mirror of
https://github.com/grafana/grafana.git
synced 2025-02-20 11:48:34 -06:00
351 lines
9.7 KiB
TypeScript
351 lines
9.7 KiB
TypeScript
import _ from 'lodash';
|
|
import flatten from '../../../core/utils/flatten';
|
|
import TimeSeries from '../../../core/time_series2';
|
|
import TableModel from '../../../core/table_model';
|
|
|
|
var transformers = {};
|
|
|
|
transformers['timeseries_to_rows'] = {
|
|
description: 'Time series to rows',
|
|
getColumns: function() {
|
|
return [];
|
|
},
|
|
transform: function(data, panel, model) {
|
|
model.columns = [{ text: 'Time', type: 'date' }, { text: 'Metric' }, { text: 'Value' }];
|
|
|
|
for (var i = 0; i < data.length; i++) {
|
|
var series = data[i];
|
|
for (var y = 0; y < series.datapoints.length; y++) {
|
|
var dp = series.datapoints[y];
|
|
model.rows.push([dp[1], series.target, dp[0]]);
|
|
}
|
|
}
|
|
},
|
|
};
|
|
|
|
transformers['timeseries_to_columns'] = {
|
|
description: 'Time series to columns',
|
|
getColumns: function() {
|
|
return [];
|
|
},
|
|
transform: function(data, panel, model) {
|
|
model.columns.push({ text: 'Time', type: 'date' });
|
|
|
|
// group by time
|
|
var points = {};
|
|
|
|
for (let i = 0; i < data.length; i++) {
|
|
var series = data[i];
|
|
model.columns.push({ text: series.target });
|
|
|
|
for (var y = 0; y < series.datapoints.length; y++) {
|
|
var dp = series.datapoints[y];
|
|
var timeKey = dp[1].toString();
|
|
|
|
if (!points[timeKey]) {
|
|
points[timeKey] = { time: dp[1] };
|
|
points[timeKey][i] = dp[0];
|
|
} else {
|
|
points[timeKey][i] = dp[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (var time in points) {
|
|
var point = points[time];
|
|
var values = [point.time];
|
|
|
|
for (let i = 0; i < data.length; i++) {
|
|
var value = point[i];
|
|
values.push(value);
|
|
}
|
|
|
|
model.rows.push(values);
|
|
}
|
|
},
|
|
};
|
|
|
|
transformers['timeseries_aggregations'] = {
|
|
description: 'Time series aggregations',
|
|
getColumns: function() {
|
|
return [
|
|
{ text: 'Avg', value: 'avg' },
|
|
{ text: 'Min', value: 'min' },
|
|
{ text: 'Max', value: 'max' },
|
|
{ text: 'Total', value: 'total' },
|
|
{ text: 'Current', value: 'current' },
|
|
{ text: 'Count', value: 'count' },
|
|
];
|
|
},
|
|
transform: function(data, panel, model) {
|
|
var i, y;
|
|
model.columns.push({ text: 'Metric' });
|
|
|
|
for (i = 0; i < panel.columns.length; i++) {
|
|
model.columns.push({ text: panel.columns[i].text });
|
|
}
|
|
|
|
for (i = 0; i < data.length; i++) {
|
|
var series = new TimeSeries({
|
|
datapoints: data[i].datapoints,
|
|
alias: data[i].target,
|
|
});
|
|
|
|
series.getFlotPairs('connected');
|
|
var cells = [series.alias];
|
|
|
|
for (y = 0; y < panel.columns.length; y++) {
|
|
cells.push(series.stats[panel.columns[y].value]);
|
|
}
|
|
|
|
model.rows.push(cells);
|
|
}
|
|
},
|
|
};
|
|
|
|
transformers['annotations'] = {
|
|
description: 'Annotations',
|
|
getColumns: function() {
|
|
return [];
|
|
},
|
|
transform: function(data, panel, model) {
|
|
model.columns.push({ text: 'Time', type: 'date' });
|
|
model.columns.push({ text: 'Title' });
|
|
model.columns.push({ text: 'Text' });
|
|
model.columns.push({ text: 'Tags' });
|
|
|
|
if (!data || !data.annotations || data.annotations.length === 0) {
