|
|
{
|
|
value: 'one',
|
|
count: 2,
|
|
proportion: 2 / 3,
|
|
},
|
|
{
|
|
value: 'two',
|
|
count: 1,
|
|
proportion: 1 / 3,
|
|
},
|
|
]);
|
|
});
|
|
});
|
|
|
|
describe('sortLogsResult', () => {
|
|
const firstRow: LogRowModel = {
|
|
rowIndex: 0,
|
|
entryFieldIndex: 0,
|
|
dataFrame: new MutableDataFrame(),
|
|
entry: '',
|
|
hasAnsi: false,
|
|
hasUnescapedContent: false,
|
|
labels: {},
|
|
logLevel: LogLevel.info,
|
|
raw: '',
|
|
timeEpochMs: 0,
|
|
timeEpochNs: '0',
|
|
timeFromNow: '',
|
|
timeLocal: '',
|
|
timeUtc: '',
|
|
uid: '1',
|
|
};
|
|
const sameAsFirstRow = firstRow;
|
|
const secondRow: LogRowModel = {
|
|
rowIndex: 1,
|
|
entryFieldIndex: 0,
|
|
dataFrame: new MutableDataFrame(),
|
|
entry: '',
|
|
hasAnsi: false,
|
|
hasUnescapedContent: false,
|
|
labels: {},
|
|
logLevel: LogLevel.info,
|
|
raw: '',
|
|
timeEpochMs: 10,
|
|
timeEpochNs: '10000000',
|
|
timeFromNow: '',
|
|
timeLocal: '',
|
|
timeUtc: '',
|
|
uid: '2',
|
|
};
|
|
|
|
describe('when called with LogsSortOrder.Descending', () => {
|
|
it('then it should sort descending', () => {
|
|
const logsResult: LogsModel = {
|
|
rows: [firstRow, sameAsFirstRow, secondRow],
|
|
hasUniqueLabels: false,
|
|
};
|
|
const result = sortLogsResult(logsResult, LogsSortOrder.Descending);
|
|
|
|
expect(result).toEqual({
|
|
rows: [secondRow, firstRow, sameAsFirstRow],
|
|
hasUniqueLabels: false,
|
|
});
|
|
});
|
|
});
|
|
|
|
describe('when called with LogsSortOrder.Ascending', () => {
|
|
it('then it should sort ascending', () => {
|
|
const logsResult: LogsModel = {
|
|
rows: [secondRow, firstRow, sameAsFirstRow],
|
|
hasUniqueLabels: false,
|
|
};
|
|
const result = sortLogsResult(logsResult, LogsSortOrder.Ascending);
|
|
|
|
expect(result).toEqual({
|
|
rows: [firstRow, sameAsFirstRow, secondRow],
|
|
hasUniqueLabels: false,
|
|
});
|
|
});
|
|
});
|
|
});
|
|
|
|
describe('checkLogsError()', () => {
|
|
const log = {
|
|
labels: {
|
|
__error__: 'Error Message',
|
|
foo: 'boo',
|
|
} as Labels,
|
|
} as LogRowModel;
|
|
test('should return correct error if error is present', () => {
|
|
expect(checkLogsError(log)).toStrictEqual({ hasError: true, errorMessage: 'Error Message' });
|
|
});
|
|
});
|
|
|
|
describe('logRowsToReadableJson', () => {
|
|
const testRow: LogRowModel = {
|
|
rowIndex: 1,
|
|
entryFieldIndex: 0,
|
|
dataFrame: new MutableDataFrame(),
|
|
entry: 'test entry',
|
|
hasAnsi: false,
|
|
hasUnescapedContent: false,
|
|
labels: {
|
|
foo: 'bar',
|
|
},
|
|
logLevel: LogLevel.info,
|
|
raw: '',
|
|
timeEpochMs: 10,
|
|
timeEpochNs: '123456789',
|
|
timeFromNow: '',
|
|
timeLocal: '',
|
|
timeUtc: '',
|
|
uid: '2',
|
|
};
|
|
const testDf = new MutableDataFrame();
|
|
testDf.addField({ name: 'foo2', values: ['bar2'] });
|
|
const testRow2: LogRowModel = {
|
|
rowIndex: 0,
|
|
entryFieldIndex: -1,
|
|
dataFrame: testDf,
|
|
entry: 'test entry',
|
|
hasAnsi: false,
|
|
hasUnescapedContent: false,
|
|
labels: {
|
|
foo: 'bar',
|
|
},
|
|
logLevel: LogLevel.info,
|
|
raw: '',
|
|
timeEpochMs: 10,
|
|
timeEpochNs: '123456789',
|
|
timeFromNow: '',
|
|
timeLocal: '',
|
|
timeUtc: '',
|
|
uid: '2',
|
|
};
|
|
|
|
it('should format a single row', () => {
|
|
const result = logRowsToReadableJson([testRow]);
|
|
|
|
expect(result).toEqual([{ line: 'test entry', timestamp: '123456789', fields: { foo: 'bar' } }]);
|
|
});
|
|
|
|
it('should format a df field row', () => {
|
|
const result = logRowsToReadableJson([testRow2]);
|
|
|
|
expect(result).toEqual([{ line: 'test entry', timestamp: '123456789', fields: { foo: 'bar', foo2: 'bar2' } }]);
|
|
});
|
|
});
|