|
|
return;
|
|
}
|
|
|
|
for (var i = 0; i < data.annotations.length; i++) {
|
|
var evt = data.annotations[i];
|
|
model.rows.push([evt.time, evt.title, evt.text, evt.tags]);
|
|
}
|
|
},
|
|
};
|
|
|
|
transformers['table'] = {
|
|
description: 'Table',
|
|
getColumns: function(data) {
|
|
if (!data || data.length === 0) {
|
|
return [];
|
|
}
|
|
|
|
// Single query returns data columns as is
|
|
if (data.length === 1) {
|
|
return [...data[0].columns];
|
|
}
|
|
|
|
// Track column indexes: name -> index
|
|
const columnNames = {};
|
|
|
|
// Union of all columns
|
|
const columns = data.reduce((acc, series) => {
|
|
series.columns.forEach(col => {
|
|
const { text } = col;
|
|
if (columnNames[text] === undefined) {
|
|
columnNames[text] = acc.length;
|
|
acc.push(col);
|
|
}
|
|
});
|
|
return acc;
|
|
}, []);
|
|
|
|
return columns;
|
|
},
|
|
transform: function(data, panel, model) {
|
|
if (!data || data.length === 0) {
|
|
return;
|
|
}
|
|
|
|
const noTableIndex = _.findIndex(data, d => d.type !== 'table');
|
|
if (noTableIndex > -1) {
|
|
throw {
|
|
message: `Result of query #${String.fromCharCode(
|
|
65 + noTableIndex
|
|
)} is not in table format, try using another transform.`,
|
|
};
|
|
}
|
|
|
|
// Single query returns data columns and rows as is
|
|
if (data.length === 1) {
|
|
model.columns = [...data[0].columns];
|
|
model.rows = [...data[0].rows];
|
|
return;
|
|
}
|
|
|
|
// Track column indexes of union: name -> index
|
|
const columnNames = {};
|
|
|
|
// Union of all non-value columns
|
|
const columnsUnion = data.reduce((acc, series) => {
|
|
series.columns.forEach(col => {
|
|
const { text } = col;
|
|
if (columnNames[text] === undefined) {
|
|
columnNames[text] = acc.length;
|
|
acc.push(col);
|
|
}
|
|
});
|
|
return acc;
|
|
}, []);
|
|
|
|
// Map old column index to union index per series, e.g.,
|
|
// given columnNames {A: 0, B: 1} and
|
|
// data [{columns: [{ text: 'A' }]}, {columns: [{ text: 'B' }]}] => [[0], [1]]
|
|
const columnIndexMapper = data.map(series => series.columns.map(col => columnNames[col.text]));
|
|
|
|
// Flatten rows of all series and adjust new column indexes
|
|
const flattenedRows = data.reduce((acc, series, seriesIndex) => {
|
|
const mapper = columnIndexMapper[seriesIndex];
|
|
series.rows.forEach(row => {
|
|
const alteredRow = [];
|
|
// Shifting entries according to index mapper
|
|
mapper.forEach((to, from) => {
|
|
alteredRow[to] = row[from];
|
|
});
|
|
acc.push(alteredRow);
|
|
});
|
|
return acc;
|
|
}, []);
|
|
|
|
// Returns true if both rows have matching non-empty fields as well as matching
|
|
// indexes where one field is empty and the other is not
|
|
function areRowsMatching(columns, row, otherRow) {
|
|
let foundFieldToMatch = false;
|
|
for (let columnIndex = 0; columnIndex < columns.length; columnIndex++) {
|
|
if (row[columnIndex] !== undefined && otherRow[columnIndex] !== undefined) {
|
|
if (row[columnIndex] !== otherRow[columnIndex]) {
|
|
return false;
|
|
}
|
|
} else if (row[columnIndex] === undefined || otherRow[columnIndex] === undefined) {
|
|
foundFieldToMatch = true;
|
|
}
|
|
}
|
|
return foundFieldToMatch;
|
|
}
|
|
|
|
// Merge rows that have same values for columns
|
|
const mergedRows = {};
|
|
const compactedRows = flattenedRows.reduce((acc, row, rowIndex) => {
|
|
if (!mergedRows[rowIndex]) {
|
|
// Look from current row onwards
|
|
let offset = rowIndex + 1;
|
|
// More than one row can be merged into current row
|
|
while (offset < flattenedRows.length) {
|
|
// Find next row that could be merged
|
|
const match = _.findIndex(flattenedRows, otherRow => areRowsMatching(columnsUnion, row, otherRow), offset);
|
|
if (match > -1) {
|
|
const matchedRow = flattenedRows[match];
|
|
// Merge values from match into current row if there is a gap in the current row
|
|
for (let columnIndex = 0; columnIndex < columnsUnion.length; columnIndex++) {
|
|
if (row[columnIndex] === undefined && matchedRow[columnIndex] !== undefined) {
|
|
row[columnIndex] = matchedRow[columnIndex];
|
|
}
|
|
}
|
|
// Don't visit this row again
|
|
mergedRows[match] = matchedRow;
|
|
// Keep looking for more rows to merge
|
|
offset = match + 1;
|
|
} else {
|
|
// No match found, stop looking
|
|
break;
|
|
}
|
|
}
|
|
acc.push(row);
|
|
}
|
|
return acc;
|
|
}, []);
|
|
|
|
model.columns = columnsUnion;
|
|
model.rows = compactedRows;
|
|
},
|
|
};
|
|
|
|
transformers['json'] = {
|
|
description: 'JSON Data',
|
|
getColumns: function(data) {
|
|
if (!data || data.length === 0) {
|
|
return [];
|
|
}
|
|
|
|
var names: any = {};
|
|
for (var i = 0; i < data.length; i++) {
|
|
var series = data[i];
|
|
if (series.type !== 'docs') {
|
|
continue;
|
|
}
|
|
|
|
// only look at 100 docs
|
|
var maxDocs = Math.min(series.datapoints.length, 100);
|
|
for (var y = 0; y < maxDocs; y++) {
|
|
var doc = series.datapoints[y];
|
|
var flattened = flatten(doc, null);
|
|
for (var propName in flattened) {
|
|
names[propName] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return _.map(names, function(value, key) {
|
|
return { text: key, value: key };
|
|
});
|
|
},
|
|
transform: function(data, panel, model) {
|
|
var i, y, z;
|
|
|
|
for (let column of panel.columns) {
|
|
var tableCol: any = { text: column.text };
|
|
|
|
// if filterable data then set columns to filterable
|
|
if (data.length > 0 && data[0].filterable) {
|
|
tableCol.filterable = true;
|
|
}
|
|
|
|
model.columns.push(tableCol);
|
|
}
|
|
|
|
if (model.columns.length === 0) {
|
|
model.columns.push({ text: 'JSON' });
|
|
}
|
|
|
|
for (i = 0; i < data.length; i++) {
|
|
var series = data[i];
|
|
|
|
for (y = 0; y < series.datapoints.length; y++) {
|
|
var dp = series.datapoints[y];
|
|
var values = [];
|
|
|
|
if (_.isObject(dp) && panel.columns.length > 0) {
|
|
var flattened = flatten(dp, null);
|
|
for (z = 0; z < panel.columns.length; z++) {
|
|
values.push(flattened[panel.columns[z].value]);
|
|
}
|
|
} else {
|
|
values.push(JSON.stringify(dp));
|
|
}
|
|
|
|
model.rows.push(values);
|
|
}
|
|
}
|
|
},
|
|
};
|
|
|
|
function transformDataToTable(data, panel) {
|
|
var model = new TableModel();
|
|
|
|
if (!data || data.length === 0) {
|
|
return model;
|
|
}
|
|
|
|
var transformer = transformers[panel.transform];
|
|
if (!transformer) {
|
|
throw { message: 'Transformer ' + panel.transform + ' not found' };
|
|
}
|
|
|
|
transformer.transform(data, panel, model);
|
|
return model;
|
|
}
|
|
|
|
export { transformers, transformDataToTable };
|